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Abstract: Quality is a multidimensional characteristic of a product. As such, 
the various factors that impinge on quality must be taken into account when 
designing new products or managing the production of an existing product. The 
cost of quality is a tangible and noticeable testament to the upfront investments 
that an organisation has committed to a product. The cost of achieving and 
sustaining an acceptable level of product quality must, therefore, be recognised 
as the cornerstone of manufacturing operations. Of the many factors of 
importance in the pursuit of better product quality, cognitive loading is the one 
that is most often ignored or not recognised. In this paper, we present a 
methodology of assessing the impact of cognitive loading on the manufacturing 
cost of quality. 
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1 Introduction 

Late detected defects or failures in the manufacturing industry can lead to product recalls, 
re-manufacturing costs, logistic costs, shrinking of market share with potential 
catastrophic consequences ranging from injury or death to product shortages (Bettayeb  
et al., 2014). The traditional role of quality inspectors is shifting from dedicated quality 
inspectors to operators who perform multiple duties while attempting to perform quality 
inspection tasks (Pesante et al., 2001). This modifies the task from a sequential task to 
one that performs multitasking functions. 

Multitasking is becoming more widespread in manufacturing operations. Physically 
demanding work that is accomplished simultaneously with a cognitive task can influence 
mental workload by decreasing performance (DiDomenico and Nussbaum, 2011). The 
objective of this research study is to identify the effects of cognitive load on performance 
in quality inspection. This is important because mental workload can have a direct impact 
on operators by affecting their performance, causing slower task performance and errors. 
According to Xie and Salvendy (2000), optimising the allocation of operator mental 
workload could decrease human errors, improve system safety, increase productivity and 
increase operator satisfaction. Figure 1 illustrates the potential impact of cognitive load 
on the costs of product quality in manufacturing. 

Figure 1 Cognitive overload and various costs of quality 
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Quality is defined in many ways, including the following: 

1 the characteristics of a product or service that convey the product’s ability to satisfy 
stated or implied needs 

2 the ability of a product to comply with requirements 

3 a product’s conformance to agreed standards 

4 a product’s state of being free of deficiencies 

5 the subjective perception of a customer that a product is good 

6 a value-based assessment of a product with respect to its cost. 

2 Literature background 

Cognitive ergonomics focuses on the interaction between tools and the operator, giving 
emphasis to their cognitive processes of understanding, reasoning, and the use of 
knowledge (Green and Hoc, 1991). It is the ergonomics of mental processes to enhance 
operator performance by understanding how work affects the mind and how the mind 
affects work (Hollnagel, 1997). A topic in cognitive ergonomics is mental workload as it 
affects the total person. In this respect, Geisler (2012) highlights the important elements 
for working happy and doing happy work, including workload, work quality 
expectations, work rules and regulations, workflow, workspace constraints and work 
duties and responsibilities. 

With repetitive task operations, like manufacturing processes, there is interaction 
between the operator and an assigned task; this is referred to as mental workload (MWL) 
or simply ‘workload’. This is a valuable measurement because it offers awareness as to 
where poor performance may result from an increase in task demands. The demands on a 
task or grouping of tasks may involve completing physical actions and/or executing 
cognitive tasks (DiDomenico and Nussbaum, 2008). The multiple resource theory (MRT) 
is a predictive model that assists in understanding an operator’s performance ability while 
multi-tasking in a complex environment (Wickens, 2002). 

A complex environment signifies a task that has multiple simultaneous activities 
which are time-shared (Liu and Wickens, 1988). When an individual performs a task, 
each operation deploys mental processing resources crucial to completing the task 
(Mitchell, 2003). Consistent with MRT, the human mind has the ability to assign 
resources to task demands either individually or collectively to include: visual, auditory, 
cognitive, motor, and speech. When task demands overlap, fewer resources are accessible 
to the human and MRT predicts that performance will degrade. When multiple tasks 
require competing resources, this could cause a compromise in system safety and 
effectiveness, which can impede the quality performance of the system. To assess 
competing resource conditions and get mental workload predictions, the human 
performance modelling (HPM) can be employed. 

Milatovic and Badiru (2004) used a project management environment to illustrate the 
impact of resource loading on project quality, using activity loading as the basis for 
project quality assessment. Project resources (include production line operators), 
generally limited in quantity, are the most important constraints in scheduling of 
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activities. In cases when resources have pre-specified assignments and responsibilities 
towards one or more activities, their allocation is concurrently performed with the 
scheduling of applicable activities. In other cases, an activity may only require a certain 
number of (generic) resource units of particular type(s), which are assigned after the 
scheduling of the particular activity. These two approaches represent the dominant 
paradigms in project scheduling as an indicator of project quality. To improve quality, 
there is always a need for a new strategy that will shift these paradigms to facilitate a 
more refined guidance for allocation and assignment of project resources for quality 
improvement purposes. In other words, there is a need for tools which will provide for 
more effective resource tracking, control, interaction, and, most importantly,  
resource-activity quality mapping. The main assumption in the methodology of Milatovic 
and Badiru (2004) is that project environments often involve multi-capable resource units 
with different characteristics. This is especially the case in knowledge intensive settings 
and industries, which are predominantly staffed with highly trained personnel. The 
specific characteristics involved are resource preferences, time-effective capabilities, 
costs, and resource availability. Each resource unit’s characteristics may further vary 
across project or product production activities, but also within a single activity relative to 
the interaction among resource units. Finally, resource preferences, cost and  
time-effective capabilities may also independently vary with time due to additional 
factors, such as learning, forgetting, weather, type of work, quality standards, and so on. 
Although we do not exclude a possibility that an activity duration is independent of 
resources assigned to it, it is assumed that it is those resource units assigned to a 
particular activity that determine how long it will take for the activity to be completed; or, 
conversely, how high a level of quality can be achieved by the resource units. The 
scheduling strategy as presented above promotes a more balanced and integrated  
activity-resource mapping approach. Mapping the most qualified resources (or line 
operators) to each project activity, and thus preserving the values of resource, is achieved 
by proper consideration or resource time-effective capabilities and costs. By considering 
resource preferences and availability, which may be entered in either crisp or fuzzy form, 
a mental overload model enables consideration of personnel’s voice and its influence on a 
project schedule and quality. Furthermore, resource interactive dependencies may also be 
evaluated for each of the characteristics and their effects incorporated into  
resource-activity mapping. Finally, by allowing flexible and dynamic modifications of 
scheduling objectives, a mental overload model can allow managers or analysts to 
incorporate some of the implicit knowledge and discretionary inputs into project 
schedules, for the purpose of increasing the quality of output. 

Bommer (2016) describes the improved performance research integration tool 
(IMPRINT) as a human performance modelling approach, which is a computer-based 
discrete event simulation tool that can predict MWL. This tool was developed by the 
Human Research and Engineering Directorate (HRED) of the US Army Research 
Laboratory (ARL). IMPRINT’s primary domain has been in the military sector (Mitchell 
et al., 2003; Krausman et al., 2005; Hunn and Heuckeroth, 2006; Chen and Terrence, 
2009); however, this study broadens the use of the tool in the civilian manufacturing 
sector. The IMPRINT rating scale is based upon the mental resources that the operator 
requires to perform the work. The resources outlined in the IMPRINT rating scale are 
based upon MRT. IMPRINT applies a scale that contains anchors which describe the 
behaviours expected by each interval. Auditory, cognitive and fine motor resources are 
rated on a 7-point scale, speech is a 4-point scale, visual and gross motor demands are on 
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a 6-point scale. This study utilises the resources ratings in IMPRINT to map resource 
demand values for each experimental treatment, and evaluate treatment differences. On 
the other hand, the response variable of this experiment is a measure of performance; the 
human error probability is evaluated. 

Bubb (2005) defined human error probability (HEP) as the probability that a task 
under observation was achieved defective during a certain timeframe. This study uses the 
HEP calculation as a measure of performance error to assess the influence of cognitive 
load on the cost of quality. HEP divides the number of observed errors or defects by the 
quantity of possibilities for an error. Mathematically, HEP is expressed as follows: 

number of observed errorsHEP
number of the possibilities for an error

=  

3 Experimental procedure 

This study simulated a manual repetitive manufacturing process with quality inspection 
tasks in a laboratory setting. A within subject design was utilised in a repetitive task 
simulation using toy building blocks. Before the experiment began, each subject was 
presented an informed consent and training briefing to include review of the test 
treatments (i.e., variant scenarios) and procedures. For each simulated treatment, the 
participants were provided up to five minutes to exam the work instructions and train 
with the toy building blocks and inspection tools. The toy blocks were selected to build 
with because of its likeness to an assembly process. During the simulation, the subjects 
had to follow a combination of colour criterion and use inspection tools (scale and 
calliper) to take quality measurements. There were variant instructions for each 
treatment. Each treatment (Table 1) was modified by type and quantity of inspection 
tasks to simulate the different levels of task complexity. Colour coding and measuring 
with tools were utilised to simulate the inspection tasks. The treatments were randomised 
by means of a Latin-square method to minimise any nuisance factors. 
Table 1 Experiment treatments 

Treatment Identification Task elements 
Assembly with tools and inspection ATI Assembly with inspection tools and 

inspection criteria 
Assembly with tools AT Assembly with inspection tools 
Assembly with inspection AI Assembly task with inspection criteria 
Assembly A Assembly task only 

4 Data collection 

Data was collected for each treatment using HEP as the response variable. There were  
26 subjects observed in this experiment: 14 females and 12 males. Table 2 summarises 
the data collection for each treatment. 
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Table 2 Summary of descriptive statistics adapted from Bommer (2016) 

Measure Treatment M SD Min Max Range 95% CI Effect size 

HEP (%) ATI 0.15 0.09 0.02 0.33 0.31 [0.12, 0.19] 0.11 
AT 0.16 0.11 0 0.525 0.525 [0.11, 0.20] 
AI 0.16 0.12 0 0.48 0.48 [0.11, 0.21] 
A 0.09 0.12 0 0.5 0.5 [0.04, 0.14 

5 Results 

An ANOVA was performed to compare the means of the operators’ performance 
measures for the four treatments. JMP statistical software package was utilised to analyse 
the response variables. The test hypothesis is as follows: 

th
0 1 2 3 4: 0 where treatment meaniH μ μ μ μ μ i= = = = =  

1 1: 0 for at least oneH μ i≠  

where i ∈ {A, AI, AT, ATI} indicates the appropriate experimental condition and μi is the 
corresponding mean for HEP. The results indicated a significant effect on performance  
(p = 0.0492). Therefore, it is concluded that there is a significant difference among the 
treatments in the experiment. A post hoc test was completed to compare all the different 
pair combinations of treatments i and j. The hypothesis for this test is: 

0 1: jH μ μ=  

1 : i jH μ μ≠  

where i ≠ j and i ∈ {A, AI, AT, ATI} and j ∈ {A, AI, AT, ATI} and i < j. 
Table 3 is a summary of the post hoc comparison using the student’s t test. This test 

indicated the performance measure of HEP was significantly different for three of the  
six treatment combinations. 
Table 3 Student’s t test results 

Treatment combination p-value 
HEP Level Level 

AI A 0.015* 
AT A 0.0254* 
ATI A 0.0298* 
AI ATI 0.7871 
AT ATI 0.8378 
AI AT 0.9478 

Note: *p < 0.05. 

Next, an analysis was performed to compare the effect of task complexity on mental 
workload in the four treatments. Resource mapping using the MRT scale IMPRINT was 
applied; Figure 2 provides a summation of the results. The results of this analysis 
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demonstrate the influence of inspection tasks on the operator during a manual process. 
Treatments with the inspection task elements utilised more cognitive resources in 
comparison to the assembly only treatment (A). 

Figure 2 Mental resource utilisation for each treatment level 

 

6 Conclusions 

The resource mapping utilising the IMPRINT rating scale provides an analysis of each 
treatment, and the results show the tasks with the inspection elements produced higher 
cognitive load for the operators. The results of this work demonstrate the influence of 
inspection tasks on the operator while performing a manual process. Although the 
simulated task would be considered rather simple, when the inspection elements were 
inserted into the work system, the cognitive load of the operator increased, and operator 
performance declined as indicated by the increase in HEP. This approach is applicable to 
industry, because it provides a model to analyse work design for the implication of 
cognitive load on the operator during quality inspections, in addition to providing a 
probability of error for the process design. 

Acknowledgements 

The authors grateful acknowledge the help and contributions of the Wright State 
University Human Performance and Cognition Laboratory, where the data collection was 
performed. 

 



   

 

   

   
 

   

   

 

   

   8 S.C. Bommer and A.B. Badiru  
 

    
 
 

   

   
 

   

   

 

   

       
 

References 
Bettayeb, B., Bassetto, S.J. and Sahnoun, M.M. (2014) ‘Quality control planning to prevent 

excessive scrap production’, Journal of Manufacturing Systems, Vol. 3, No. 3, pp.400–411. 
Bommer, S.C., (2016) A Theoretical Framework For Evaluating Mental Workload Resources in 

Human Systems Design for Manufacturing Operations’, PhD diss., Wright State University. 
Bubb, H. (2005) ‘Human reliability: a key to improved quality in manufacturing’, Human Factors 

and Ergonomics in Manufacturing & Service Industries, Vol. 15, No. 4, pp.353–368. 
Chen, J. and Terrence, P. (2009) ‘Effects of imperfect automation and individual differences on 

concurrent performance of military and robotics tasks in a simulated multitasking 
environment’, Ergonomics, Vol. 52, No. 8, pp.907–920. 

DiDomenico, A. and Nussbaum, M.A. (2008) ‘Interactive effects of physical and mental workload 
on subjective workload assessment’, International Journal of Industrial Ergonomics, Vol. 38, 
No. 11, pp.977–983. 

DiDomenico, A. and Nussbaum, M.A. (2011) ‘Effects of different physical workload parameters 
on mental workload and performance’, International Journal of Industrial Ergonomics,  
Vol. 41, No. 3, pp.255–260. 

Geisler, J. (2012) Work Happy: What Great Bosses Know, Hachette Book Group, New York, NY. 
Green, T.R. and Hoc, J-M. (1991) ‘What is cognitive ergonomics?’, Le Travail Humain,  

Vol. 54, No. 4, pp.291–304. 
Hollnagel, E. (1997) ‘Cognitive ergonomics: it’s all in the mind’, Ergonomics, Vol. 40, No. 10, 

pp.1170–1182. 
Hunn, B.P. and Heuckeroth, O.H. (2006) A Shadow Unmanned Aerial Vehicle (UAV) Improved 

Performance Research Integration Tool (IMPRINT) Model Supporting Future Combat 
Systems, DTIC Document, Tech. rep. 

Krausman, A.S., Elliott, L.R. and Pettitt, R.A. (2005) Effects of Visual, Auditory, and Tactile Alerts 
on Platoon Leader Performance and Decision Making, DTIC Document, Tech. rep. 

Liu, Y. and Wickens, C.D. (1988) ‘Patterns of task interference when human functions as a 
controller or a monitor’, Systems, Man, and Cybernetics, 1988. Proceedings of the 1988 IEEE 
International Conference on, Vol. 2, pp.864–867, IEEE. 

Milatovic, M. and Badiru, A.B. (2004) ‘Applied mathematics modeling of intelligent mapping and 
scheduling of interdependent and multifunctional project resources’, Applied Mathematics and 
Computation, Vol. 149, No. 3, pp.703–721. 

Mitchell, D.K. (2003) Advanced Improved Performance Research Integration Tool (IMPRINT) 
Vetronics Technology Test Bed Model Development, DTIC Document, Tech. rep. 

Mitchell, D.K., Samms, C.L., Henthorn, T. and Wojciechowski, J.Q. (2003) Trade Study:  
A Two-Versus Three-Soldier Crew for the Mounted Combat System (MCS) and Other Future 
Combat System Platforms, DTIC Document, Tech. rep. 

Pesante, J.A., Williges, R.C. and Woldstad, J.C. (2001) ‘The effects of multitasking on quality 
inspection in advanced manufacturing systems’, Human Factors and Ergonomics in 
Manufacturing & Service Industries, Vol. 11, No. 4, pp.287–298. 

Wickens, C.D. (2002) ‘Multiple resources and performance prediction’, Theoretical Issues in 
Ergonomics Science, Vol. 3, No. 2, pp.159–177. 

Xie, B. and Salvendy, G. (2000) ‘Prediction of mental workload in single and multiple tasks 
environments’, International Journal of Cognitive Ergonomics, Vol. 4, No. 3, pp.213–242. 


