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Abstract A Radial Basis Function Generated Finite-Differences (RBF-FD) in-
spired technique for evaluating definite integrals over the volume of the ball in
three dimensions is described. Such methods are necessary in many areas of Ap-
plied Mathematics, Mathematical Physics and myriad other application areas.
Previous approaches needed restrictive uniformity in the node set, which the algo-
rithm presented here does not require. By using RBF-FD approach, the proposed
algorithm computes quadrature weights for N arbitrarily scattered nodes in only
O(N logN) operations with high orders of accuracy.
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1 Introduction

This article is concerned with the development of a method for the approximate
evaluation of definite integrals over the volume of the ball in R3 of radius ρ > 0.
That is, consider volume integration over the domain Ω =

{
x ∈ R3| ‖x− x0‖2 ≤ ρ

}
,

with x0 ∈ R3. Applications of this common problem in mathematics abound from
the more specific scenarios of estimating the volumes of wells containing hydro-
carbons beneath the Earth’s surface [1] and recovering important diagnostic infor-
mation in, e.g., Thermoacoustic or Photoacoustic Tomogrpahy [2] to some more
generic problems in potential theory, magnetism and other concepts in mathemat-
ical physics [3].

The approximation of the values of definite integrals (quadrature when con-
sidering integration over an interval, or quadrature/cubature when considering
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integration over domains in two or more dimensions) is a rich topic dating back
many centuries to early attempts to measure, for instance, the area of the circle
[4]. Since that time much research has been devoted to developing sophisticated
and accurate techniques for estimating the values of integrals over intervals, areas,
and volumes. There are many texts devoted to summarizing such methods, see,
for example [5–7,4].

In the simplest case, the rules for quadrature over intervals are often con-
structed by replacing the integrand with a polynomial interpolant or a polynomial
approximation and then integrating, or by enforcing that a rule be exact on a
particular class of functions (like polynomials up to a particular degree). This is
how to arrive at, for instance, Newton-Cotes or Gaussian Quadrature rules, re-
spectively. These rules for integration over intervals are then often leveraged in
the context of iterated integrals by employing one-dimensional quadrature rules
for each variable in turn, leading to so-called Cartesian product formulas. Such
formulas require structure in the node sets–spacing between nodes that is uniform
or tied to the roots of orthogonal polynomials–across each variable of integra-
tion. This requirement may be impractical or require an additional interpolation
between the structured node set and locations where the integrand is specified.

To overcome these requirements on the structure of the node set, the value
of the integral can be approximated utilizing concepts from number theory or
through pseudorandom sampling of the integrand as in Monte-Carlo techniques
[6]. More common, however, is the alternative method of constructing quadrature
rules over areas and volumes by replacing the integrand with a now multivariate
polynomial interpolant or approximation and then integrating. It is often the case
that the basis set used for interpolation does not depend on the locations of the
nodes (e.g. multivariate polynomials). Such basis sets suffer from a question of the
existence and uniqueness of an interpolant on unstructured node sets [8,9], which
has prompted the use of Radial Basis Functions (RBFs) in the approximation of
the integrand.

The proposed quadrature technique was developed to compute weights at what-
ever node locations are specified by the user. This is because in applications, nu-
merical quadrature is usually a follow-up to some other task (such as collecting
data, or numerically solving PDEs), making it impractical to require node locations
that are specific to the quadrature method. The present algorithm is therefore de-
signed to find the quadrature weights given a node set defined by the application.
Further, the proposed algorithm allows for node sets featuring spatially varying
separation when increased node density is needed to capture fine structure in the
integrand. If the reader is only interested in evaluating the definite integral over
the volume of the ball and is not constrained to specific node locations (e.g. data
samples can be chosen at the precise locations required by a quadrature method
or the integrand is available in some, perhaps closed, form to be evaluated), then
there are certainly other methods available in most scientific computing environ-
ments for this purpose that can achieve high, even spectral, orders of accuracy.
The proposed algorithm, on the other hand, will find its greatest utility when the
integrand or data is difficult or impossible to sample at the node locations required
for a particular quadrature rule, and the method can still achieve high orders of
accuracy.

The numerical method described in this paper is a generalization of RBF-FD
(radial basis function-generated finite differences). This approach has so far mostly
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been used to approximate partial derivatives, with the key difference to regular
finite differences being that the node points no longer need to be grid-based (in
particular, Cartesian node layouts are now known to be less-than-optimal [10]).
For surveys of RBFs and of RBF-FD methods as they are applied to PDEs, see
[11,12]. Further, RBFs have been used successfully to construct quadrature rules
for an interval in one-dimension, bounded domains in two-dimensions and, more
specifically, integrals over bounded two-dimensional (piecewise-)smooth surfaces
embedded in three-dimensions [13–15].

The following Section 2 describes the present quadrature method. Section 3
describes some test examples, with illustrations of convergence rates and computa-
tional costs. Finally, section 4 outlines some conclusions. A Matlab implementation
of the method is available at Matlab Central’s File Exchange [16].

2 Description of the key steps in the algorithm

Consider evaluating

˚

Ω

f(x)dV, (1)

where Ω =
{
x ∈ R3 : ‖x− x0‖2 ≤ ρ

}
.

Similar to the work presented in [13–15] for surface integrals, the proposed
algorithm can be described in four steps:

1. Decompose the domain of integration into K ∈ Z+ subdomains.

2. On the kth subdomain construct an interpolant of the integrand.
3. Integrate the interpolant of the integrand to determine weights for integrating

a function f over the kth subdomain.
4. Combine the weights for the integrals over the K subdomains to obtain a weight

set for approximating the volume integral of f over Ω.

Each of these steps is described in greater detail in what follows.

2.1 Step 1: Decompose the domain of integration

Consider first a set SN = {xi}Ni=1 of N points in Ω, with a subset exactly on the

boundary surface. On this set of points construct a tessellation T = {tk}Kk=1 (via
Delaunay tessellation or some other algorithm) of K tetrahedra. These tetrahedra
encompass the bulk of the volume of Ω but not the entire volume.

Let KS ⊂ {1, 2, . . . ,K} be the set of indices such that if k ∈ KS then the
tetrahedron tk has a face that is not shared with any of the other tetrahedra.
This face has all three vertices on the surface of Ω and, unless the surface is
planar, there is a sliver of volume, sk, between the unshared face and the spherical
surface bounding the ball that must be accounted for in decomposing the volume.
Conversely, let KI = {1, 2, . . . ,K} \KS be the indices of tetrahedra that do not
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have a face with three vertices on the surface. With these definitions (1) can be
decomposed as

˚

Ω

f(x)dV =
∑
k∈KI

˚

tk

f(x)dV +
∑
k∈KS

˚
tk

f(x)dV +

˚

sk

f(x)dV

 . (2)

2.2 Step 2: Construct an interpolant of the integrand

For each tetrahedron in T define the sets Nk =
{
xk,j

}n
j=1

to be the n points in

SN nearest to the midpoint of tk (the average of the vertices of tk). Then for an
individual tk the integral

˚

tk

f(x)dV (3)

is evaluated by first approximating f(x) by an RBF interpolant, with interpolation
points from the set Nk, and then integrating the interpolant. Often the RBF
interpolant is a linear combination of (conditionally-) positive definite RBFs,

φ
(∥∥x− xk,j

∥∥
2

)
, j = 1, 2, . . . , n

and augmented by multivariate polynomial terms. If k ∈ KS , then the same inter-
polant and set of nodes is used for approximating the integrand over sk. Define
{πl(x)}Ml=1, with M = (m+1)(m+2)(m+3)

6 , to be the set of all of the trivariate poly-
nomial terms up to degree m. The interpolant is constructed as

q(x) :=
n∑
j=1

cRBF
k,j φ

(∥∥x− xk,j
∥∥
2

)
+

M∑
l=1

cpk,lπl(x),

where cRBFk,1 , . . . , cRBFk,n , cpk,1, . . . , c
p
k,M ∈ R are chosen to satisfy the interpolation

conditions q(xk,j) = f(xk,j), j = 1, 2, . . . , n, along with constraints
∑n
j=1 c

RBF
k,j πl(xk,j) =

0, for l = 1, 2, . . . ,M .

2.3 Step 3: Integrate the interpolant of the integrand

By integrating the interpolant, the approximation of the integral of f is reduced
to

˚

tk

f(x)dV ≈
n∑
j=1

wk,jf(xk,j)

for k ∈ KI and

˚

tk

f(x)dV +

˚

sk

f(x)dV ≈
n∑
j=1

wk,jf(xk,j)
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for k ∈ KS . A simple derivation can be carried out to show that the weights can
be found by solving the linear system Akwk = Ik with (n+M)× (n+M) matrix

Ak =

[
ΦTk Pk
PTk 0

]
.

The n × n submatrix Φk is made up of the RBFs evaluated at each point in Nk,
that is

Φk,ij = φ
(∥∥xk,i − xk,j

∥∥) , for i, j = 1, 2, . . . , n.

Likewise the n×M matrix Pk,il consists of the polynomial basis evaluated at each
point in Nk so that

Pk,il = πl(xk,i), for i = 1, 2, . . . , n and l = 1, 2, . . . ,M.

If k ∈ KI , the right hand side, Ik, includes integrals of the basis functions over
tk only. That is,

Ik,j =


˝
tk

φ
(∥∥x− xk,j

∥∥) dV j = 1, 2, . . . , n
˝
tk

πj−n(x)dV j = n+ 1, n+ 2, . . . , n+M
.

The integrals of the trivariate polynomial terms can be evaluated exactly via,
for instance, the Divergence Theorem or barycentric coordinates. For the RBFs,
the integrals can be evaluated by further decomposing tk into four tetrahedra
that share a common vertex. Summing the integrals of the RBFs over the four
tetrahedra results in the integral over tk. This process allows the volume integral
over a tetrahedron to be reduced to four integrals in a single dimension. Section
2.3.1 explains this process.

On the other hand, for k ∈ KS

Ik,j =


˝
tk

φ
(∥∥x− xk,j

∥∥) dV +
˝
sk

φ
(∥∥x− xk,j

∥∥) dV j = 1, 2, . . . , n
˝
tk

πj−n(x)dV +
˝
sk

πj−n(x)dV j = n+ 1, . . . , n+M
.

The integrals over tk are evaluated using the methods described in the previous
paragraph while the integrals over sk are approximated using a scheme discussed
in section 2.3.2.

2.3.1 Integrals of RBFs Over Tetrahedra

Suppose that the tetrahedron tk has vertices ak, bk, ck and dk, all points in R3.
Let xk,j be some point in R3, which will be common to the four tetrahedra that
will be integrated over to obtain the integral over tk. Although what follows applies
for any point in R3, the point xk,j is an interpolation node from the set Nk in this
context. A unit length normal vector to the side of tk with vertices ak, bk and ck
is defined by

nakbkck
:=

(bk − ak)× (ck − ak)

‖(bk − ak)× (ck − ak)‖2
,
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where the order of the vertices matters and should be taken as the order shown
in this definition when defining any normal vector in what follows,. Further, let
ek,j , fk,j , gk,j and hk,j be the orthogonal projections of xk,j onto the sides of tk
with vertices ak, bk and ck; ak, dk and bk; ak, ck and dk; and bk, dk and ck,
respectively. For instance,

ek,j = xk,j +
[
(ak − xk,j) · nakbkck

]
nakbkck

. (4)

Then by applying the divergence theorem it can be shown that

˚

tk

φ
(∥∥x− xk,j

∥∥
2

)
dV =

{
sign

((
xk,j − ek,j

)
· nakbkck

) ˚

txk,jakbkck

φ
(∥∥x− xk,j

∥∥
2

)
+ · · ·

sign
((

xk,j − fk,j
)
· nakdkbk

) ˚

txk,jakdkbk

φ
(∥∥x− xk,j

∥∥
2

)
+ · · ·

sign
((

xk,j − gk,j
)
· nakckdk

) ˚

txk,jakckdk

φ
(∥∥x− xk,j

∥∥
2

)
+ · · ·

sign
((

xk,j − hk,j
)
· nbkdkck

) ˚

txk,jbkdkck

φ
(∥∥x− xk,j

∥∥
2

)}
.

This expression for the integral over tk contains integrals over the four tetra-
hedra that share xk,j as a common vertex. Consider

˚

txk,jakbkck

φ
(∥∥x− xk,j

∥∥
2

)
dV

since the remaining integrals over the tetrahedra are analogous. The integrand is
radially symmetric about xk,j and depends only on the distance from xk,j sug-
gesting the change of variables

x(σ, λ1, λ2) = xk,j + σ(λ1ak + λ2bk + (1− λ1 − λ2)ck − xk,j).

In this change of variables, triangles similar to the side of tk with vertices ak, bk and
ck are parameterized using barycentric coordinates and scaled by the nonnegative
parameter σ, which also accounts for the distance of the triangle from the point
xk,j . Under this change of variables the integral becomes

1ˆ

0

1−λ1ˆ

0

σakbkckˆ

0

φ
(
σ
∥∥λ1ak + λ2bk + (1− λ1 − λ2)ck − xk,j

∥∥
2

)
σ2Vk,jdσdλ2dλ1,
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where Vk,j =
∣∣(ak − xk,j) ·

[
(bk − xk,j)× (ck − xk,j)

]∣∣ is six times the volume of
the tetrahedron txk,jakbkck

. This volume appears in the Jacobian determinant
from the change of variables. Also,

σakbkck
=

(
1
3 (ak + bk + ck)− xk,j

)
· nakbkck(

ck − xk,j
)
· nakbkck

is the value of σ corresponding to the side of tk with vertices ak, bk and ck.
Now, in the case of φ(r) = r2p+1, p = 0, 1, 2, . . ., the iterated integrals in σ

and then λ2 can be computed in closed form. However, exploring the integration
over λ1 in Mathematica indicates the cost of a closed form expression for the
integral is computationally too expensive, so the proposed algorithm uses standard
pseudospectral methods for evaluating the integrals over λ1.

2.3.2 Integrals Over Slivers of Volume at the Surface

When assigning a sliver of volume to a particular tetrahedron, tk, care must be
taken so that there are no gaps or overlaps between adjacent slivers. Let τk,i,
i = 1, 2, 3, 4, be the triangular faces of tk. At least one of these faces has all three
vertices on the surface of the sphere. In most cases, this will be only one face of tk
(particularly when the volume is well resolved by small enough tetrahedra), call
it τk,∗. It turns out that if the three edges of τk,∗ are projected radially from the
center of the sphere to the surface, gaps and overlaps will be prevented. For each
edge of τk,∗ the area between the arc on the sphere surface and the edge of the
triangle forms a side of the sliver of volume. The boundary of the sliver volume
is formed by all three of these sides, the spherical triangle on the surface of the
sphere between the three sides, and the triangle τk,∗. Figure 1 illustrates one of
these volumes.

Assigning the slivers of volume in this way provides for a transformation of the
coordinates of the sliver which allows the integral over the volume to be written
as an iterated integral over a triangular area and a parameter, σ, which relates to
the projection from the origin. Consider any point x in the volume. The vector x

intersects the plane containing τk,∗ at a point x′ that is inside the triangle τk,∗.
All of the points inside τk,∗ can be parameterized by, for instance,

x′(λ, µ) = (1− λ)ak + λ ((1− µ)bk + µck) , 0 ≤ λ ≤ 1 and 0 ≤ µ ≤ 1,

where ak, bk and ck are now representing the vertices of tk,∗. With this parame-
terization of tk,∗ any point x in the volume of the sliver can be represented as

x(λ, µ, σ) =

(
1 +

σ

‖x′(λ, µ)‖2

)
x′(λ, µ),

where 0 ≤ σ ≤ ρ −
∥∥x′(λ, µ)

∥∥
2
. Here σ measures the distance from x′ to x. With

this parameterization, for instance,

˚

sk

φ
(∥∥x− xk,j

∥∥) dV =

1ˆ

0

1ˆ

0

ρ−‖x′(λ,µ)‖
2ˆ

0

φ
(∥∥x(λ, µ, σ)− xk,j

∥∥) |J(σ, λ, µ)| dσdλdµ,

where J is the Jacobian determinant of x with respect to σ, λ and µ. The integrals
in σ, λ, and µ can be easily treated with any number of quadrature methods over
an interval.
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Fig. 1 An illustration of the tetrahedra in the set T . The volume of one of the tetrahedra near
the surface is outlined by thicker curves. Call the outlined tetrahedron tk and let τk,∗ be the
face of tk with three vertices on the surface of the sphere. The arrows indicate the projection
of one of τk,∗’s edges to the surface from the origin. The dashed lines indicate the projection
of τk,∗’s vertices from the origin. When decomposing the volume of the sphere, the area of the
triangle τk,∗, the areas between the arcs on the sphere and the edges of τk,∗ and the area of the
spherical triangle between these arcs make of the boundary of the sliver of volume associated
with tk. The projection ensures that between adjacent slivers there are no gaps or overlaps,
illustrated by the slivers of volume associated with three adjacent tetrahedra.

2.4 Step 4: Combine weights from the subdomains

Summing over all k ∈ {1, 2, . . . ,K} leads to the approximation of the volume
integral over Ω

˚

Ω

f(x)dV ≈
K∑
k=1

n∑
j=1

wk,jf(xk,j).

Let Ki, i = 1, 2, . . . , N , be the set of all pairs (k, j) such that xk,j 7→ xi. Then
the volume integral over Ω can be rewritten as

˚

Ω

f(x)dV ≈
N∑
i=1

Wif(xi). (5)

3 Test Examples

To demonstrate the performance of the method described herein, the algorithm will
be applied to four different test integrands featuring varying degrees of smoothness.
The fourth of these test integrands includes an extremely localized feature. Weights
are computed on quasi-uniformly spaced nodes, pseudo-randomly generated nodes,
and a clustered node set with increased density near the localized feature of the
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fourth test integrand. This clustered node set is used demonstrate the performance
of the algorithm under localized node refinement. In all of these tests, the radius

of the ball is fixed to ρ = 6
1
3

2π
1
3

so that the volume of the ball is equal to one.

3.1 Node Sets

In the cases of quasi-uniformly spaced nodes and the clustered node sets, quadra-
ture nodes were generated using a modification of the algorithm presented in [17].
This algorithm iteratively places nodes inside an implicitly defined surface by pre-
scribing the lengths of the edges in a sequence of tesselations of the point set.
The desired lengths of the edges are given in part by the value of an “edge length
function” evaluated at the averages of the two vertices (i.e. nodes) on the edges. In
the generation of quasi-uniformly spaced nodes a uniform (constant) edge length
function was used. When considering clustered node sets, the edge length function
was given by

√
x2 + y2 + z2 + 1

4ρ.
The pseudo-randomly spaced node sets were generated by first drawing a set

of points from the two-dimensional Halton sequence and mapping the set to the
surface of the ball. Then points were drawn from the three-dimensional Halton
sequence, mapping the set to the domain (x, y, z) ∈ [−ρ, ρ] × [−ρ, ρ] × [−ρ, ρ] and
keeping only points satisfying x2 + y2 + z2 ≤ ρ − h

10 , where h is prescribed to be
the average spacing between the nodes on the surface. Examples of the node sets
are displayed in figure 2.

Fig. 2 Examples of the quasi-unifomly spaced, pseudo-randomly spaced, and clustered node
sets.

3.2 Performance on Test Integrands

The algorithm was applied to four test integrands. When generating quadrature
weights, in all cases the radial basis function was φ(r) = r3 and the number
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of nearest neighbors, n = (m + 1)(m + 2)(m + 3), was based on the trivariate
polynomial order m. Some computational experiments in, for instance, [15,18,19]
indicated that in the presence of boundaries the number of nearest neighbors must
be large enough to overcome effects like Runge phenomenon. The examples given
in [15] indicated that the boundary errors were most prominent when nodes were
(exactly) uniformly spaced. Therefore, to determine how many nearest neighbors
should be included to overcome boundary errors, the algorithm here was modified
to compute volume integrals over a cube. When considering a cube the entire
volume can be decomposed by tetrahedra, so the algorithm need not consider
slivers of volume near the surface. Figure 3 illustrates the absolute error when
integrating f(x, y, z) = 1

1+((x−xs)2+(y−ys)2+(z−zs)2) , with xs = 0.234841098236337,

ys = 0.048716273957102 and zs = 0.214415743035283, over the volume of the unit
cube centered at the origin for various choices of n and m. The matrix Ak is
singular for choices of n below n = (m+1)(m+2)(m+3)

6 , this is indicated by the
lower dashed curve in the figure. Further, for each case of m = 0, 1, 2, . . . , 7 it is
clear that choices of n below n = (m+ 1)(m+ 2)(m+ 3) can lead to large errors.

Performing a similar experiment for the unit ball, figure 4 illustrates that even
the relaxation from nodes that are exactly uniformly spaced to those that are
quasi-uniformly spaced can allow for n as low as (m+ 1)(m+ 2)(m+ 3). However,
all further results shown utilize n = (m+ 1)(m+ 2)(m+ 3).

The first of the test integrands is a degree 30 trivariate polynomial. That is,
let

f1(x, y, z) =
30∑
α=0

α∑
β=0

α−β∑
γ=0

aαβγx
α−β−γyβzγ .

The coefficients of the polynomial are available in a Matlab file at [16]. The exact
value of the integral over the ball is

30∑
α=0

α∑
β=0

α−β∑
γ=0

aαβγ
ρα+3

8Γ
(
α+5
2

) [((−1)β + 1
)

((−1)γ + 1)
(

1 + (−1)α−β−γ
)

Γ

(
β + 1

2

)
Γ

(
γ + 1

2

)
Γ

(
α− β − γ + 1

2

)]
with Γ the gamma function, and for the set of coefficients used here the expression
evaluates to 3.792079311949332. Figure 5 displays convergence of the approximate

integral to the exact value at an order better than O
(
N−

m
3

)
, where m corresponds

to the order of the trivariate polynomial terms used in the approximation. If h
refers to a typical node separation distance, this corresponds to a convergence
order of better than O(hm), especially in the case of quasi-uniformly spaced nodes.
The theory in [20] explains that if the multivariate polynomial basis up to degree m
is included in the process of RBF interpolation, then all of the terms in the Taylor
series up to degree m will be handled exactly for the function being interpolated.
The remaining terms in the Taylor series are then approximated by the RBF basis
that was included. This is leading to a convergence order of at least O(hm).

The second test integrand is the Gaussian

f2(x, y, z) = exp
(
−10

(
(x− xs)2 + (y − ys)2 + (z − zs)2

))
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Fig. 3 Log base 10 of the absolute error when integrating f(x, y, z) =
1

1+((x−xs)2+(y−ys)2+(z−zs)2)
, with xs = 0.234841098236337, ys = 0.048716273957102

and zs = 0.214415743035283, over the volume of the unit cube centered at the origin for

various choices of n and m. The lower dashed curve is the function n =
(m+1)(m+2)(m+3)

6
below which the matrix Ak is guaranteed to be singular. The upper dashed curve is
n = (m + 1)(m + 2)(m + 3). Choices of n roughly above this curve lead to more accurate
approximations of the integrand in the presence of boundaries.

where

(xs, ys, zs) = (0.047056440432708, 0.071766893999009, 0.118950756342700)

is a randomly chosen shift of the center of the Gaussian from the origin. In order to
have an accurate value to compare to, the volume integral was first approximated
by evaluating

ρˆ

−ρ

√
ρ2−x2ˆ

−
√
ρ2−x2

√
ρ2−x2−y2ˆ

−
√
ρ2−x2−y2

f2(x, y, z)dzdydx,

using Matlab’s integral3 command with the absolute and relative tolerances both
set to ten times machine precision. The resulting approximation of the integral for
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Fig. 4 Log base 10 of the absolute error when integrating f(x, y, z) =
1

1+((x−xs)2+(y−ys)2+(z−zs)2)
, with xs = 0.234841098236337, ys = 0.048716273957102

and zs = 0.214415743035283, over the volume of the unit ball centered at the origin for

various choices of n and m. The lower dashed curve is the function n =
(m+1)(m+2)(m+3)

6
below which the matrix Ak is guaranteed to be singular. The upper dashed curve is
n = (m+ 1)(m+ 2)(m+ 3).

f2 is 0.161965667295343. Figure 6 illustrates the error in the integral of f2 over
the ball when compared to the result from Matlab after rotating the integrand
randomly 100 times. It is clear again that the order of the error is most dependent
on the degree of the polynomials used in the interpolation.

The third test integrand is

f3(x, y, z) = sign (z)

with sign the signum function. This function is discontinuous at the plane z = 0,
so any method based on a continuous approximation of the integrand across the

discontinuity should not be expected to achieve better than O
(
N−

1
3

)
(i.e. O(h))

error. Figure 7 illustrates this for the present method.
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Fig. 5 Log base 10 of the absolute error when approximating the volume integral of f1 over

the ball with radius ρ = 6
1
3

2π
1
3

centered at the origin. The errors shown here are the largest

after rotating the integrand 100 times.

3.3 Performance When Utilizing Clustered Node Sets

To illustrate further utility of the proposed method, the algorithm was also ap-
plied to a test integrand featuring a steep and localized gradient. To capture the
rapid change in the integrand node sets were generated that feature more densely
clustered nodes near the local feature. The test integrand was

f4(x, y, z) = tan−1
(

5000(x2 + y2 + z2)
)
,

which has a steep gradient near the origin. Figure 8 illustrates that in cases where
quasi-uniformly spaced or pseudo-randomly spaced node sets cannot capture the
changes in the integrand, weights generated for node sets with clustering near
features improve the approximation under refinement.
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Fig. 6 Log base 10 of the absolute error when approximating the volume integral of f2 over

the ball with radius ρ = 6
1
3

2π
1
3

centered at the origin. The errors shown here are the largest

after rotating the integrand 100 times.

3.4 Computational Expense

Just like the algorithms presented in [13–15], the ability to consider each tetrahe-
dron individually allows the time to compute a set of quadrature weights and the
use of memory both to scale like O(N). Figure 9 illustrates the time to compute
the set of quadrature weights on N nodes for various choices of the polynomial
order, m. Since the choice of m affects the sizes of the systems of linear equations
that need to be solved at each iteration, the figure shows an increase in the com-
putational cost as m increases. Further, except for the identification of nearest
neighbors in order to construct the local weight set for each tetrahedron/sliver of
volume and for the combination of weights in step 4 the algorithm is pleasingly
parallel. The parallelization tests in [13] illustrate that these two steps do not have
a significant impact on the scalability of the algorithm with the number of cores
when considering evaluating surface integrals, and the same is true for the volume
integration algorithm described herein.
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Fig. 7 Log base 10 of the absolute error when approximating the volume integral of f3 over

the ball with radius ρ = 6
1
3

2π
1
3

centered at the origin. The errors shown here are the largest

after rotating the integrand 100 times.

4 Conclusions

This study has supplemented the previous RBF-FD based approach for evaluating
definite integrals [13–15] with an extension to integrals over volumes. The com-
putational tests illustrate an algorithm that can achieve at least O(hm) accuracy,
with h the typical node separation distance and m the order of trivariate polyno-
mial basis functions included in the approximation. On a set of N nodes in the
ball, the computational cost is only O(N) and the algorithm is pleasingly parallel.
A key feature of the algorithm is that it is able to compute quadrature weights on
even irregularly spaced or clustered node sets.
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Fig. 8 Log base 10 of the absolute error when approximating the volume integral of f4 over

the ball with radius ρ = 6
1
3

2π
1
3

centered at the origin.
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