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Migraine classification using magnetic
resonance imaging resting-state
functional connectivity data
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Abstract

Background: This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers

from resting-state functional magnetic resonance neuroimaging (rs-fMRI) data that distinguish between individual migraine

patients and healthy controls.

Methods: This study included 58 migraine patients (mean age¼ 36.3 years; SD¼ 11.5) and 50 healthy controls (mean

age¼ 35.9 years; SD¼ 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain

classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with

migraine or to a healthy control.

Results: The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional con-

nectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral

amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease

durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease

durations (�14 years; 82.1% accuracy).

Conclusions: Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and

could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer

disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that

disease duration leads to reorganization of brain circuitry.
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Introduction

Migraine pain is a complex and subjective experience
that includes sensory-discriminative, affective, and cog-
nitive aspects. Neuroimaging studies have shown func-
tional alterations in the migraine brain in widespread
brain regions involved in pain processing (1–10). These
functional brain alterations are evident in the ictal as
well as the interictal phase, thus suggesting that migraine
might have a characteristic functional ‘‘brain-signa-
ture.’’ Resting-state functional magnetic resonance ima-
ging (rs-fMRI) has been useful for delineating the neural
underpinnings of the pain experience in migraine
patients. An increasing body of literature has shown
people with migraine to have alterations in the func-
tional connectivity (fc) of regions important for

mediating sensory, affective, and cognitive components
of pain (11–13).

Machine-learning algorithms trained to automatic-
ally classify patient populations from healthy controls
based on rs-fMRI measures have shown good utility for
discriminating patients with chronic pain such as
chronic back pain, fibromyalgia, rheumatoid arthritis
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or functional dyspepsia (14–16) from healthy controls,
yet rs-fMRI measures have not yet been used as input
metrics for accurately discriminating migraine patients
from healthy controls. The ability to classify individual
migraine patients from healthy controls based on rs-
fMRI patterns would provide objective insight into the
neural mechanism of migraine and would potentially
provide an objective brain biomarker for migraine.

The objective of this study was to develop a brain
classification model to distinguish individual migraine
patients from healthy controls based on resting-state
functional connectivity (rs-fc) patterns derived from
magnetic resonance (MR) imaging data.

Methods

A total of 108 individuals (58 migraineurs and 50
healthy controls) were recruited for study participation
from two medical institutions: Mayo Clinic Arizona
and Washington University School of Medicine in St.
Louis. This study was approved by the local institu-
tional review boards and all participants gave informed
consent prior to their participation in the study.
Exclusion criteria included the presence of neurological
disease other than migraine—for the migraine popula-
tion, psychiatric disease or the presence of head trauma.
All migraine patients were diagnosed with episodic or
chronic migraine according to the diagnostic criteria set
forth by the International Classification of Headache
Disorders (ICHD-II) (17). Healthy controls consisted
of community-dwelling individuals who never had
migraines. Healthy controls were included if they never
developed headaches or if they had occasional tension-
type headaches with a frequency of less than three ten-
sion-type headaches per month. Additionally, none of
the patients took opiates for pain relief or took
migraine-preventive medications and all migraine
patients stated they had migraines for a minimum of
three years. All imaging and diagnostic assessments
were conducted during a single two-and-a-half-hour
visit. Individuals were excluded from the final analysis
if they developed a headache in the scanner or if they
stated having a migraine less than 48 hours prior to
testing. All participants completed the Beck Depression
Inventory (BDI-II) (18), and the State/Trait Anxiety
Inventory (STAI, Form Y-1 and Form Y-2) (19) to
assess levels of depression and anxiety, respectively.

Demographic data of migraine patients and healthy
control cohorts were compared using t-tests (two-
tailed) or Fisher’s exact test, as appropriate.

Imaging parameters

All high-resolution T1- and T2-weighted imaging was
conducted on 3-Tesla Siemens (Erlangen, Germany)

scanners using Food and Drug Administration
(FDA)-approved sequences with the following
parameters:

Washington University (3T Siemens MAGNETOM

Trio): T1-weighted imaging; repetition time (TR)¼

2400ms; echo time (TE)¼ 3.16 ms; flip angle¼ 8

degrees. T2-weighted imaging; TE¼ 88ms, TR¼

6280ms, flip angle¼ 120 degrees, 1� 1� 4mm3 voxels

Blood-oxygen-level-dependent (BOLD) resting-state;

TE=25ms, TR=2500ms, 4.0x4.0x4.0mm3 voxels

Mayo Clinic (3T Siemens MAGNETOM Skyra): T1-

weighted imaging; TR¼ 2400ms; TE¼ 3.06ms;

(TI)¼ flip angle¼ 8 degrees. T2-weighted imaging;

TE¼ 84ms, TR¼ 6800ms, flip angle¼ 150 degrees,

1� 1� 4mm3 voxels; BOLD resting-state; TE=27ms,

TR=2500ms, 4.0� 4.0� 4.0mm3 voxels.

All imaging was reviewed and individuals with struc-
tural abnormalities seen on T1-weighted imaging were
excluded from the final data analysis. Migraine patients
and healthy controls were continuously enrolled into
the study at both sites. Migraine patients and healthy
controls were scanned during a period of 18 months
at Mayo Clinic, and during a period of 24 months
at Washington University. No scanner updates were
performed during these time periods at either
institution.

Data collection and resting-state preprocessing

Ten minutes of rs data were collected for each individ-
ual. Prior to the beginning of the scanning sequence,
participants were reminded to relax, to remain motion-
less, and to stay awake but to keep their eyes closed. It
is of note that there is still little consensus as to the
optimal rs condition (‘‘eyes closed’’ versus ‘‘eyes
open’’ versus ‘‘eyes fixated on a cross-hair’’) although
recent results by Patriat at al. (20) suggest no significant
differences in connectivity strength among these condi-
tions for most rs networks, albeit slightly higher con-
nectivity in the auditory network in the eyes-closed
condition. We chose the ‘‘eyes-closed’’ condition for
the current study because the instructions are easy to
give and easy to understand for the subjects.
Participants were also given the following instructions
prior to the rs run: ‘‘Please stay awake, but close your
eyes and clear your mind.’’

To avoid post-processing irregularities, all individ-
uals were post-processed on a single Macintosh com-
puter running OS X Lion 10.7.5 software using SPM 8
(Wellcome Department of Cognitive Neurology,
Institute of Neurology, London, UK) and DPARSF
(21) that was interfaced with MATLAB version 11.0
(MathWorks, Natick, MA, USA).
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Standard SPM methodology was used to preprocess
rs data, which included the following steps: (a) slice-
time correction; (b) motion correction (22), and re-
alignment to the first volume; (c) skull and non-brain
tissue removal; (d) spatial smoothing (6mm, full width
at half maximum (FWHM)); (e) functional scans were
first realigned to each person’s own structural (T1-
weighted) volumes and then warped to the standardized
Montreal Neurological Institute (MNI)305 template to
allow for signal averaging across all subjects (23). Data
were band-pass filtered within SPM using a discrete
cosine transform between 0.01 to 0.1Hz to retain the
low-frequency components of the signal (24). Variance
relating to signals of no interest was removed from the
rs data through linear regression. These included: white
matter signal, cerebrospinal fluid signal and global
mean signal. Head motion was regressed out using a
framewise displacement model on the surface of a
50mm radius sphere (25). Movement calculation was
conducted within DPARSF and indicated no differ-
ences in scanner motion between healthy controls and
migraine patients. As there might be concern that scan-
ner movement could potentially be correlated with the
division into groups, we conducted a post-hoc analysis
that indicated that only three control individuals and
four migraine patients showed more than 0.5mm
movement. This indicates that scanner movement was
not specifically related to one group and as such did not
affect correlation results.

Finally, we applied a seed-based (region of interest
(ROI)) correlation analysis and computed Fisher r-z
transformation maps by extracting the time courses
over each seed region (total of 33 seed regions) and
computing the correlation of each seed region with
each voxel throughout the brain. As rs data are suscep-
tible to movement artifacts (26), all scans were checked
for motion and those that exceeded 2.0mm in move-
ment were excluded from the final analysis.

The selection of the 33 areas that were selected for
the current study was based on findings in the pain and
migraine literature. The selected regions are those that
are consistently shown to participate in pain processing.
Many of these pain-processing regions have been pre-
viously shown by other investigators to have atypical
structure or function in migraineurs compared to
healthy controls (27–29). The precise x,y,z coordinates
for these regions were then determined using the MNI
Atlas, and an 8mm sphere was drawn around the x,y,z
coordinates of each of these regions to explore the func-
tional connectivity of these ROIs with every voxel in
the brain.

Sixteen brain areas of interest were selected
over each hemisphere as well as one midline area
(periaqueductal gray) for a total of 33 brain areas.
See Table 1.

Brain classification pipeline

An overview of our analysis pipeline is shown in a flow
diagram (Figure 1.) We used an ROI approach to esti-
mate whole-brain connectivity of 33 a priori selected
ROIs in migraine patients and healthy controls. These
ROIs were selected based on published findings of com-
monly described changes in functional connectivity and
brain activation patterns in migraine patients. Rs con-
nectivity maps were calculated by extracting the time
courses of each of the 33 seeded regions with every
voxel in the brain (Fisher r-z transformation maps).
Important principal components as defined below
were then extracted from the Fisher r-z transformation
maps and applied to a machine-learning classification
algorithm to test the accuracy of distinguishing between
migraine patients and healthy controls.

Statistical analysis

Our rs analysis included the interrogation of the func-
tional connectivity of each ROI with every voxel in the
brain. Initially the voxels were mapped into a commonly
used brain atlas (obtained from talairach.org) and 4484
points that were labeled as ‘‘No Gray Matter’’ were

Table 1. Thirty-three regions of interest (ROIs).

MNI coordinates

Regions X Y Z

Anterior insula þ/�38 19 �3

Anterior cingulate þ/�6 28 24

Middle cingulate þ/�10 �7 46

Posterior insula þ/�40 �14 1

Posterior cingulate þ/�8 �48 39

Thalamus þ/�8 �21 7

Primary somatosensory þ/�46 �24 47

DLPFC þ/�40 39 24

Inferior lateral parietal þ/�57 �48 30

VMPFC þ/�6 36 �14

Secondary somatosensory þ/�52 �28 21

Somatomotor þ/�6 1 68

Temporal pole þ/�41 10 �32

Amygdala þ/�22 �1 �22

Middle temporal þ/�60 �26 �5

Periaqueductal gray a
�1 �26 �11

Caudate þ/�14 13 11

DLPFC: dorso-lateral prefrontal-cortex; VMPFC: ventromedial-prefron-

tal-cortex. All X, Y, Z-coordinates are labeled in Montreal Neurological

Institute (MNI) space. Functional connectivity was explored for all ROIs

using an 8-mm sphere.

(þ/�) indicates right or left hemispheric regions.
aIndicates a midline structure.
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eliminated from the total set of 70,831 voxels. Per ROI,
this analysis generates 66,347 data points, which are stat-
istically difficult to interpret. Therefore, a principal com-
ponent analysis (PCA) was used to reduce the
dimensions of the data. After creating new features that
are a linear combination of the original voxel-based data
points (called principal components, PCs), it is possible
to significantly reduce the dimensions of the data while
still retaining most of the original information (30).

Therefore, PCA allows for consolidating high-
dimensional functional imaging data into meaningful
‘‘sets’’ of PCs with significantly reduced dimensions
that can successfully explain 85% of the data variance.
Subsequently, these ‘‘sets’’ of PCs were used to build
classification models. Although there are a number of
classification algorithms that have been developed over
the past years, we used diagonal quadratic discriminate
analysis (DQDA) as we found it to provide good utility
in the classification of episodic and chronic migraine
using structural brain imaging data (31).

Classification significance

The significance of classification was assessed by exam-
ining the 95% confidence interval (CI) of the overall

accuracy values from the 10 runs. We first determined
whether the overall accuracy values obtained from the
10 runs could be modeled by a normal distribution by
plotting the overall accuracy on a normal quantile plot.

As it was confirmed that the overall accuracy took
on a linear form and that all the points were within the
confidence band, it was then acceptable to model the
accuracy values by a normal distribution. The 95% CI
for the overall accuracy was 79.14% to 82.90%, con-
firming that the classifiers significantly performed at a
high level.

Although 50 healthy controls and 58 migraineurs
did not constitute a marked imbalance between
groups, we addressed any potential issues of slight
bias toward the dominant class (migraineurs) by set-
ting the prior probabilities for the healthy controls
and migraineurs to be equal for the diagonal quad-
ratic discriminant.

For input into PCA, a matrix was built for each
ROI such that rows were participants and columns
were voxels. PCA was performed on each of the 33
ROI matrices. The resulting PCs were reduced to the
number of PCs that explained 85% of the variability
in the data (in their respective ROI). The reduced
PCs found from each ROI were then combined

Step 1.

Raw fMRI data PCA for each rs-fc z-map

fMRI data pre-processing

rs-fc analysis of 33 seeded ROI’s

Extraction of rs-fc z-maps

fMRI processing pipeline Machine learning classification

Step 2.

10 min resting-state For a total of 33 PCAs

Pooling of PCs for classification

Identification of brain regions

Identification of voxels
contributing to each PC

using step-wise search with DQDA

using cluster correction

using DPARSF

calculated for each ROI

in MNI space using standard methods in SPM 8

Figure 1. Flow diagram for the functional magnetic resonance neuroimaging (fMRI) data analysis (Step 1) and the machine-learning

classification (Step 2).

Step 1. Ten minutes of raw fMRI data were collected for each participant. Standard preprocessing was performed within SPM 8 and

DPARSF programs. Connectivity of 33 seeded regions-of-interest (ROIs) with the rest of the brain was estimated and z-maps were

produced for each ROI. All brain maps were standardized in Montreal Neurological Institute (MNI) space.

Step 2. A principal component analysis (PCA) was conducted for the resting-state functional connectivity (rs-fc) z-maps of each ROI.

Then, important principal components (PCs) from each PCA were pooled together for classification via a stepwise search procedure

using diagonal quadratic discriminate analysis (DQDA). Voxels were cluster corrected (clusters with <5 neighboring voxels were

discarded from the analysis) and voxel clusters that contributed to each PC were determined. The center of each voxel cluster was

calculated in MNI space and the corresponding brain regions that contributed to the classification between healthy controls and

migraineurs were identified.
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together for input to the quadratic discriminant
classifier.

Next, using an in-house-developed machine-learning
pipeline (coded in MATLAB) a forward stepwise
search was conducted to determine which PCs contrib-
uted to the classification accuracy. Using this method,
the PCs were added to one another until the addition of
another PC no longer improved cross-validation accur-
acy by at least 1%.

Classification accuracy was assessed using a 10-fold
cross-validation method, which is a standard technique
to avoid data over-fitting (32–34). Using this technique,
the participants are randomly partitioned into 10 equal-
sized subgroups. In each run, 90% of the individuals
were chosen to develop the classifier and the remaining
10% of the individuals were used to test the accuracy of
the classifier. Ten runs were conducted so that each
subgroup was used exactly once for validation. The
results of this analysis yielded two measures of classifi-
cation accuracy: ‘‘best performance,’’ which is the best
classification accuracy of 10 runs and ‘‘average per-
formance,’’ which is the average performance of the
classifier over 10 runs.

K-fold cross-validation (K¼ 10)

A K-fold cross-validation technique was used in order
to ensure reproducibility of the results. This technique
separates the data into 10 folds of approximately equal
size. The classifier is then trained to nine of the folds,
and predicts the subject label on one of the folds. This
procedure is performed 10 times (for each fold as the
test set) to obtain the accuracy value. This procedure
was performed for 10 runs to obtain 10 different clas-
sifier models. In our 10 runs of the quadratic discrim-
inant classifier, we found six important PCs, some of
which were found multiple times in these 10 runs. As
multiple runs are considered, important PCs for the
discrimination consistently show up in the models
that are derived from a stepwise search and allows for
determining a pattern of the most important discrimi-
nating PCs.

When PCA was performed on each ROI, a total of
around 74 PCs were generated after reduction to
explain 85% of the variability (per ROI). The eigen-
value spectrum was used to reduce the number of PCs
(example: for PC1, lambda1/(sum of all
lambdas)¼proportion of variability explained by
PC1; and those PCs were selected with the highest
lambda values such that the (sum of the highest lamb-
das)/(sum of all lambdas)�0.85). The 0.85 threshold
was chosen using a scree plot to determine an appro-
priate number of PCs. The scree plot is a useful visual
aid for determining an appropriate number of PCs and
is used to graph the eigenvalue against the component

number. To determine the appropriate number of com-
ponents, we look for an ‘‘elbow’’ in the scree plot. The
component number is then taken to be the point at
which the remaining eigenvalues are relatively small
and all about the same size, which is a widely used
technique to reduce the number of PCs.

For clinical interpretation, the important voxel-
based data points were identified from the PCs. Since
each PC is created by a linear combination of the ori-
ginal voxels, it is possible to identify important original
voxels using a method from a previous study (12). For
each PC, the mean and standard deviation of the linear
coefficients was calculated. To identify important
voxels, all voxels were filtered out, except for those
that had a linear coefficient that exceeded two standard
deviations from the mean. The voxels that were kept
were labeled as significant contributors to their respect-
ive PC (and thus an important contributor in classifi-
cation). These voxels were then processed by a
clustering algorithm called Density-Based Spatial
Clustering of Applications with Noise (DBSCAN)
(35). This algorithm created different clusters of
voxels that were adjacent to one another and were

Table 2. Accuracies of the best classifiers for subgroups of

migraine patients using different thresholds of years lived with

migraine.

y C.A.� y n C.A.> y n p value

8 0.8 15 0.930 43 0.08

9 0.823 17 0.927 41 0.12

10 0.85 20 0.921 38 0.2

11 0.818 22 0.944 36 0.06

12 0.826 23 0.943 35 0.08

13 0.852 27 0.935 31 0.15

14 0.821 28 0.967 30 0.035

15 0.827 29 0.965 29 0.042

16 0.844 32 0.961 26 0.07

19 0.861 36 0.954 22 0.13

20 0.872 39 0.947 19 0.19

21 0.884 43 0.933 15 0.3

Y: years lived with migraine; C.A.� y: classification accuracy for

migraineurs with equal to or less than x number of years lived with

migraine; C.A.> y: classification accuracy for migraineurs with more than

x number of years lived with migraine; n: number of migraine patients for

a specific threshold. p value: classification accuracy differences between

subgroups for a specific migraine threshold. Significant classification

accuracy differences were shown for the 14 and 15 migraine years

threshold subgroups. Example: Significant differences in classification

accuracy were found for the threshold of 14 years of migraine (y¼ 14).

Migraine patients who lived with more than 14 years of migraine (n¼ 30;

classification accuracy¼ 0.967) were significantly better classified

(p¼ 0.035) than migraine patients who lived with 14 years of migraine or

less (n¼ 28; classification accuracy¼ 0.821).
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thresholded based on a five-voxel density requirement.
DBSCAN also identified voxels in less-dense regions as
outliers. The outliers were discarded and clusters that
contained at least five voxels were kept for analysis. The
center of each cluster was calculated and clusters were
ranked according to the average PC linear coefficients
of the voxels in each cluster. This analysis estimated
how much, on average, the voxels in each cluster con-
tributed to the final accuracy results.

Using a post-hoc analysis, we interrogated whether
the classification accuracy was related to the number of
years that individuals had migraine. The performance
of the best classifier (developed in the machine-learning
pipeline) was analyzed on the migraine patients using
different thresholds of years lived with migraine. In
each performance analysis, the migraineurs were sepa-
rated into two subgroups—(1) a group of migraineurs
whose disease burden (years lived with migraine) was
less than or equal to a specified threshold of years lived
with migraine, and (2) another group whose disease
burden was greater than the threshold. For example,
groups of migraine patients who lived with eight years
of migraine or less were compared to groups of
migraine patients who lived with more than eight
years of migraine. Henceforth, changing this threshold
changed which migraine patients were in each sub-
group. The accuracies of the best classifier were calcu-
lated for each subgroup and classifier accuracies for
each subgroup were compared to each other. See
Table 2. Thresholds of 8, 9, 10, 11, 12, 13, 14, 15, 16,
19, 20 and 21 years lived with migraine were investi-
gated. Subgroups were considered to have significantly
different classifier accuracies if p< 0.05.

Results

Two patients were excluded because of incomplete data-
sets. One migraine patient was excluded because of a
scanner-related error during slice acquisition, one con-
trol participant was excluded because of an abnormality
found on MR structural imaging (enlarged ventricles)
that prevented an accurate transformation to a normal-
ized brain template during the rs preprocessing stage,
and one control individual was excluded for exceeding
the predefined movement threshold in the scanner
(>2mm). Fifty-eight migraine patients (mean
age¼ 36.3 SD¼ 11.5; 44 female and 14 male) and 50
healthy controls (mean age¼ 35.9, SD¼ 11.0; 36
female and 14 male) were included in the final analysis.
See Table 3. Fifty-one patients had episodic migraine
and seven individuals had chronic migraine. Thirty-
four patients had migraine without aura and 24 had
migraine with aura. An equal ratio of migraine patients
and healthy controls was scanned at each of the two
institutions. Fifty-nine individuals (32 migraine patients
and 27 healthy controls) were recruited from
Washington University, and 49 individuals (26 migraine
patients and 23 healthy controls) were recruited from
Mayo Clinic Arizona. There were no significant differ-
ences between migraine patients and healthy controls on
age (p¼ 0.84), levels of anxiety at the time of testing
(State, p¼ 0.23), and generally felt anxiety (Trait,
p¼ 0.11). Migraineurs reported having on average 7.6
headache days per month and had migraines on average
for 16.7 years (see Table 1). Although there were signifi-
cant group differences in levels of depression between
migraine patients and healthy controls (BDI-II;
migraine patients: mean¼ 4.0, SD¼ 4.1; healthy con-
trols: mean¼ 2.2, SD¼ 4.1; p¼ 0.026), average levels
of depression were well within the normal range (no
depression) for migraine patients and controls
(BDI< 10¼ normal levels). Data of 30 migraine
patients and 20 healthy controls used in this study
were included in a previously published paper by
Schwedt et al. (36).

Classification results

Results indicated an overall accuracy of 81.0% and a
best accuracy of 86.1% for classifying individual
migraine patients from healthy controls based exclu-
sively on the rs-fc patterns of six ROIs (right middle
temporal, right posterior insula, right middle cingu-
late, bilateral amygdala and left ventromedial pre-
frontal brain regions). Brain connectivity to the
regions that most significantly contributed to the clas-
sification accuracy is shown in Figure 2 and Table 4.
A post-hoc analysis that interrogated whether the
accuracy of the best classifier was associated with

Table 3. Participant characteristics for migraine patients and

healthy controls.

Migrainen¼ 58 Controlsn¼ 50 p value

Age, mean (SD) 36.3 (11.5) 35.9 (11.0) 0.84

Sex (F/M) 44/14 36/14 0.65

BDI-II (SD) 4.0 (4.1) 2.2 (4.1) 0.026a

STATE (SD) 26.5 (7.1) 25.0 (5.5) 0.23

TRAIT (SD) 31.1 (9.1) 28.4 (8.0) 0.11

Headache frequency,

mean (SD)

7.6 (5.3) N/A N/A

Years with migraine,

mean (SD)

16.7 (10.3) N/A N/A

Aura/no aura 24/34 N/A N/A

F: female; M: male; BDI-II: Beck Depression Inventory (II); STATE: State

anxiety inventory; TRAIT: Trait anxiety inventory; Headache frequency:

days with headache per month.
aAlthough there are significant group differences in BDI raw scores, the

average BDI scores for healthy controls and migraine patients are con-

sistent with the absence of depression.
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Table 4. Functional connectivity patterns of six regions (A–F) with important left and right hemisphere areas that contribute to the

classification accuracy of distinguishing between individual migraine patients and healthy controls.

R amygdala
X Y Z # voxels Region Area

Left

�17 29 39 10 Frontal Medial frontal

�36 52 6 17 Frontal Middle frontal

0 �84 12 120 Occipital Cuneus

�35 �68 5 181 Occipital Middle occipital

0 �4 �3 6 Subcortical Hypothalamus

�26 �24 22 640 Subcortical Insula

�20 �34 3 11 Subcortical Thalamus pulvinar

�19 �17 9 21 Subcortical Thalamus VPLN

�25 �42 �21 103 Cerebellum Anterior

�23 �62 �44 116 Cerebellum Posterior

Right

8 �6 57 38 Frontal Medial frontal

36 6 52 12 Frontal Middle frontal

20 10 53 10 Frontal Superior frontal

62 �23 8 8 Temporal Superior temporal

18 �71 48 14 Parietal Anterior precuneus

39 �56 44 43 Parietal Inferior parietal lobule

14 �99 �5 7 Occipital Lingual

10 2 11 82 Subcortical Caudate body

7 20 33 40 Subcortical Middle cingulate

25 27 5 9 Subcortical Claustrum

33 �16 �17 93 Subcortical Hippocampus

34 24 15 25 Subcortical Insula

19 �30 �17 15 Cerebellum Anterior

11 �78 �24 15 Cerebellum Posterior

1 �22 1 17 Brainstem Midbrain

L amygdala

X Y Z # voxels Region Area

Left

�32 41 30 14 Frontal Middle frontal

�21 52 28 22 Frontal Superior frontal

0 �36 69 7 Frontal Paracentral lobule

�32 �58 46 21 Parietal Inferior Parietal lobule

�20 �64 34 17 Parietal Anterior precuneus

�15 �54 65 7 Parietal Postcentral

�35 �39 34 21 Parietal Supramarginal

�33 �76 6 22 Occipital Middle occipital

�19 8 23 388 Subcortical Caudate body

�27 �37 16 7 Subcortical Caudate tail

�39 13 14 15 Subcortical Insula

�27 �15 �35 23 Subcortical Uncus

�23 �69 �13 12 Cerebellum Posterior

(continued)
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Table 4. Continued.

Right

4 30 42 54 Frontal Medial frontal

23 1 45 252 Frontal Middle frontal

27 46 21 27 Frontal Superior frontal

3 �33 49 64 Frontal Paracentral lobule

57 �40 �19 21 Temporal Inferior temporal

32 12 �23 17 Temporal Superior temporal

19 �16 �12 244 Temporal Parahippocampal

15 �63 31 13 Parietal Anterior precuneus

43 �42 48 11 Parietal Inferior parietal lobule

17 24 24 17 Subcortical Anterior cingulate

28 �20 26 7 Subcortical Insula

49 �50 �29 7 Cerebellum Posterior

R posterior insula

X Y Z # voxels Region Area

Left

�33 27 �3 12 Frontal Inferior frontal

�10 60 7 13 Frontal Medial frontal

�22 2 43 41 Frontal Middle frontal

�35 25 35 20 Frontal Precentral

�5 �49 59 42 Parietal Anterior precuneus

�28 �70 �11 287 Occipital Lingual

�21 �6 �22 35 Subcortical Amygdala

�15 45 �7 20 Subcortical Anterior cingulate

�18 �40 43 12 Subcortical Middle cingulate

�35 14 10 9 Subcortical Insula

Right

28 7 43 44 Frontal Middle frontal

7 �30 50 12 Frontal Paracentral lobule

59 �5 7 54 Temporal Superior temporal

27 �36 �14 95 Temporal Parahippocampal

26 �33 60 25 Parietal Postcentral

13 �93 8 12 Occipital Cuneus

21 �72 �10 48 Occipital Lingual

31 �2 �23 19 Subcortical Amygdala

13 28 25 170 Subcortical Anterior cingulate

16 �7 45 33 Subcortical Middle cingulate

16 �47 16 406 Subcortical Posterior cingulate

18 �19 7 9 Subcortical Thalamus VPLN

25 �8 �41 9 Subcortical Uncus

8 �54 �20 19 Cerebellum Anterior

17 �75 �33 67 Cerebellum Posterior

(continued)
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Table 4. Continued.

R middle cingulate

X Y Z # voxels Region Area

Left

�35 19 �11 39 Frontal Inferior frontal

�9 46 16 79 Frontal Medial frontal

�37 19 26 44 Frontal Middle frontal

�44 �9 �24 18 Temporal Anterior fusiform

�30 �53 �1 28 Temporal Parahippocampal

�45 �36 45 35 Parietal Inferior parietal lobule

�20 �31 61 17 Parietal Postcentral

�32 �54 57 7 Parietal Superior parietal lobule

�5 �68 3 600 Occipital Lingual

�12 �41 16 11 Subcortical Posterior cingulate

�29 �29 �5 9 Subcortical Hippocampus

�40 �19 �6 32 Subcortical Insula

�16 �6 �24 16 Subcortical Uncus

right

5 �22 61 16 Frontal Medial frontal

49 11 38 7 Frontal Middle frontal

27 55 7 23 Frontal Superior frontal

3 �41 62 25 Frontal Paracentral lobule

50 12 0 45 Temporal Superior temporal

11 �51 56 13 Parietal Anterior precuneus

41 �45 54 7 Parietal Inferior parietal lobule

20 �90 �5 13 Occipital Lingual

11 13 20 515 Subcortical Caudate body

22 9 34 16 Subcortical Middle cingulate

33 �18 �7 15 Subcortical Thalamus LN

7 �10 �32 9 Brainstem Pons

R middle temporal

X Y Z # voxels Region Area

Left

�7 41 39 24 Frontal Medial frontal

�41 �69 30 14 Temporal Middle temporal

�40 �55 12 22 Temporal Superior temporal

�28 �30 49 133 Parietal Postcentral

�5 �68 9 104 Occipital Cuneus

�9 41 2 7 Subcortical Anterior cingulate

�25 �59 11 14 Subcortical Posterior cingulate

�38 �31 26 36 Subcortical Insula

�14 �85 �21 33 Cerebellum Posterior

Right

44 24 �4 26 Frontal Inferior frontal

15 38 33 117 Frontal Medial frontal

33 �2 41 78 Frontal Middle frontal

�41 �69 30 14 Temporal Middle temporal

33 5 �16 37 Temporal Superior temporal

(continued)
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migraine burden indicated that migraine patients with
longer disease durations were more accurately classi-
fied (threshold >14 years; n¼ 30; classification accur-
acy¼ 96.7% and threshold> 15 years; n¼ 29;
classification accuracy¼ 96.5%) than patients with
shorter disease durations (threshold� 14 years;

n¼ 28; classification accuracy¼ 82.1%. p¼ 0.035 and
threshold� 15 years; n¼ 29; classification accur-
acy¼ 82.7%. p¼ 0.042). Table 2 shows the classifica-
tion accuracies of all investigated thresholds and
Figure 3 illustrates the classifier accuracy for all
migraine years thresholds.

Table 4. Continued.

12 �57 50 36 Parietal Anterior precuneus

13 �53 67 7 Parietal Postcentral

21 �85 18 38 Occipital Cuneus

3 7 10 108 Subcortical Caudate body

34 �19 �9 40 Subcortical Caudate tail

22 47 1 68 Subcortical Anterior cingulate

11 �54 10 10 Subcortical Posterior cingulate

24 24 �1 16 Subcortical Claustrum

9 �14 14 6 Subcortical Thalamus AN

52 �47 �24 21 Cerebellum Posterior

�2 �28 �5 9 Brainstem Midbrain

l VMPFC

X Y Z # voxels Region Area

Left

�32 41 19 66 Frontal Middle frontal

�8 44 40 13 Frontal Superior frontal

�21 �21 53 36 Frontal Precentral

�25 �23 �28 27 Temporal Parahippocampal

�21 v64 36 41 Parietal Anterior precuneus

�22 �86 0 35 Occipital Lingual

�26 �59 �5 101 Occipital Posterior fusiform

�17 24 �10 30 Subcortical Caudate head

�22 7 49 60 Subcortical Middle cingulate

�20 3 10 12 Subcortical Thalamus LN

0 �55 �3 31 Cerebellum Anterior

�18 �41 �34 24 Cerebellum Posterior

Right

10 �22 46 15 Frontal Medial frontal

16 58 22 14 Frontal Superior frontal

7 18 �19 7 Frontal Rectal

51 �20 �23 43 Temporal Anterior fusiform

33 �8 �36 24 Temporal Inferior temporal

49 0 �28 25 Temporal Middle temporal

8 �85 21 14 Occipital Cuneus

16 �50 0 19 Occipital Lingual

24 �72 21 114 Occipital Posterior precuneus

29 2 �18 14 Subcortical Amygdala

5 �3 21 43 Subcortical Caudate body

33 �12 8 15 Subcortical Claustrum

23 �65 �33 193 Cerebellum Posterior

#voxels: number of neighboring voxels in a cluster; LN: lenticular nucleus; VPLN: ventral posterolateral nucleus; AN: anterior nucleus.

X,Y,Z coordinates are labeled in Montreal Neurological Institute (MNI) space.
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Discussion

This study investigated the utility of rs-fMRI data to
distinguish individual migraine patients from healthy
control individuals. Results indicated that rs-fc patterns
of pain-processing regions provided good discrimina-
tive power for classifying between migraine patients
and healthy controls. In addition, this study also
demonstrated that migraine patients with longer disease
durations were more accurately classified compared to
migraine patients with shorter disease durations.

Out of the 33 predefined ROIs, which are known
pain-processing areas that mediate cognitive, affective,
sensory-discriminative and modulatory components of
pain, whole-brain voxel-by-voxel connectivity of six
regions (bilateral amygdala, right middle temporal, pos-
terior insula, middle cingulate, and left ventromedial pre-
frontal brain regions) had the most discriminative power
and were found to significantly contribute to the accur-
acy of discriminating between migraineurs and healthy
controls with an overall accuracy of 81.0% and a best
accuracy of 86.1%. Interestingly, four out of the six
seeded ROIs were lateralized to the right hemisphere
(right amygdala, middle temporal, posterior insula and
middle cingulate) and the recombinant brain clusters
that contributed to each of these ROIs also showed a
tendency to involve more right compared to left hemi-
spheric regions. This is in line with data that suggest a
right hemispheric dominance in pain processing (28).

Frontal and limbic regions

The involvement of the bilateral amygdala, insula,
ventromedial prefrontal cortex and middle cingulate

regions is intriguing, as these regions are part of the
broader limbic network and are involved in the sen-
sory-discriminative and emotional components of the
pain experience (37) including the processing of
unpleasant emotions, pain expectation and anxiety
toward pain (38–41). Increased middle cingulate and
ventromedial prefrontal cortex activation has been
demonstrated in healthy controls using positron emis-
sion tomography when participants were uncertain
whether they would receive a painful stimulus (42)
and interictal migraineurs showed stronger middle cin-
gulate activation relative to healthy controls during
heat pain processing (10). Stankewitz and May found
increased limbic activity in ictal compared to interictal
migraineurs during the processing of olfactory stimuli
(2). Hadjikhani et al. showed increased functional con-
nectivity between the amygdala and other limbic areas
in migraineurs with and without aura relative to
healthy controls as well as compared to patients with
other chronic pain conditions (5). Maleki et al. showed
volume loss and lower functional activation in the
insula in high-frequency migraineurs compared with
low-frequency migraineurs, potentially indicating that
migraine frequency drives structural and functional
brain changes (43).

Right middle temporal cortex

Structural and functional changes in the temporal
lobe have been well described in migraine (36,44,45)
and other headache disorders (46,47). For example,
Naegel and colleagues noted gray matter decrease
in the right middle temporal lobe in cluster head-
ache patients compared to healthy controls (46),
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and Schwedt et al. found altered cortical thickness cor-
relations of the right middle temporal lobe with contra-
lateral frontal regions in migraine patients relative to
healthy controls (48). Although the temporal lobe has
been hypothesized to be involved in central sensitiza-
tion in migraine (1,36), the precise role of the middle
temporal lobe is still debated.

Finally, results showed that migraineurs with longer
disease durations were more accurately classified than
migraineurs with shorter disease durations, potentially
indicating that recurrent migraines over many years
might progressively alter the functional connections of
pain-processing regions. Henceforth, one might
hypothesize that the functional connections of regions
that contributed to the classification accuracy identify
brain areas that ‘‘re-wire’’ as a result of years lived with
recurrent migraines and signify functional connections
that track the course or burden of the disease.

There are several limitations: 25 migraine patients
reported that they developed a migraine �48 hours
after the scan. Although all patients reported to be
pain free at the time of testing and denied migraine
symptoms prior to undergoing imaging, it is possible
that some patients might have been in the premonitory
phase of migraine. Future studies using larger sample
sizes will be needed to determine classification accuracy
among those who are within 48 hours of their next
migraine versus those who are further out. We esti-
mated brain connectivity for several a priori defined
brain regions (33 ROIs) with every voxel in the brain.
These regions were selected based on functional ima-
ging findings that have consistently shown these pain-
processing areas to undergo functional change in
migraine. As we limited our model to interrogating
the connectivity of only these 33 ROIs with the rest of
the brain, we might have missed other important
regions that could have further improved our classifica-
tion accuracy. Additionally, because of the sample-size
limitations we were not able to evaluate classification
accuracy for subgroups of migraineurs, i.e. between

migraineurs with and without aura or migraineurs
with high versus low migraine frequency. Future studies
will be necessary to explore the utility of rs-fMRI for
the classification of migraine subgroups.

Summary

The present study assessed the utility of a classification
algorithm for discriminating between migraineurs and
healthy controls based on rs-fMRI data only. Results
indicated that fc with the bilateral amygdala, the right
middle temporal, right posterior insula and right
middle cingulate as well as the left ventromedial pre-
frontal region could accurately distinguish migraine
patients from healthy controls with an overall accuracy
of 81.0%. These findings suggest that the functional
connections of pain-processing regions are altered in
migraineurs, particularly for regions involved with pro-
cessing the affective components of pain. Migraineurs
with longer disease durations were more accurately
classified than those with shorter disease durations,
suggesting that disease burden might change the func-
tional connections in the brain. The current findings
suggest that rs-fMRI has good utility for classifying
individual migraine patients and could potentially indi-
cate the applicability of rs-fMRI for identifying disease
biomarkers. The aberrant patterns of functional con-
nections that distinguish migraine patients from healthy
controls could represent core changes associated with
the migraine disease process that are further reformed
by recurrent pain. In the future, longitudinal assess-
ments of these functional connections might help to
elucidate the course of the disease and could provide
insight into identifying individual migraine patients
who are likely to recover as well as those individuals
who will develop more severe forms of migraine.
Additional studies are needed to optimize the classifi-
cation accuracy (e.g. combining structural and func-
tional imaging data) and to validate the accuracy of
the classifier described herein.

Clinical implications

1. Brain resting-state functional connectivity models allow for the accurate classification of eight out of 10
migraine patients from healthy controls.

2. Migraine patients with longer disease durations were more accurately defined by functional neuroimaging
than migraineurs with shorter disease durations, thus indicating that disease burden might drive functional
reorganization.
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