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Abstract

The United States Air Force (USAF) is struggling to train enough pilots to meet operational require-
ments. Technology has advanced rapidly over the last 70 years but USAF pilot training has not.
Modern operational requirements demand a change and, for this reason, USAF senior leadership has
advocated for innovation. The automation of instructor and evaluator pilots in select bottlenecks
(e.g., simulators) is one such measure. However, to implement this vision, numerous technical issues
must be mitigated. Accurate classification of flight difficulty is a foundational problem underpinning
many of these technical issues, which requires either the acquisition of new systems or the develop-
ment of new procedures. Therefore, given this need and the costly nature of purchasing new equip-
ment, physiological-based classification of flight difficulty is our focus herein. Leveraging multimodal
data from a designed experiment of pilots landing a simulated aircraft, we develop a high-quality
machine learning pipeline for classifying flight difficulty, called the Multi-Modal Functional-based
Decision Support System (MMF-DSS). MMF-DSS distills a tabular set of features from our mul-
timodal and functional data through the use of functional principal component analysis, summary
statistics, and BorutaSHAP. In this manner, information is derived from the time-series data via
the generation of hundreds of features, of which a small subset having the most predictive capabil-
ity is discerned. Four full factorial designs are used to perform hyperparameter tuning on a set of
classifiers. In so doing, a superlative technique is identified. Impacts on executive decision making
are examined as well as associated policymaking implications. Alternative classifiers are considered
for use within our pipeline that trade predictive accuracy for cost efficiency, and recommendations
for choosing among these alternatives is provided.

Keywords: Machine learning, Functional data analysis, Pilot training, BorutaSHAP

1. Introduction

Pilot training in the United States Air Force (USAF) remains largely unchanged from 1950s-era
practices [1]. Although the service’s current program, Specialized Undergraduate Pilot Training
(SUPT), produces highly competent pilots, senior USAF leadership has determined this program
is unable to meet modern operational requirements. More specifically, over the past five years,
the USAF’s pilot population has maintained a dangerous deficit. This shortfall is a grave national-
security threat that cannot be ameliorated unless USAF pilot accession exceeds attrition; more pilots
must be trained compared to those that leave the force. To do so, we posit that a more effective and
efficient pilot training program can be developed through automated and personalized instruction.
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Therefore, this research develops a machine learning approach to automate flight difficulty prediction
as a first step toward modernizing the legacy SUPT program.

Military flight training, both SUPT and otherwise, places exceptional emphasis on feedback
provided to students from experienced flight instructors during real-world and simulated sorties
(i.e., flights of combat aircraft on missions). Such reliance corresponds with a bottleneck in pilot
training pipelines; student throughput is limited by the number of qualified instructors. Although
the USAF has experimented with novel training paradigms that place a greater emphasis on flight
simulators (e.g., Pilot Training Next and Accelerated Path to Wings), these programs still rely heavily
on human-instructor feedback, which implies the theoretical throughput of these new programs will
exceed realized production.

To alleviate these traditional bottlenecks, both civilian academics and military officers have
advocated for greater utilization of machine learning techniques in legacy pilot training programs
[2, 3]. The efficacy of machine learning for flight-related classification and regression tasks is well-
documented. Flight data has been utilized to build effective models of anomalous and unsafe be-
havior [e.g., see 4, 5, 6]; a variety of techniques, from Gaussian mixture models [7] to variational
auto-encoders [8], have been utilized for this purpose. Machine learning methods have also been
successfully adapted to predict flight trajectory [e.g., see 9, 10] and conduct air traffic management
functions [e.g., see 11, 12]. However, the explicit application of machine learning for flight training
purposes is relatively understudied. Therefore, building off the SUPT candidate selection work of
[13], we develop the Multi-Modal Functional-based Decision Support System (MMF-DSS), a machine
learning pipeline with the express purpose of providing support to improve USAF pilot training.

Any machine learning approach designed to support USAF operations should account for service-
specific constraints. For example, many legacy SUPT training platforms are ill-equipped for the
modern data collection required to systematically automate instructor feedback. Although the USAF
is actively developing replacements [e.g., see 14], the acquisition process in the U.S. Department of
Defense (DoD) is demanding and cumbersome [15], implying that the most pragmatic machine
learning approach should be readily incorporated into existent technology and infrastructure.

Therefore, the machine learning methods developed herein do not rely on flight data generated
by the training platform (i.e., aircraft or simulator). Instead, our models are exclusively based on
physiological measurements of the student pilot. This characteristic allows our models to be more
readily implemented within legacy training equipment. The methodology developed herein is such
that an exogenous, physiological-monitoring and decision-support system [e.g., see 16], not dissimilar
to modern driver state monitoring systems [17], can be appended to existent training platforms.

In particular, we consider if and how physiological measurements can be utilized to accurately
predict flight difficulty levels. Our predictions are built off physiological data from seven qualita-
tive streams: (1) electromyography of muscle activation corresponding to the flexion and extension
of the pilot’s arm, (2) acceleration of the pilot’s forearm while operating the flight joystick, (3)
electrodermal activity detecting changes in electrical conductance of the skin, (4) electrocardiog-
raphy measuring electrical activity of the heart, (5) electrical signal of respiration derived using
impedance pneumography, (6) eye tracking of gaze direction, position, and pupil diameter, and (7)
photoplethysmography measuring changes in blood volume.

This data set was collected via human-subject testing conducted by the USAF-MIT AI Acceler-
ator on behalf of the USAF Chief Data Office (CDO). Each qualitative stream consists of myriad
time-series measurements collected on participants during a simulated landing of a Beechcraft T-
6 Texan II; the data are both functional and multimodal. Depending on the measurement, the
collection rate was on the order of milliseconds or seconds, thereby ensuring a rich compendium
of information. To effectively utilize this deluge of data, we jointly leverage functional principal
component analysis (FPCA), summary statistics, and BorutaSHAP, a wrapper feature selection
technique, within our developed machine learning pipeline [18, 19]. After identifying a preferred set
of features from those generated and tuning four distinct machine learning models, a superlative
Adaptive Boosting classifer is identified to predict flight difficulty. The performance of our model
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provides an excellent area under the receiver operating characteristic curve of ≈ 0.88 [20]. More-
over, we also consider how the inclusion of flight data from future training platforms can augment
our model and improve classification accuracy. Finally, this collective analysis is utilized to derive
three distinct policymaking actions, explore their potential implications, and provide implementation
recommendations.

The remainder of this manuscript more thoroughly discusses our model development and results.
More specifically, Section 2 details the relevant literature and techniques that may be leveraged to
process and analyze the functional data utilized herein. Section 3 provides an in depth explanation
of the data set, and describes the machine learning pipeline derived for automated flight difficulty
classification. More specifically, Section 3 details the empirical data collection process, descriptively
summarizes the raw feature measurements, and explains the methodology underpinning our pro-
posed machine learning pipeline, i.e., the MMF-DSS. Section 4 sets forth the analytic basis of our
pipeline, presents its performance, and furnishes analysis predicating the selection of our preferred
classification algorithm. Section 5 translates this analysis into policymaking guidance, provides
insight into executive decision making, and furnishes implementation recommendations. Finally,
Section 6 provides concluding remarks and considers promising areas of future research.

2. Relevant Techniques for Multimodal and Functional Data

The data in this study present a unique challenge in that they are both functional and multimodal.
Processing functional data and integrating information from multiple modalities requires innovation
that can best harness the time-series data from multiple streams. Numerous functional data analysis
and multimodal fusion techniques exist to separately preprocess our time-series data and to optimally
combine this information for flight difficulty classification for which we provide a brief discussion
below.

Functional data analysis (FDA) encompasses a variety of techniques including forecasting [21,
22, 23], regression analysis [24, 25, 26], non-parametric modeling [27, 28], clustering [29, 30, 31],
smoothing [32, 33, 34], and data reduction [24, 35, 36, 33]. In our particular application, FDA
is used for data reduction, i.e., to diffuse the infinitely dimensional physiological functional data
into features that can be used as input for machine learning models. The pre-eminent means to
reduce dimensionality of functional data is functional principal component analysis (FPCA). In a
functional data analysis review article, it was found that 60.7% (51 out of 84) of the reviewed
studies utilized FPCA in at least some part of their analysis [37]. FPCA is a key technique in
functional data analysis that extracts underlying patterns from temporal data having either sparsely
or densely sampled time courses [38, 39]. The method was used first for growth curves by [40], for
which various applications and theoretical properties were studied until the turn of the century
[41, 42, 43, 44, 45]. One limitation of FPCA was that it relied on complete functional data collected
at regular time points, which created problems with its use for many practical applications that
could not meet these stringent requirements. To handle this problem, various papers made headway
to propose practical solutions to handle problems with an irregular grid of timepoints [46, 47, 48].
However, in cases where the number of time points greatly differed across the functional curves
(especially in sparse cases with only a few time points), the FPC scores could not be approximated
well through the typical, numeric methods of integration. One solution that has been proposed is
using B-spline basis functions to model the individual functional data curves via mixed effects models
[49, 50, 51, 52]. However, with these methods, eigenfunctions of the principal components are not
directly determined from the data. In contrast, [53] proposed a method called Principal Analysis by
Conditional Estimation (PACE) which is capable of handling sparse and irregular functional data
for which pooled time points across the functional curve instances are sufficiently dense. PACE can
optimally pool trends observed across different time series of varying lengths. This work opened up
possibilities to apply FPCA to a vast array of time series data and ushered in a new renaissance of
dimensionality reduction in functional data analysis.

4
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PACE has been applied to a broad array of applications, including: healthcare [54, 55, 56, 57],
manufacturing [58, 59, 60], energy [61, 62, 63], remote sensing [64, 65], and agriculture [66, 67]. In
healthcare, [54] utilized PACE to characterize longitudinal prostate-specific antigen across various
levels of age. In manufacturing, [60] utilized multiple degradation signals to predict failure time
of a partially degraded signal. In energy, [63] integrated PACE into a framework that generates a
real-time prognostic policy for large-scale windmill farms. In remote sensing [64] performed FPCA
from monsoon precipitation satellite images over Eastern India to build interpretable functions that
characterize weather patterns over this region. Finally in agriculture, [66] used PACE to process
daily minimum and maximum temperature trajectories for crop yield per acre prediction.

Many features can be generated from PACE across the multiple streams of physiological data,
which necessitates additional methodological development to determine which features are most
relevant to the classification task at hand. Feature selection is a broad field that encompasses (1)
filter, (2) embedded, and (3) wrapper approaches. Filter methods are the quickest to generate since
they do not require the labels of each instance/sample. However, because filter methods do not
consider the predictive value of the features to the response variable, there is a high risk that the
relevant features may be filtered out. Embedded methods incorporate feature selection into the
objective function used to fit the predictive model [68, 69, 70, 71, 72]. These methods enjoy the
benefit of integrating feature selection and predictive modeling fitting. The limitation, however, is
that the integration/embedding mechanism must be designed specifically for each type of predictive
model, and therefore is not universally applicable. Wrapper methods, for their part, leverage a
specific, machine learning algorithm to guide the selection of the most important features; features
are iteratively removed (added) until some termination criteria is met based upon the machine
learning algorithm’s output. Of particular importance to this research is the BorutaSHAP wrapper
approach to feature selection. BorutaSHAP is an extension of the Boruta algorithm that leverages
the SHAP value [73] as a measure of feature importance with a random forest classifier, i.e., via the
TreeSHAP [74] routine.

Since we have yet to identify a method that flexibly and seamlessly integrates both functional data
dimension reduction and multimodal fusion into a single framework, we adopt a pipeline approach
herein. FPCA is first leveraged for dimensionality reduction, BorutaSHAP is utilized for feature
selection, and a classifier is tuned to the resultant data. Section 3.3 discusses this methodology in
further detail.

3. Data Set Overview and Machine Learning Pipeline

The machine learning techniques developed in this research rely on functional data analysis for
dimensionality reduction and feature generation. Therefore, we begin this section by discussing the
experimental setup and design conducted by the USAF-MIT AI Accelerator; subsequently, the raw
data is summarized. We then present the architecture of the derived MMF-DSS machine learning
pipeline that processes this data into classification predictions.

3.1. Experimental Setup and Design

Data leveraged within this study, obtained from the USAF-MIT AI Accelerator, were collected via
a designed experiment wherein participants of varying aptitudes were required to land a T-6 Texan
II in a simulated environment [75]. More specifically, utilizing a virtual reality implementation of the
X-Plane 11 software, participants were tasked with landing an aircraft, originating approximately 19
miles from the runway, under one of four scenarios described as either low- or high-difficulty. Table
1 summarizes the conditions encountered by the pilots within each scenario.

Data was collected on 21 test subjects in total. Every participant performed a total of 12
landings, three under each scenario. Scenarios were presented in a non-sequential manner across
each subject. While performing the experimental task, physiological data was collected via a suite
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Table 1: Summary of Flight Scenarios by Difficulty Classification Level

Difficulty Scenario Wind** Clouds/Visibility Turbulence

Low A None
No clouds

Visibility unlimited
None

Low B 140◦ at 10 knots
Overcast at/above 2500′

Visibility of 5 statute miles
None

High C***
1000′: 140◦ at 10 knots
3000′: 080◦ at 10 knots

Overcast at/above 1000′

Visibility of 3 statute miles
Mild at/above 1000′

High D***
800′: 200◦ at 15 knots

2800′: 080◦ at 15 knots (20 knot gusts)
4800′: 250◦ at 10 knots

Overcast at/above 400′

Visibility of 1 statute mile
Mild

*Altitudes listed in terms of elevation above Mean Sea Level

** Wind above (below) the highest (lowest) altitude are constant to space (ground); wind direction indicates heading of origin.

*** Wind direction and velocity between altitudes are linearly interpolated.

of sensors attached to the participants’ bodies. Data aggregation and synchronization of the time-
series data provided by these sensors was accomplished with the Lab Streaming Layer software. For
further information regarding the sensor configuration and experimental configuration we refer the
interested reader to [75]. Flight data was also collected from the X-Plane 11 simulator; however, the
use of such data is not the primary focus of this manuscript.

3.2. Summarizing the Raw Data Features

Seven different streams of physiological data and two different streams of non-physiological data
were collected during experimentation. The physiological data included a variety of electromyogra-
phy (EMG), forearm acceleration (ACC), electrodermal activity (EDA), electrocardiography (ECG),
respiration (RES), eye tracking (ETK), and photoplethysmography (PPG) data. Among the non-
physiological data were pilot (PX) and aircraft (AX) data streamed from the X-Plane 11 simulator.
Each data stream is composed of multitudinous, time-series measurements summarized in Table 2.
The sensor configuration for these data streams are as follows.

Table 2: Description of Raw Signals

Variable Stream Description Unit Variable Stream Description Unit

X1(t) EMG Electromyogram of wrist flexor muscles mV X31(t) ETK Normalized vertical location of right pupil -
X2(t) EMG Electromyogram of wrist extensor muscles mV X32(t) ETK Depth of binocular fixation mm
X3(t) EDA Electrodermal activity on left hand kΩ X33(t) ETK Boolean value of binocular convergence validity -
X4(t) ECG ECG signal measured from left leg to right arm mV X34(t) ETK Fixation-event membership indicator -
X5(t) ECG ECG signal measured from left arm to right arm mV X35(t) ETK Saccade-event membership indicator -
X6(t) ECG ECG signal measured from chest to right leg mV X36(t) PPG Plethysmogram measured at middle-finger’s tip mV
X7(t) RES Electrical measure of chest wall excursion mV X37(t) PX Pilot’s lateral head position m
X8(t) ETK Bits containing all left-eye validity - X38(t) PX Pilot’s longitundinal head position m
X9(t) ETK Bits containing all right-eye validity - X39(t) PX Pilot-vertical-head position m
X10(t) ETK Lateral-axis origin of left-eye gaze mm X40(t) PX Pilot-head-yaw angle deg
X11(t) ETK Longitudinal-axis origin of left-eye gaze mm X41(t) PX Pilot-head-pitch angle deg
X12(t) ETK Vertical-axis origin of left-eye gaze mm X42(t) PX Pilot-head-roll angle deg
X13(t) ETK Lateral-axis origin of right-eye gaze mm X43(t) AX Aircraft latitude deg
X14(t) ETK Longitudinal-axis origin of right-eye gaze mm X44(t) AX Aircraft longitude deg
X15(t) ETK Vertical-axis origin of right-eye gaze mm X45(t) AX Aircraft height above WSG84 ellipsoid m
X16(t) ETK Normalized lateral direction of left-eye gaze - X46(t) AX Aircraft above ground altitude ft
X17(t) ETK Normalized longitudinal direction of left-eye gaze - X47(t) AX Aircraft indicated airspeed kt
X18(t) ETK Normalized vertical direction of left-eye gaze - X48(t) AX Aircraft ground speed m/s
X19(t) ETK Normalized lateral direction of right-eye gaze - X49(t) AX Aircraft speed in true east direction m/s
X20(t) ETK Normalized longitudinal direction of right-eye gaze - X50(t) AX Aircraft inertial vertical speed m/s
X21(t) ETK Normalized vertical direction of right-eye gaze - X51(t) AX Aircraft speed in true north direction m/s
X22(t) ETK Diameter of left pupil mm X52(t) AX Aircraft climb rate m/s
X23(t) ETK Diameter of right pupil mm X53(t) AX Aircraft landing gear deployment %
X24(t) ETK Value characterizing openness of left eye - X54(t) AX Aircraft ILS lateral deflection %
X25(t) ETK Value characterizing openness of right eye - X55(t) AX Aircraft ILS glide slope deflection %
X26(t) ETK Normalized lateral location of left pupil - X56(t) AX Aircraft yaw angle deg
X27(t) ETK Normalized longitudinal location of left pupil - X57(t) AX Aircraft pitch angle deg
X28(t) ETK Normalized vertical location of left pupil - X58(t) AX Aicraft roll angle deg
X29(t) ETK Normalized lateral location of right pupil - X59(t) AX Elevation trim status -
X30(t) ETK Normalized longitudinal location of right pupil - X60(t) AX Aileron trim status -
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EMG data was collected via a Shimmer Sensing device [76]. Muscle activation was measured
from each subject’s right forearm (i.e., the arm controlling the flight joystick). To measure flexion
and extension2, two EMG electrodes were placed close to the brachioradialis and extensor digitorum,
respectively (i.e., near the elbow). A reference electrode was also placed on the ulna (i.e., the boney
protrusion near the wrist). The nominal sampling rates for the EMG sensors were 128 Hz and 512
Hz. Whereas the Shimmer Sensing device also recorded accelerometry of the forearm, the quality of
these measurements was insufficient for inclusion in this manuscript.

EDA and PPG data were collected using a Shimmer Sensing GSR+ and Optical Pulse device,
respectively [77, 78]. Measurements were collected on the left hand (i.e., hand controlling the
throttle). Electrodes were placed at the bases of the ring and index fingers, whereas a PPG sensor
was placed on the tip of the middle finger. The nominal sampling rate for these sensors were 128
Hz and 1024 Hz.

ECG and RES data were recorded with electrodes placed at the torso using a Shimmer Sensing
device [79]. ECG electrodes were placed at the sternum under the fourth rib, left mid-axillary line,
right mid-axillary line, apex of the left hip, and the reference electrode was at the apex of the right
hip. The respiration signal was measured via chest wall excursion. For all sensors, the nominal
sampling rate was 128 Hz.

ETK data was recorded from the HTC Vive Pro Eye [80]. Measurements of the left and right
eyes were recorded independently. Prior to experimentation and after headset adjustment, an eye-
tracking calibration was performed to ensure accuracy. The nominal sampling rate for this data
modality was 250 Hz. Finally, AX and PX data were obtained directly from the X-Plane 11 flight
simulator [81]. The nominal sampling rate of this data was 4 Hz.

3.3. Pipeline Architecture

This section discusses the components of our proposed MMF-DSS pipeline, i.e., the feature
extraction, feature selection, and machine learning techniques. The experiment described in Sections
3.1 and 3.2 results in multi-modal, functional data containing a substantial degree of information.
However, without pre-processing, machine learning algorithms struggle to identify the underlying
relationship between the input data and response labels. Therefore, we begin by describing how a
countable set of features, i.e., F , can be generated utilizing techniques from functional data analysis;
the definition of each feature in F is described subsequently. Furthermore, we utilize a state-of-the-
art feature selection technique to identify an F ∗ ⊂ F having superlative predictive value. This
subset of features is utilized to build the predictive models discussed in Section 4 by identifying the
superlative classifier from the subset described herein. Figure 1 depicts the overall flow of MMF-DSS,
whereas the rest of this section describes its architecture.

The MMF-DSS pipeline begins by leveraging the raw, multimodal signals to generate a more
manageable set of features (i.e., in tabular format). Smoothing and FDA methods were utilized. To
reduce computational complexity, all time-series data are sampled at a frequency of 1 Hz for input
before applying any subsequent analysis. Windowing at 15s, 30s, 45s and 60s non-overlapping time
windows was also generated for each data stream. However, subsequent analysis did not find them to
provide valuable information to improve predictive model performance. Thus, we do not report any
results for the windowed features. Moreover, to build some elementary features, summary statistics
were generated from each of the data streams. Table 3 summarizes the summary statistics (i.e., fS

i,j)
that were generated along with their corresponding descriptions. PACE is also utilized to generate
functional principal components (FPCs) and FPC scores; the scores, denoted by fP

i,k, are derived
from the FPCs. Both the summary statistics and FPC scores are utilized as input features to the
feature selection component of MMF-DSS. That is, F = {fS

i,j : i ∈ I, j ∈ J } ∪ {fP
i,k : i ∈ I, k ∈ Ki}

2Flexion refers to motion that decreases the angle at the joint, whereas extension refers to movement that increases
this angle.
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Figure 1: Overall model framework of the Multi-Modal Functional-based Decision Support System (MMF-DSS), con-
sisting of (1) preprocessing of multimodal physiological signals, (2) generating features from the signals, (3) performing
feature selection with BorutaSHAP, and (4) model selection to perform a classification task on flight difficulty.

where I is the set of raw feature indices, J is the set of observed sorties, and Ki is the set of
FPC indices retained for Xi(t). For additional information on our feature-generation approach and
FPCA, we refer an interested reader to Appendix A and [82], respectively.

Table 3: Summary statistics generated for each data stream.

Variable Summary Statistic Name Summary Statistic Description
fS
i,1 Mean Mean of the data stream
fS
i,2 SD Standard deviation
fS
i,3 AvgAbsDiff Mean absolute deviation
fS
i,4 Min Minimum value of data stream
fS
i,5 Max Maximum value of data stream
fS
i,6 Range Difference between Min and Max
fS
i,7 Median Median value of data stream
fS
i,8 MedAbsDev Median absolute deviation
fS
i,9 IQR Interquartile range
fS
i,10 NegCount Count of negative values in the data stream
fS
i,11 PosCount Count of positive values in the data stream
fS
i,12 AboveMean Count of values above mean
fS
i,13 Skew Skew of the data stream
fS
i,14 Kurt Kurtosis of the data stream
fS
i,15 TimeMax Time at which data stream has maximum value
fS
i,16 TimeMin Time at which data stream has minimum value
fS
i,17 TimeAbsDiff Absolute value of the difference between TimeMax and TimeMin

The feature generation step results in a high number of features, and empirical testing reveals
that their collective use produces inferior-performing, overfitted classifiers. Therefore, the next step
in our pipeline utilizes the BorutaSHAP feature selection algorithm to determine which FPC scores
and summary statistics should be retained. This algorithm is allocated 100 iterations in our pipeline.
For further information on BorutaSHAP and our implementation, we refer an interested reader to
[19] and Appendix B, respectively.

Finally, after feature generation and feature selection, our MMF-DSS pipeline concludes with a
classification step. This research explores and compares four distinct machine learning techniques:
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(1) adaptive boosting (AdaBoost), (2) neural network (NN), (3) k-nearest neighbor (k-NN), and (4)
support vector machine (SVM). The mathematical details associated with each of these techniques
are discussed in Appendix C. As shown in the next section, AdaBoost is the superlative classifier
of those considered and, as such, is leveraged within our machine learning pipeline.

4. Testing, Results, and Analysis

This section tests, analyzes, and calibrates our machine learning pipeline. Results are provided
for each step and, as appropriate, hyperparameter tuning is conducted to optimize the pipeline’s
performance. The best-performing model is presented and its ability to correctly classify a sor-
tie’s difficulty is examined. Experiments and analyses are conducted utilizing BorutaShap (Version
1.0.16) within the Python modeling environment as well as the Statistics and Machine Learning
Toolbox within MATLAB 2021B on a Lenova ThinkPad equipped with a 2.60 GHz Intel i7-9850H
processor and 64GB of RAM.

4.1. Feature Generation: FPCA Results

To reduce the dimensionality of the resulting FPC scores but ensure they retain sufficient in-
formation, we include for each time-series signal i the minimum number of eigenfunctions (i.e., Ki)
that describe at least 95% of the variation. Results are summarized for every raw feature in Table
4.

By inspecting Table 4, one can immediately draw conclusions regarding the degree of variability
within each stream of functional data. For example, the non-physiological streams required, on
average, more FPCs to describe 95% of the data’s variability than the physiological streams. No
physiological variable required greater than five FPCs to do so, but some non-physiological variables
(e.g., AX-variables) are characterized by up to nine FPCs. Moreover, among the physiological
variables, some data streams can be expressed more compactly than others. Whereas the EMG-
and ECG-variables require at most two FPCs, select ETK-variables require four to five FPCs.

Additional analysis of the FPCs associated with Table 4 can identify each variable’s primary
modes of variation. However, we refrain from conducting such analysis until Section 4.2 after feature
selection has been performed.

4.2. Feature Selection: BorutaSHAP Results

Through our application of FPCA, we generate a finite set of features that efficiently extracts
the temporal information from the infinitely dimensional raw signals. The finite cardinality of the
generated feature set is an improvement; however, as can be observed from Tables 3 and 4, the
large set of generated features could benefit from further dimensionality reduction; of the 1111
features generated, we desire to identify a most-valuable subset of physiological features that will
not overburden a classification algorithm

In our implementation, BorutaSHAP was allocated 100 iterations. In so doing, the importance
of the following nine physiological features was confirmed: fS

3,11, fS
11,13, fS

16,8, fS
17,2, fS

20,2, fP
22,3,

fP
23,3, f

S
23,15, and fS

36,11. With reference to Tables 3 and 4, it can be observed that seven of the
nine features correspond to summary statistics, whereas two of the nine correspond to FPC scores.
Likewise, seven features relate to the eye-tracking measurements, and the remaining two correspond
to electrodermal and cardiac measurements, respectively.

The relative importance of eye-tracking, electrodermal, and cardiac measurements on a flight
task’s difficulty accords with historical, psychological research. Whereas [83] first showed a positive
association between pupil dilation and cognitive load, these results were later extended to identify a
relationship between skin resistance and heart rate as well [84]. Therefore, our BorutaSHAP results
provide a defensible extrapolation of these foundational, psychological results to the present setting.

Given that many of the identified features correspond with summary statistics, their interpreta-
tion is rather straight-forward. For example, fS

11,13, f
S
16,8, f

S
17,2, and fS

20,2 all correspond, in some
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Table 4: Summary of FPCA Results.

Variables No. of Retained FPCs % Explained Variation Variable No. of Retained FPCs % Explained Variation

fP
1,k 2 98.5 % fP

31,k 4 95.6 %

fP
2,k 1 98.4 % fP

32,k 1 99.2 %

fP
3,k 3 96.5 % fP

33,k 1 98.7 %

fP
4,k 3 98.3 % fP

34,k N/A N/A

fP
5,k 2 98.3 % fP

35,k N/A N/A

fP
6,k 1 96.7 % fP

36,k 1 97.8 %

fP
7,k 1 96.7 % fP

37,k 7 95.7 %

fP
8,k 1 98.7 % fP

38,k 3 96.7 %

fP
9,k 1 98.7 % fP

39,k 3 96.3 %

fP
10,k 1 96.6 % fP

40,k 5 95.7 %

fP
11,k 2 98.3 % fP

41,k 5 95.4 %

fP
12,k 2 97.8 % fP

42,k 4 95.5 %

fP
13,k 2 98.5 % fP

43,k 3 95.5 %

fP
14,k 1 95.9 % fP

44,k 3 97.7 %

fP
15,k 2 98.5 % fP

45,k 4 96.2 %

fP
16,k 5 96.5 % fP

46,k 4 95.7 %

fP
17,k 4 95.5% fP

47,k 8 95.0 %

fP
18,k 5 96.5 % fP

48,k 8 95.2 %

fP
19,k 4 95.9 % fP

49,k 7 96.5 %

fP
20,k 5 96.2 % fP

50,k 9 95.8 %

fP
21,k 2 97.3 % fP

51,k 8 95.6 %

fP
22,k 3 95.9 % fP

52,k 9 96.0 %

fP
23,k 3 95.7 % fP

53,k 1 99.0 %

fP
24,k 1 95.8 % fP

54,k 9 95.0 %

fP
25,k 2 95.8 % fP

55,k 9 95.5 %

fP
26,k 1 99.2 % fP

56,k 3 95.4 %

fP
27,k 3 96.3 % fP

57,k 7 95.4 %

fP
28,k 3 95.4 % fP

58,k 4 96.2 %

fP
29,k 2 99.9 % fP

59,k 5 95.9 %

fP
30,k 1 95.7 % fP

60,k 7 95.8 %
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way, to gaze variability. The implication being that there exists a relationship between gaze volatility
and task difficulty. Alternatively, although fP

22,3 and fP
23,3 are clearly related to pupil dilation over

time, given that these features were generated by FPCA, their interpretation is more nuanced.
Figure 2 plots the associated FPCs for fP

22,3 and fP
23,3. Recalling that fP

22,3 and fP
23,3 are the third

FPC scores for the diameter of the left and right pupil, respectively, we may inspect Figure 2 to infer
their meaning by interpreting the underlying FPCs (i.e., eigenfunctions). The left graph in Figure 2
displays the FPC associated with fP

22,3 and quantifies the weighted difference of left pupil diameter
between mid-flight (approximately 250-525 s) and the beginning/end of flight. Similarly, the right
graph depicts the FPC associated with fP

23,3, and quantifies the weighted difference of right pupil
diameter between mid-flight (approximately 300-550 s) and the beginning/end of flight. Weights
applied to each time instance are objectively determined by the PACE algorithm. Both of these
FPCs show a relatively similar pattern of the difference in pupil diameter during the middle of the
landing task versus the beginning and end. This pattern likely relates to the increased concentration
of pilots at the beginning and end of the landing task (when pupil sizes are larger) versus the middle
(when pupil sizes are smaller).

Figure 2: BorutaSHAP-identified Functional Principal Components

4.3. Classifier Development

A naive approach utilizing only the baseline settings of each technique yields adequate perfor-
mance that we improve upon subsequently via hyperparameter tuning. However, inspection of Table
5 provides interesting insights in its own right. For example, the AdaBoost and SVM algorithms dom-
inate the NN and k-NN approaches across each of four examined metrics, i.e., accuracy, precision,
recall, and F1 score. Conversely, the baseline SVM and AdaBoost algorithms perform compara-
bly across these measures. Subsequent analysis determines whether these results are anomalous or
indicative of algorithmic performance at large.

Table 5: Results of Baseline Models

Technique Accuracy (%) Avg Precision (%) Avg Recall (%) Avg F1 Score (%)
Adaptive Boost 75.71 75.71 75.74 75.71
Neural Network 62.86 62.86 63.25 62.58
k-Nearest Neighbor 70.00 70.00 70.02 69.99
Support Vector Machine 75.71 75.71 76.25 75.59

We design, develop, and conduct a full factorial computational experiment consisting of a variety
of hyperparameter settings for each machine learning technique utilizing the selected features from
Section 4.2. Table 6 reports the hyperparameters, factor levels, baseline hyperparameter values,
and best-tuned hyperparameter values for each of the four machine learning techniques. A 70-30
train-test split was utilized as well as a five-fold cross-validation.
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Table 6: Hyperparameter Experimental Design Factor Levels

Technique Hyperparameter Factor Levels Baseline Value Best-Tuned Value

Adaptive Boosting
Learn Rate {0.01, 0.02, . . . , 1} 1 0.09
Num. Learning Cycles {10, 20, . . . , 200} 100 35

Neural Network

Layer Sizes {5, 10, . . . , 50} 10 5
Num. Layers {1, 2, 3} 1 1
Lambda (i.e., Regularization) {0, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3} 0 0.01
Activations {Identity, Relu, Sigmoid, tanh} Relu tanh

k-Nearest Neighbor
Num. Neighbors {1, 2, . . . , 70} 1 31
Distance {Chebychev, Euclidean, Minkowski, Hamming} Hamming Euclidean
Distance Weight {Equal, Inverse, SquaredInverse} Equal Equal

Support Vector Machine
Kernel Function {Linear, Polynomial, RBF} Linear Linear
Box Constraint (i.e., C) {0.0001, 0.0003, 0.001, 0.003, . . . , 1000, 3000} 1 0.0001
Polynomial Order* {2, 3, 4} 3 N/A

* Polynomial Order is only necessary if a polynomial kernel function is utilized

Table 7 presents each machine learning technique’s best performance on the test set, and Figure
3 depicts their variability in accuracy across the examined hyperparameter settings. Noteworthy
is that, when we compare the performance of each algorithm’s best-tuned settings, AdaBoost not
only dominates the NN and k-NN methods, but SVM as well. Alternatively, the SVM dominance
over NN and k-NN vanishes under these conditions, implying that the results from Table 5 are
not indicative of a global relationship between algorithms on this data set. Inspection of Figure
3 provides insight in this regard. Relative to the other three algorithms, AdaBoost is associated
with a diminutive degree of variability; however, the same cannot be said about the NN and k-NN
methodologies. Their performance is highly variable with substantial dependence on the selected
hyperparameters, implying that the the baseline results derived from naturally occurring variation
rather than structural disparities.

Table 7: Results of Best-Tuned Models

Technique Accuracy (%) Avg Precision (%) Avg Recall (%) Avg F1 Score (%)
Adaptive Boost 87.14 87.14 87.42 87.12
Neural Network 82.86 82.86 83.29 82.80
k-Nearest Neighbor 82.86 82.86 83.29 82.80
Support Vector Machine 81.43 81.43 83.65 81.12

Figure 3: Boxplot of Technique and Accuracy (%)

4.3.1. Confirming the Best-tuned AdaBoost Model

Additional testing is also conducted to further investigate the relative variability within the
AdaBoost classifer. More specifically, multiple linear regression analysis is conducted to investigate
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the relationship between the hyperparameter settings (i.e., the learning rate and the number of
learners) and the dependent variable (i.e., accuracy). Results from this analysis are depicted in
Tables 8 and 9. Although not provided herein, analogous results to those in the aforementioned
tables were observed with the remaining performance measures as well. Inspection of Table 8 reveals
that a substantial degree of the variability observed within our AdaBoost tuning is associated with
the first-order effects of our hyperparameter levels, i.e., approximately one third of the model error
derives from these effects. Moreover, of the these two independent variables, the learn rate appears
to affect the classifier’s accuracy more than the number of learning cycles. Such results confirm
the importance of hyperparameter tuning in our setting as well as the relative importance of the
learning rate and learning cycle parameters in our application of AdaBoost, but they also imply that
higher-order effects between these hyperparameters non-trivially affect the algorithm’s output.

Table 8: Multiple Linear Regression Analysis of Variance

Source of Variation SS DF MS F0 P
Model 0.4143 2 0.2072 421.9216 < 0.0001
Error 0.9805 1997 0.0005
Total 1.3948 1999

Table 9: Multiple Linear Regression Analysis Effects Test

Source of Variation SS DF MS F0 P
Learn Rate 0.4129 1 0.4129 840.8910 < 0.0001
Num. Learning Cycles 0.0014 1 0.0014 2.9414 0.0865

Furthermore, the collective insights of Table 7 and Figure 3 confirm that AdaBoost is the prefer-
able approach among those considered. Not only is its performance superlative across each of the
examined metrics, but its relatively low degree of variability across varying hyperparameter settings
suggests that it should yield comparable performance on unseen data. As a matter of course, we con-
firm this conjecture by additional validation presented in Figure 4. This analysis fixes the learning
rate at 0.09 and varies the number of learning cycles. These hyperparameter pairs are tested upon
the training set, testing set, and a five-fold cross-validation set. The classifier’s respective accuracy
is estimated as a function of the number of learning cycles for each data set. Intuitively, accuracy
tends to increase with the number of learners and, whereas the graph indicates a minor degree of
overfitting, the classifier still achieves high-quality performance on the test set with 87% accuracy.
It is also noteworthy that the validation curves maximum accuracy corresponds to that of the test
set, thereby lending further confidence in the selected hyperparameter values. Confirmatory testing
was also conducted on the learning rate with similar results.

4.3.2. Implementing the Best-tuned AdaBoost Classifier

Having confirmed the superlative performance of the the best-tuned AdaBoost model, we turn
our attention to implementation concerns. Whereas analysis in the previous section highlights the
holistic efficacy of the AdaBoost classifer, from an implementation perspective, its efficacy when
conditioned upon a sortie’s true label is of utmost importance.

Such is the focus of Figure 5 wherein the output probabilities of a sortie being classified as high-
difficulty are presented conditioned upon their true label. The histogram on the left of Figure 5
aggregates the AdaBoost high-difficulty probabilities for true low-difficulty sorties. Its right-skew
indicates that the majority of low-difficulty sorties are associated with a low high-difficulty score.
Similarly, the right histogram depicts the same response for true high-difficulty sorties. Its left skew
indicates that a majority high-difficulty sorties are associated with a greater high-difficulty score.

Such analysis can be extended by focusing on the classifier’s susceptibility to varying thresholds.
The best-tuned AdaBoost algorithm was used to construct the ROC curve presented in Figure 6.
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Figure 4: Accuracy Curves For Training, Validation, and Testing Sets Obtained From AdaBoost Model With Learn
Rate = 0.09

Figure 5: Best-tuned AdaBoost Classifier Output by True Difficulty Level
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It can be observed that, as the false-positive-rate threshold is allowed to increase, the true positive
rate increases drastically (i.e., where a positive response corresponds to a high-difficultly sortie). For
a minor decrease in specificity, the classifier makes substantial gains in sensitivity. The area under
the curve (AUC) associated with this classifier is ≈ 0.88, which is excellent and bordering on the
0.9 outstanding benchmark, following the standards set forth by [20].

Figure 6: ROC Curve and AUC for Best-Tuned AdaBoost Model

5. Executive Decision making and Policymaking Implications

Having developed an effective machine learning pipeline for flight difficulty classification, we
turn our attention to the practical matters of executive decision making and policymaking. As
noted by [85], to enable executive decision making, a pipeline’s performance and function must be
clearly communicated to all relevant stakeholders. The USAF in particularly has placed a great
emphasis on explainability for this exact reason [86]. As such, we present herein a simple means to
explain the rationale behind our pipeline’s predictions via an analysis of each sorties’ SHAP value.
Furthermore, although we contend that the classifier developed in Section 4 is preferable, executive
decision making demands it be compared to alternatives. Therefore, in this section, we present two
alternative classifiers that rely on less and additional data streams, respectively. The modification of
the utilized data streams affects not only the classifier’s accuracy but also its implementation cost.
The balance of these two competing objectives must be weighed by the executive decision maker,
and we discuss the corresponding implications of each decision.

5.1. Model Explainability and Feature Importance

SHAP values extend the canonical Shapley value from coalitional game theory to a machine
learning setting. SHAP values are calculated on a sortie-by-sortie bases such that, for each obser-
vation, one may quantify how each feature affected its classification. Figure 7 plots each feature’s
SHAP values across every sortie; its mean SHAP value is depicted as well (i.e., via the red dia-
mond). Through inspection of this plot, insight can immediately be drawn with regards to the
relative importance of each factor.

The most influential factors correspond to the FPCA-generated features, i.e., fP
22,3 and fP

22,3.
Not only do their mean SHAP values have the greatest magnitude, but they are also associated with
the greatest variability. More specifically, the differences between their minimum and maximum
SHAP values are approximately 1.1 and 0.9, respectively. In juxtaposition, fS

20,2 has a range of
approximately 0.2. Whereas the relative importance of these two features reinforces our utilization
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of FPCA, the dominance of the ETK features in Figure 7 emphasizes the utility of the Vive Pro Eye
headset in our application. The top five most influential features correspond to ETK measurements;
the ECG and PPG data (i.e., fS

3,11 and fS
36,11) are the sixth and eighth most-influential factor as

measured by their mean SHAP values.

Figure 7: SHAP Values using Best-Tuned AdaBoost Model

From a policycmaking perspective, this SHAP-value approach to feature importance is of signif-
icant utility. Given that SHAP values are calculated on a sortie-by-sortie basis, model diagnostic
checking is greatly facilitated. This is particularly important in flight training in the case of acci-
dents. For example, if a training accident occurs, the USAF assigns an accident investigation review
board to examine it. SHAP values may be directly leveraged in this setting to ascertain why the
on-board decision support system behaved as it did.

5.2. Reducing Implementation Cost via an Eye-tracking-focused Model

The relative importance of the ETK features in comparison to the other modality naturally
suggests a policymaking alternative. Namely, if the ETK features are the most important, it may be
possible to construct an adequately performing classifier that does not require ECG or PPG data.
Whereas such a classifer may result in degraded performance, its implementation also requires less
equipment and is therefore less expensive.

To examine this tradeoff, we perform a second factorial experiment based on the levels outlined
in Table 6; however, in this case, only the ETK features derived from Section 4.2 are included in the
model. The performance of the best-tuned model across each algorithm class is presented in Table
10. The results illustrate that AdaBoost remains the superlative algorithm, though its performance
is slightly degraded from the classifier developed with multi-modal data in Section 4.3. Of note, is
that, even though AdaBoost performs well across all performance measures, it no longer dominates
the other algorithms. The best-tuned SVM and k-NN algorithms have slightly better recall than
AdaBoost. Furthermore, it is also interesting to note that, whereas as the best-tuned AdaBoost, NN
and SVM classifiers are degraded when trained on ETK data alone, the k-NN classifier improves on
each metric.

Table 10: Results of Best-Tuned Models using only ETK Features

Technique Accuracy (%) Avg Precision (%) Avg Recall (%) Avg F1 Score (%)
Adaptive Boost 85.71 85.71 85.71 85.71
Neural Network 78.57 78.57 80.59 78.21
k-Nearest Neighbor 84.29 84.29 86.71 84.02
Support Vector Machine 82.86 82.86 85.78 82.50
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Nevertheless, the performance of the best-performing model (i.e., AdaBoost) is degraded when
utilizing ETK data alone. Ultimately, this results in a policymaking tradeoff between implementation
cost and classifier performance that must be resolved by executive-level decision makers. We discuss
this matter further in Section 5.4.

5.3. Increasing Predictive Accuracy with Aircraft and Pilot Data

The focus of this research is the rapid introduction of an automated, flight difficulty classifier
via the exclusive utilization of physiological data. From a policymaking perspective, such a classifier
may be viewed as an intermediate step due to the costly (and cumbersome) nature of acquiring
new, modern aircraft and simulators. However, in truth, the purchase of new aircraft and simulators
with subsystems optimized for machine learning applications is a third course of action that may
be pursued by executive decision makers. In fact, depending upon how the inclusion of additional
aircraft-and-pilot data modalities affects the classifier’s performance, executives may decide that
such subsystems are not necessary.

Therefore, in this section, we perform a third full factorial design on based on the levels outlined
in Table 6, but now allow every feature outlined in Table 2 to flow through the pipeline depicted
in Figure 1. Results from this experiment are provided in Table 11 wherein the performance of the
best-tuned models are presented across each of our four performance metrics. As in Sections 4.3
and 5.2, AdaBoost remains the superlative methodology for use in our pipeline.

Table 11: Results of Best-Tuned Models using every Data Modality

Technique Accuracy (%) Avg Precision (%) Avg Recall (%) Avg F1 Score (%)
Adaptive Boost 97.14 97.14 97.30 97.14
Neural Network 94.29 94.29 94.87 94.27
k-Nearest Neighbor 97.14 97.14 97.14 97.14
Support Vector Machine 94.29 94.29 94.87 94.27

When utilizing the full data set, the performance of every classifier improves over every perfor-
mance measure. This implies that the AX and PX data modalities contain valuable information for
flight difficulty classification. Moreover, as in Section 5.2, the performance of the best-performing
k-NN model is noteworthy; its performance mirrors AdaBoost across each measure. The best-
performing NN and SVM models also perform comparable but at a slightly diminished level com-
pared to the AdaBoost and k-NN models. Finally, it is also interesting to point out how the feature
selection step performed when utilizing all data models as opposed to the physiological streams
alone. The BorutaSHAP iterations remained constant at 100 and, when utilizing the the full data
set, no physiological features were selected, implying that, when given the option, a high-quality
classifier does not require physiological data. Although it is costly to acquire the necessary equip-
ment, the USAF could construct a better-performing, automated classifier by acquiring new aircraft
and simulators.

5.4. Policymaking Tradespace

Whereas the SHAP value analysis provided herein ensures the explainability of our pipeline,
the additional analysis based upon alternative feature selection assumptions presents a policymak-
ing tradespace that must be decided at the executive level. The classifier developed in Section
4.3 can be viewed as a compromise between two competing objectives: implementation cost and
classifier accuracy. However, it represents but a single point on the Pareto front associated with
these objectives. The classifier presented in Section 5.2 can be implemented with less cost but with
degraded performance, whereas the classifier presented in Section 5.3 is most costly to implement
but yields improved performance. A proper decision among these alternatives, depends upon the
relative worth executive-level decision makers place on each objective. There is no right answer.
However, canonical techniques from decision analysis may be leveraged to distinguish among them
[87]. Doing so requires the specification of a multi-attribute utility function as well as the elicitation
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of related uncertainties and outcomes (e.g., by treating implementation cost as a random variable);
[88] and [89] provide a thorough explanation of the quantitative techniques necessary to do so. Such
an undertaking is a promising avenue of future inquiry in its own right, but the results provided
herein are foundational to its conduct.

6. Conclusions

The USAF must change with the times. Its pilot shortfall is a grave national-security threat
that will not be solved by the status quo. The automation of instructor and evaluator pilots is
an innovative idea meant to alleviate the shortfall by reducing bottlenecks in the training pipeline.
However, numerous technical complications surround its implementation. The automated classifica-
tion of flight difficulty is one such issue and is the focus of the machine learning pipeline developed
herein.

Utilizing multimodal, functional data from a designed experiment of pilots landing a simulated
aircraft, our MMF-DSS pipeline leverages functional principal component analysis to distill a large
set of tabular features that are then reduced to a most-valuable subset via the BorutaSHAP feature
selection algorithm. Multiple full factorial designs illustrated that the AdaBoost classifier is then
best able to utilize these features to predict a flight’s difficulty. SHAP values are then utilized to
ensure the explainability of the classifier and inform executive decision making. Bearing in mind the
trade-off between classifier accuracy and cost effectiveness, alternative data subsets and classifiers
are considered that represent distinct, approximately Pareto-efficient solutions. The policymak-
ing tradespace between these classifiers is explored and techniques are discussed through which a
resolution may be ascertained.

This research has therefore laid a foundation upon which future research can build. However,
much like the automation of self-driving cars, the problem of automating an instructor pilot is far
from solved. Myriad avenues of future research exist in such diverse areas as maneuver grading to
performance-improvement recommender systems. The study of this problem is in its infancy, and it
remains a research field of significant inquiry.
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