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Abstract

Objective: We developed deep learning algorithms to automatically assess BI-RADS breast density.

Methods: Using a large multi-institution patient cohort of 108,230 digital screening mammograms from the Digital Mammographic
Imaging Screening Trial, we investigated the effect of data, model, and training parameters on overall model performance and provided
crowdsourcing evaluation from the attendees of the ACR 2019 Annual Meeting.
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Results: Our best-performing algorithm achieved good agreement with radiologists who were qualified interpreters of mammograms,
with a four-class k of 0.667. When training was performed with randomly sampled images from the data set versus sampling equal
number of images from each density category, the model predictions were biased away from the low-prevalence categories such as
extremely dense breasts. The net result was an increase in sensitivity and a decrease in specificity for predicting dense breasts for equal
class compared with random sampling. We also found that the performance of the model degrades when we evaluate on digital
mammography data formats that differ from the one that we trained on, emphasizing the importance of multi-institutional training sets.
Lastly, we showed that crowdsourced annotations, including those from attendees who routinely read mammograms, had higher
agreement with our algorithm than with the original interpreting radiologists.

Conclusion:We demonstrated the possible parameters that can influence the performance of the model and how crowdsourcing can be
used for evaluation. This study was performed in tandem with the development of the ACR AI-LAB, a platform for democratizing
artificial intelligence.

Key Words: ACR AI-LAB, artificial intelligence, BI-RADS, breast density, deep learning, DMIST, generalizability, mammogram,
neural networks
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INTRODUCTION
Breast cancer is one of the leading causes of death among
women in the United States, with the number of deaths
expected to be over 41,000 in 2019 [1]. Early
mammographic screening has resulted in a decrease in
breast cancer mortality [2,3]. The correct mammographic
interpretation of breast density, which measures extent of
fibroglandular tissue, is important in the assessment of
breast cancer risk because there is increased risk with
increased density [4,5]. Furthermore, the identification of
dense breast may stratify patients who may have masked
cancers and may benefit from additional ultrasound or
MRI. As such, there is now legislation in many states that
patients must be notified of their breast density after
mammography [6].

Qualitative assessment by means of the widely used BI-
RADS include four categories: (a) almost entirely fatty, (b)
scattered fibroglandular densities, (c) heterogeneously dense,
or (d) extremely dense [7]. These criteria are subjective,
resulting in interrater variability among radiologists. A study
by Sprague et al showed that the likelihood of any given
mammogram being rated as dense (heterogeneously dense
and extremely dense) is highly dependent on the
interpreting radiologist, with the percentage ranging from
6.3% to 84.5% [8]. Other studies have reported intrareader
variability to be k ¼ 0.58 (among 34 community
radiologists) and the interrater variability to be k ¼ 0.643
(between a consensus of five breast radiologists and the
original interpreting breast radiologist) [6,9]. Similarly,
commercially available software shows a wide range of
agreement with clinical experts, and the probability of
dense classification is dependent on the specific software
used [10,11]. This intra- and interrater variability, and even
654
intersoftware variability, may confer undue patient anxiety
and potential harm to the patient (ie, possible unnecessary
supplemental screening examinations).

As such, there has been interest in using automated
approaches to improve accuracy and consistency of breast
density assessment. Commercial software uses quantitative
imaging features to assess breast density, with mixed agree-
ment with radiologist interpretation [11]. Deep learning
methods have yielded state-of-the-art results in a wide
range of computer vision tasks without the need for domain-
inspired handcrafted imaging features. Moreover, recent
studies have shown the potential of deep learning in medical
fields such as dermatology, ophthalmology, and radiology
[12-14]. A recent study from Lehman et al demonstrates the
utility of deep learning for mammographic density
assessment in clinical practice at a single institution and
mammography system [6]. Here, we further this work by
validating the deep learning approach on a multi-
institutional imaging cohort with a variety of digital
mammography systems. Furthermore, we provide an in-
depth analysis of how choice of data, model, and training
parameters affects algorithm performance. In addition to
that, we investigate the generalizability of models across
different digital mammography data formats. Lastly, we
deploy our system at the ACR 2019 Annual Meeting for a
crowdsourced evaluation.
MATERIALS AND METHODS

Patient Cohort
Digital screening mammograms from 33 clinical sites were
retrospectively obtained through the Digital Mammo-
graphic Imaging Screening Trial, the details of which were
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Table 1. Breakdown of data format by digital
mammograph system

12-Bit
Monochrome 1

12-Bit
Monochrome 2

14-Bit
Monochrome 1

Senoscan, Fischer
Medical, Wheat
Ridge, CO (99.9%)
Kodak Lumiscan
75, Rochester, NY
(.1%)

Senographe,
General Electric
Medical
Systems,
Waukesha, WI
(93.8%)

Other (6.1%)
Mammo-Clinical
(.1%)

Senographe,
General Electric
Medical
Systems,
Waukesha, WI
(94.1%)

Mammo-Clinical
(5.9%)
previously published [15]. Each examination was interpreted
by a single radiologist from a cohort of radiologists using
ACR BI-RADS breast density lexicon (category a: fatty,
category b: scattered, category c: heterogeneously dense,
category d: extremely dense) [7]. A total of 92 radiologists
read the examinations. Readers in the United States were
all qualified interpreters of mammograms under federal
law. Canadian readers met equivalent standards. Each
site’s lead radiologist received training to read for Digital
Mammographic Imaging Screening Trial and in turn
trained the site’s other readers. All images were previously
de-identified before this study. The mammograms were
saved in DICOM format with four different image data
formats, corresponding to different digital mammography
Table 2. Summary of demographics in the patient cohort with

Demographic Training (n ¼ 62,316

Age (median years, IQR) 46 (53-61)

Female (%) 100

Race
White 50,414
Black or African American 8,389
Hispanic or Latino 2,273
Asian 819
American Indian or Alaska 63
Other or unknown 358

Radiologist-assessed breast density
Fatty 6,980 (11.2%)
Scattered 27,733 (44.5%)
Heterogeneously dense 23,987 (38.5%)
Extremely dense 3,616 (5.8%)

IQR ¼ interquartile range.
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systems or different versions of the same system (Table 1):
12-bit monochrome 1 (30.3%), 12-bit monochrome 2
(11.2%), 14-bit monochrome 1 (58.0%), and 14-bit
monochrome 2 (0.5%). The 14-bit monochrome 2 im-
ages were excluded to ensure that each image data format
included in our study had adequate representation for
training of our deep learning model. Our final patient
cohort consisted of 108,230 digital screening images from
21,759 patients (Table 2), which was divided into training,
validation, and testing sets on the patient level. The training
set was used to develop the model, and the validation set was
used to assess model performance during training to prevent
overfitting. The test set was unseen until the model training
was complete.

Experiments on Data, Model, and Training
Parameters
Neural network models were implemented in DeepNeuro
with Keras/TensorFlow backend [16]. We investigated the
effect of data, model, and training parameters on
algorithm performance. A schematic of the various
experiments investigating data, model, and training
parameters are summarized in Figure 1A. To investigate
the effect of training set size, we used various different
training set sizes and assessed the resulting performance on
the test set. We tested four commonly used neural
network architectures, each of which differ in number of
layers and design: ResNet50, DenseNet121, InceptionV3,
and VGG16 [17-21]. We also investigated the benefit of
pretraining by comparing ImageNet (a large computer
regard to age, sex, race, and breast density

) Validation (n ¼ 6,978) Testing (n ¼ 38,936)

46 (53-61) 47 (53-61)

100 100

5,622 30,845
925 5,733
289 1,416
62 633
8 19
72 290

873 (12.5%) 4,575 (11.8%)
2,985 (42.8%) 17,191 (44.2%)
2,753 (39.5%) 14,585 (37.5%)
367 (5.3%) 2,585 (6.6%)
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Fig. 1. (A) A summary of all the data, model, and training parameter experiments performed. (B) Performance on the testing
set (measured by four-class k agreement with radiologist interpretation) increased as the percentage of training set used. The
95% confidence interval is plotted in light green. (C) Effect of model and training parameters on testing set four-class k
agreement with radiologist interpretation. Black lines denote 95% confidence interval. *P < .05, **P < .01, ****P < .001.

Table 3. Demographics of participants of the
crowdsourcing assessment

Demographic n

Experience
vision data set of natural images) pretrained versus random
initialization [22]. A variety of cost functions were also
used (categorical cross-entropy, mean absolute error, mean
squared error, and ordinal regression) to assess the effect of
objective function (and their underlying assumptions of the
nature of the labels) on performance [23]. The training set
was augmented in real time by means of random
horizontal or vertical flips (50% probability of each) and
random rotations (0�-45�). At each minibatch, images
from each breast density class were sampled with either
random (weighting in the empirical density class
distribution) or equal class (weighting each density class
equally) probability to assess the effect of class weighting
on performance. We also evaluated the effect of model
ensembling by averaging the output of two to four trained
models of the same architecture (ResNet50). Model
ensembling describes the process by which several
independently trained models are combined to improve
performance [24]. The default model used 100% of the
training set, ImageNet pretrained weights, ResNet50
architecture, no ensembling, categorical cross-entropy loss
function, augmentation, and equal class sampling. Only one
parameter was modified at a time in the experiments,
keeping all other parameters the same as the default model
(ceteris paribus).
Radiologist (breast) 3
Radiologist (other) 10
Resident 2
Student 2

Read mammograms
No 10
Yes 7
Experiments on Image Data Formats
To visualize the differences in intensity distributions
across image formats, histograms of preprocessed images
from the testing set were generated. The dimensionality
of histograms was then reduced to a two-dimensional
projection and plotted to inspect for similarity across
1656
image formats [25]. The effect of image format of
training images on generalizability of models was
investigated. We trained ResNet50 models using 12-bit
monochrome 1 images only, 12-bit monochrome 2 im-
ages only, 14-bit monochrome 1 images only, and all
images. The performance of these models for each image
format was then assessed. Projections of the intermediate
output of the penultimate layer of the neural network
were also plotted for images in the testing set using a
model trained on all images to evaluate the learned fea-
tures learned by the deep learning model. Further infor-
mation about the patient cohort and experiments is
available in the e-only Supplementary Information.

Crowdsourcing Assessment
As further evaluation of our breast density algorithm, we
deployed an annotation workstation at the ACR 2019
Annual Meeting. Attendees of all levels (researchers,
medical students, residents, radiologists) were invited to
Journal of the American College of Radiology
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perform annotations on a subset of images within our
patient cohort. Representative images of all breast density
classifications from the BI-RADS manual were provided
to attendees during annotation. Attendees were able to
inspect all images (all views available) from a given patient
study and were asked to provide a BI-RADS breast
density assessment. In total, 3,649 annotations were
performed on 1,083 patient studies by 17 raters (de-
mographics summarized in Table 3). On average, there
were three annotations per patient study, and each rater
performed 215 annotations. Consensus of the crowd
was determined by majority vote, with random tiebreak.
In our analysis, we looked at agreement between crowd
and original interpreting radiologist annotation as well
as crowd and algorithm (ResNet50). The ResNet50
model was chosen because it was the best-performing
architecture among those tested. Only a single model
(as opposed to an ensembled model) was used to reflect
the common scenario in which only a single model is
deployed for computation efficiency.

Statistical Analysis
Agreement between raters was assessed via linear k coeffi-
cient across the four breast density categories in the testing
set (four-class k). For reference, a k of 0.21 to 0.40, 0.41 to
0.60, and 0.61 to 0.80 represents fair, moderate, and sub-
stantial agreement, respectively [26].
RESULTS

Effect of Data Parameters on Performance
The performance of training set size on testing set perfor-
mance was investigated, showing that k coefficient increases
as the training set size increases. When 2% (n ¼ 1,247
images) of the training set was used, the mean four-class k
was 0.563 (95% confidence interval [CI], 0.551-0.576). In
contrast, when using 100% (n ¼ 62,316 images) of the
training set, the mean four-class k was 0.660 (95% CI
0.657-0.664) (Fig. 1B). There was a statistically significant
difference between the performance of using 2% to 60%
and 100% of the training set (t test P < .05). There was
no difference in the performance of using 80% and 100%
of the training set (P ¼ .291).
Effect of Model Parameters on Performance
The mean four-class k of models with randomly initialized
weights was 0.327 (95% CI 0.273-0.384), compared with
ImageNet pretrained weights 0.660 (95% CI 0.657-0.664,
P < .001) when using the full training set (Fig. 1C). In the
experiments assessing model architecture, the mean four-
class k of ResNet50, DenseNet121, InceptionV3, and
VGG16 was 0.660 (95% CI 0.657-0.664), 0.650 (95% CI
Journal of the American College of Radiology
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0.640-0.659), 0.644 (95% CI 0.635-0.652), and 0.660
(95% CI 0.658-0.664), respectively. There was no statisti-
cally significant difference between the performance of the
various architectures. The mean four-class k of no ensem-
bling, ensembling two models, ensembling three models,
and ensembling four models was 0.660 (95% CI 0.657-
0.664), 0.665 (95% CI 0.664-0.666), 0.666 (95% CI
0.666-0.667), 0.667 (95% CI 0.666-0.668), respectively.
The performance of ensembling four models and three
models was greater than that of no ensembling (P ¼ .041
and .036, respectively).
Effect of Training Parameters on Performance
For categorical cross-entropy, mean absolute error, mean
squared error, and ordinal regression, the mean four-class
k was 0.660 (95% CI 0.657-0.664), 0.649 (95% CI
0.644-0.653), 0.654 (95% CI 0.646-0.661), and 0.664
(95% CI 0.659-0.669), respectively. The performance of
categorical cross-entropy and ordinal regression was
significantly greater than mean absolute error (P ¼ .011
and P ¼ .004, respectively). The mean four-class k with
no augmentation was 0.658 (95% CI 0.646-0.666),
compared with augmentation 0.660 (95% CI 0.657-
0.664; P ¼ .675). The mean four-class k with random
and equal class sampling at each minibatch was 0.665
(95% CI 0.662-0.669) and 0.660 (95% CI 0.657-0.664),
respectively (P ¼ .135). For random class sampling, the
predicted distribution of labels on the test set was 8.1%
fatty, 47.5% scattered, 40.1% heterogeneously dense, and
4.3% extremely dense. This differed from the predicted
distribution of labels on the test set with equal class
sampling, which was 13.5% fatty, 37.5% scattered, 36.8%
heterogeneously dense, and 12.2% extremely dense (P <

.001, Fig. 2B). The predicted binary distribution for
random (44.4% dense) and equal sampling (49.0%
dense) also differed (P < .001). For random class
sampling, the mean sensitivity and specificity for
classifying dense breast was 0.833 (95% CI 0.803-
0.856) and 0.888 (95% CI 0.872-0.905), respectively.
Comparatively, for equal class sampling, there was an
increase in sensitivity (0.880, 95% CI 0.869-0.890, P <

.05) with a decrease in specificity (0.842, 95% CI
0.828-0.857, P < .001). A display of the range of
classifications for models trained with different model
and training parameters for 50 patients in the testing set
is shown in Figure 2A.
Effect of Digital Mammography Data Format
on Model Generalizability
A plot of projections of intensity distributions of pre-
processed images showed clustering within image format,
1657
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Fig. 2. (A) A visual display of the range of classifications for models trained with different model and training parameters for
50 patients in the testing set. The radiologist interpretation is displayed in the first row. The average breast density rating
across all models and radiologist interpretation is displayed in the last row and was used to order the patients from least dense
(left) to most dense (right). (B) The distribution of predicted breast density labels in the testing set differed for experiments
with random class sampling (left) compared with equal class sampling (right) at each minibatch. ****P < .001. E. dense ¼
extremely dense; H. dense ¼ heterogeneously dense.
delineating differences between image formats (Fig. 3B).
Clustering by intensity distribution was preserved even
after passing the images through a trained neural network,
as shown by projections of the output of the penultimate
layer, with the grouping by breast density occurring
within the respective image format cluster (Fig. 3D, E).
For all image format-specific models, testing set perfor-
mance was decreased for other image formats compared with
the image format the model was trained on (P < .001). In
Fig. 3. (A) Intensity distribution histogram (frequency versus inte
format. (B) Visualization of the histogram of intensities of 3,000
clustering of images by image format. (C) Performance of mode
showing that for image format-specific models, testing set perf
with the image format the model was trained on. (D, E) Visualiz
for 3,000 images in the testing set, color-coded by image forma
extremely dense; H. dense ¼ heterogeneously dense.

1658
contrast, a model trained on all images showed no differ-
ences in performance across image formats (P > .05,
Fig. 3C).

Crowdsourcing Assessment
The four-class k between the crowd and algorithm (0.505,
95% CI 0.503-0.506) was greater than agreement between
crowd and original interpreting radiologist (0.463, 95% CI
0.461-0.464, P < .001). Agreement with the algorithm was
nsity value) of 100 randomly selected images of each pixel
preprocessed images from the testing set demonstrating
ls trained on specific image formats as well as all images,
ormance was decreased for other image formats compared
ation of an intermediate layer of the trained neural network
t and radiologist interpretation of breast density. E. dense ¼
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Fig. 4. Confusion matrices showing the agreement between original interpreting radiologist, algorithm, and crowd. The
agreement between the algorithm and crowd (B) was greater than the agreement between crowd and original interpreting
radiologist (A). The agreement between algorithm and original interpreting radiologist for the same patient studies (C) shown
for reference. (D) There was higher agreement, in terms of four-class k, with the algorithm than with the original interpreting
radiologist from the DMIST trial for both crowdsourcing participants who read mammograms and those who do not. *P <

.001. E. dense ¼ extremely dense; H. dense ¼ heterogeneously dense.
greater than agreement with the original interpreting radi-
ologist for both crowd participants who regularly read
mammograms and those who do not (Fig. 4D). As a
reference, the four-class k between algorithm and radiolo-
gist was 0.636 (95% CI 0.635-0.637) for the same patient
studies (Fig. 4A-C).
DISCUSSION
In this study, we investigated the performance of deep
learning models in a large multi-institution and multi-
mammography system patient cohort. Our best-performing
model achieved a k of 0.667, equivalent to the agreement
observed by Lehman et al, which only used mammograms
from a single institution and mammography system [6].

One challenge of training robust deep learning models is
the availability of large annotated imaging data sets [27]. In
this study, we provide empirical evidence that the size of the
training set is a key determinant in the performance of
neural networks, consistent with another study on
abnormality classification in chest radiographs [28]. In
accordance with deep learning studies in other domains,
tens of thousands of annotated images are needed before
model performance begins to plateau in diverse imaging
cohorts, supporting the need for collaborative efforts
among medical institutions [28-30].

In our investigation of model parameters, pretraining
and ensembling led to improvements in performance. Pre-
training neural networks followed by fine-tuning in the
target domain (also known as transfer learning) has become
a well-established paradigm for medical imaging applications
to achieve high performance [12,29]. In our study, we noted
that pretraining on ImageNet improved performance for the
breast density classification task. Further improvement in
Journal of the American College of Radiology
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performance was seen with ensembling of independently
trained models, which is analogous to how a consensus of
experts is more likely to be correct than any single expert
[31]. Interestingly, neural network architecture did not
have a significant effect on performance despite differences
in model complexity and design.

One important consideration when training a model is
the objective function used to optimize the algorithm, also
known as a cost function. Our experiments have shown that
the choice of cost function had a significant effect on model
performance, mainly because each cost function makes
different assumptions about the nature of the labels. Spe-
cifically, mean absolute error, mean squared error, and
ordinal regression assume that the categories are ordered,
but categorical cross-entropy does not. Furthermore, mean
absolute error and mean squared error assume the distance
between adjacent classes is equal, whereas ordinal regression
does not. In our application, breast density is classified on an
ordered scale with undefined distances between adjacent
classes (ie, the distances between fatty and scattered
compared with heterogeneously dense and extremely dense
cannot be quantified), making ordinal regression the most
appropriate cost function. This is validated in our experi-
ments, in which we find that ordinal regression exhibited
the highest performance, although this was significantly
different to only mean absolute error.

We also did not notice significant difference between
random and equal class sampling on model performance in
terms of k coefficient. Class sampling is an important
consideration in cases in which there are differences in the
number of patient samples from each class (ie, when the
majority class significantly outnumbers the minority class).
In our study, we have more patients with scattered and
heterogeneously dense breasts (44.2% and 37.5%,
1659
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respectively) than with fatty and extremely dense breasts
(11.8% and 6.6%, respectively), which is the expected dis-
tribution as breast density has a normal distribution. Under
random class sampling, the neural network would be
exposed to more training examples of scattered and het-
erogeneously dense breasts than of fatty and extremely dense
breasts. Equal class sampling can be used to mitigate this
inherent class imbalance by ensuring that the neural
network is adequately exposed to all classes [32]. However,
it is also important to note that with equal class sampling,
the distribution of predicted labels changes—specifically,
minority classes are predicted with higher frequency and
majority classes are predicted with lower frequency, as
shown by our experimental results. The net result of this
is that the sensitivity of predicting dense breast improves
with equal class sampling. Moreover, equal class sampling
leads to lower specificity for classification of dense breast.
From a policy perspective, this can lead to more patients
being notified that they have dense breast. Additional
imaging performed on these patients may lead to increases
in the number of false-positives. This is a key example of
how the manner in which deep learning models are trained
can have implications for clinical care.

One critical hurdle that prevents the deployment of deep
learning models in the clinical work environment is their
relatively poor generalizability across institutional differences,
such as patient demographics, disease prevalence, scanners,
and acquisition settings. In fact, other deep learning studies
that have shown poor generalizability of deep learning models
when applied to data from different institutions than the one
they were trained on [33,34]. In our study, we found that
models trained on specific digital mammography data
formats do not generalize to other data formats, and it was
only after training on images from all digital mammography
data formats did our model showed high performance on
all data formats. Indeed, several deep learning studies for
mammographic breast density assessment were only
validated on patient cohorts from a single institution or
digital mammography system [6,35,36]. Some possible
differences between different digital mammography systems
or versions of systems include the x-ray tube target, filter,
digital detector technology, and control of automatic
exposure [37]. Our results add to the growing body of
literature that states that deep learning models do not
necessarily generalize when applied to data that differs from
that which the model was trained with.

Various studies have shown the utility of crowdsourcing
and citizen science in biological and medical image anno-
tation [38-41]. Crowdsourcing for annotation and
evaluation is advantageous because it is scalable, high
throughput, cost-efficient, and accurate [42-44]. As such,
1660
we performed a crowdsourcing assessment of our
algorithm. Notably, there was a diversity of experience of
the participants in crowdsourcing, with its inclusion of
students, residents, and radiologists who do not routinely
read mammograms. As such, it is unsurprising that the
agreement between the crowd and algorithm was lower
than the agreement between the original interpreting
radiologist and algorithm. Interestingly, the crowd (both
participants who routinely read mammograms and those
who did not) had higher agreement with the algorithm
than with the original interpreting radiologist. This may
reflect the consistency of the algorithm in its assessment
compared with the various interpreting radiologists from
different sites in the Digital Mammographic Imaging
Screening Trial study. In other words, a single algorithm
may allow for greater consistency than having different
human radiologists rate each imaging study.

There are several limitations to our study. The first is
that we only had one radiologist, from a cohort of radiolo-
gists, perform interpretation for each patient study. Future
studies will incorporate multiple readers for each patient
study. In addition, for models initialized with random
weights, we did not optimize training hyperparameters such
as the learning rate schedule or the duration of training [45].
It is possible that optimization would improve the
performance of the randomly initialized model, but in this
study, we show the performance advantage of pretrained
neural networks with minimal hyperparameter tuning.
Furthermore, in our investigation of augmentation, we
only explored random flips and rotations, though future
work will explore other augmentation techniques such as
intensity scaling and elastic deformations [46]. Lastly, our
algorithm was only developed to assess mammographic
breast density. Future work can extend our algorithm and
crowdsourcing evaluation for more complex tasks such as
assigning BI-RADS categories.

This study was developed in conjunction with the ACR
AI-LAB, a framework for democratization of artificial in-
telligence. The goal of the ACR AI-LAB is to provide an
interface for clinicians and scientists to work together to
develop deep learning models. We highlight several funda-
mental features needed for artificial intelligence democrati-
zation: First, we demonstrate the possible data, model, and
training parameters that can influence the performance of
the model. These parameters will be available as options in
AI-LAB. We also show importance of diverse training data
for model generalizability, supporting collaborative devel-
opment of algorithms across institutions which the AI-LAB
will facilitate. Lastly, we show how crowdsourced annota-
tions can be used to evaluate algorithm performance, which
users will be able to do on the AI-LAB platform.
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Implications
We showcase the various data, training, and model param-
eters that can influence model performance, highlighting
pretraining, cost function, and sampling approach as
important parameters. Furthermore, we found that model
performance deteriorates when training and testing on
different imaging data formats. In performing this study in
tandem with the development of the ACR AI-LAB, we
demonstrate important principles and pitfalls that radiolo-
gists and data scientists have to consider when training neural
network models. Our hope is that radiologists who use the
AI-LAB can refer to this study as an educational tool when
utilizing the AI-LAB to train their own deep learning models.
TAKE-HOME POINTS

n The choice of data, model, and training parameters can
impact deep learning model performance for evaluation
of mammographic breast density. Notably, when
training was performed with randomly sampled images
from the data set versus sampling equal number of
images from each density category, the model pre-
dictions were biased away from the low-prevalence
categories such as extremely dense breasts.

n The performance of the model degrades when evalu-
ated on data formats that differ from the one that we
trained on, emphasizing the importance of multi-
institutional training sets.

nCrowdsourcing can be an effective means of evaluating
model performance.

n These options for model training and evaluation will be
made available in the ACR AI-LAB, a platform for
democratizing artificial intelligence that was developed
in tandem with this study.
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