
rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Applied Mathematics, Computational

Mathematics

Keywords:

quadrature, surface integral, radial

basis function, RBFs, RBF-FD

Author for correspondence:

J. A. Reeger

e-mail: jonah.reeger@afit.edu

Numerical quadrature over
smooth, closed surfaces

J. A. Reeger1, B. Fornberg2 and M. L.

Watts3

1Captain, United States Air Force. Address for

correspondence: Air Force Institute of Technology,

Department of Mathematics and Statistics, 2950

Hobson Way, Wright-Patterson Air Force Base, OH

45433-7765 USA.
2Address for correspondence: University of Colorado,

Department of Applied Mathematics, 526 UCB,

Boulder, CO 80309 USA.
3First Lieutenant, United States Air Force.

The numerical approximation of definite integrals,

or quadrature, often involves the construction of

an interpolant of the integrand and its subsequent

integration. In the case of one dimension it is natural

to rely on polynomial interpolants. However, their

extension to two or more dimensions can be costly

and unstable. An efficient method for computing

surface integrals on the sphere is detailed in the

literature (Reeger and Fornberg, Studies in Applied

Mathematics, 2016). The method uses local radial basis

function (RBF) interpolation to reduce computational

complexity when generating quadrature weights for

any given node set. This article generalizes this

method to arbitrary smooth closed surfaces.

1 Introduction

Accurate approximation of partial differential equations

(PDEs) and integrals on a surface often requires the

construction of node sets featuring spatially varying

densities in order to capture rapidly changing features (in

the integrand or in the surface curvature). Applications

where both spherical and non-spherical surfaces arise

include geophysics [1] and mathematical biology (e.g. to

model bio-molecules [2] or processes on cell membranes).

For Radial Basis Function (RBF) based solution methods

in these areas, see for ex. [3–8]. This paper considers

an RBF-based method for numerical quadrature over

smooth, closed surfaces. This method is well suited for

obtaining integrated quantities, such as total energy,

average temperature, integrating the function

c© The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:jonah.reeger@afit.edu

2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

f(x, y, z) = 1 over the surface to obtain surface area, etc.

Earlier literature on computing surface integrals focused largely on the sphere and were based

on very specific node sets, using tabulated weights for select values of N (the total number of

nodes) [9–11]. More recent literature has borrowed concepts from radial-basis-function-generated

finite differences (RBF-FD) applied to spatially variable node sets for spherical quadrature [12].

This RBF-FD motivated technique for spherical quadrature is here generalized to approximating

integrals over arbitrary smooth, closed surfaces.

Various integration methods on the sphere appear in, e.g., [11,13–16]. Using interpolation

with spherical harmonics, Womersley and Sloan [11] found that certain near-uniform node sets

performed much worse than others, and designed special maximal determinant (MD) sets to

overcome the issue. The reason for the irregularites (large accuracy differences between similar

looking node sets) was subsequently found and resolved [16]. Later quadrature work for the

sphere [12] has focused on (i) allowing for local node refinement, and (ii) lowering the cost (from

O(N3) to O(N logN)) for calculating quadrature weights for N nodes.

Some of the methods for numerically computing surface integrals on the sphere have been

adapted to other surfaces [17,18]. In [17], two methods are presented for numerical integration

on a sphere, which are then adapted to integration over other smooth surfaces homeomorphic to

the sphere. Similarly, [18] develops a quadrature method that extends to manifolds that are either

homogeneous (including S
2) or diffeomorphic to homogeneous spaces.

Additional types of quadrature for surfaces in R
3 can be found in [10,19,20]. For example, [19]

discusses numerical quadrature for piecewise smooth surfaces using polynomial interpolants,

while [10] couples Thin-Plate Spline interpolation with Green’s integral formula [21] for a

meshless cubature in R
3. Quadrature involving a Galerkin discretization of a boundary integral

equation with a weakly singular kernel is adapted from electromagnetics to a general framework

in [20]. In cases when the nodes (where data is available) are not given by an application, but

the quadrature method can choose these freely, some additional opportunities arise. Gaussian

quadrature for the sphere is described in [22] and for level set surfaces in (hyper–) rectangles

in [23]. This latter reference also cites and summarizes several methods based on approximations

with smoothed delta functions (generally of low orders of accuracy) .

A common theme throughout the development of each of these methods is that they are

fixed to particular node sets featuring near-uniform density in order to achieve stability. Some

of these can achieve high orders of accuracy, even spectral, on the near-uniform data sets, but

at the expense of a lengthy, often intractable, process for constructing the node sets themselves.

On the other hand, the method introduced in this paper can be applied to node sets that are

highly nonuniform. For smooth integrands, this new method achieves a convergence rate of

O(N−3.5), which corresponds to O(h7) on nearly uniformly spaced node sets where all points

are roughly h=O(1/
√
N) apart. This can be contrasted with the one-dimensional case of nodes

spaced h apart, where the classical trapezoidal and Simpson’s rules only achieve O(h2) and

O(h4) convergence rates, respectively. While no results are displayed in this paper for highly

nonuniform node sets, the method in [12] (which this method extends from) performs comparably

well on even pseudorandom node sets and also on node sets that are strongly concentrated

around critical features of the integrand. The steps in the method described here which differ

from the one in [12] are impacted little, if at all, by the configuration of nodes.

This article begins with a summary of the RBF-FD motivated method for quadrature over a

general smooth, closed surface. This is followed by a discussion of the computational efficiency

of the method and demonstrations of the accuracy on several combinations of surfaces and test

integrands. Implementations of this method are available at Matlab Central’s File Exchange [24]

or on Github for Python or Julia implementations (see, [25] or [26], respectively). All of the results

presented herein were generated using the Matlab R© [27] implementation.

3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

2 A Description of the Method

We wish to approximate the surface integral of the scalar function f(x), x ∈R
3, over a smooth,

closed surface S ⊂R
3 via

IS(f) :=
¨

S

f(x)dS ≈
N
∑

i=1

wif(xi)

where the node set SN = {xi}Ni=1 ⊂ S is a set of (scattered) data sites located on the surface. Let

the surface S be given in either of several forms: (i) as a level surface h(x) = 0, (ii) as an explicit

parameterization x(u, v) for parameters u and v, or (iii) only requiring the surface to be smooth,

and include the node set SN . In each case, the method introduced in this paper requires that the

set SN and its corresponding triangulation T = {tk}Kk=1 are given (or have been calculated, for

example with a Delaunay triangulation routine). The set T itself approximates the surface very

crudely, but can be related to a set T = {τk}Kk=1 of curved triangles on the surface such that T fully

covers the surface and no two elements of T intersect except at, possibly, their edges. The surface

integral is then the sum over the curved triangles

IS(f) =
K
∑

k=1

¨

τk

f(x)dS (2.1)

This method can be summarized in five steps similar to those presented in [12]:

(i) For each of the curved triangles in T , find a projection point.

(ii) From the projection point, project a neighborhood of the three vertices of the curved

triangle (points in SN) on S into the plane containing the corresponding flat triangle

in T . This neighborhood will include n− 3 neighboring nodes.

(iii) Find quadrature weights over the local projected node set for numerical evaluation of the

definite integral over the projected central flat planar triangle.

(iv) Convert quadrature weights in each plane to corresponding weights for the surface.

(v) Combine the weights for the individual curved triangles to obtain the full weight set for

the surface.

(a) Step 1: Find a Projection Point

In the method presented in [12], for each spherical triangle in T a neighborhood of the three

vertices of the triangle on the surface of the sphere is projected radially from the sphere center

onto the plane tangent to the surface of the sphere at the midpoint of the spherical triangle. This

projection is known as the gnomonic projection and it is a well known map projection technique,

used already by the Greek Thales of Miletus in the seventh and sixth centuries B.C. [28]. It projects

any geodesic (great-circle arc) as a straight line into a plane tangent to the sphere. In the case of

the sphere each neighborhood can be projected from a common projection point–the center of the

sphere.

For an arbitrary smooth, closed surface we can no longer use a common projection point for

all of the curved triangles. Section (b) presents a formula for the projection that indicates the

possibility of a singularity or numerical cancellation if the projection point falls in or near the same

plane as the corresponding flat triangle being projected. Further, projection points for adjacent

curved triangles must be selected so that the portion of the surface projected onto a flat triangle

is accounted for in the integral over 1) only the flat triangle corresponding to the current curved

triangle (i.e. tk when considering τk) and 2) at least one flat triangle in (2.1). For these reasons a

different approach is taken.

i Defining the “Cutting" Plane

Locating the projection point for each curved triangle in T begins by defining a unique

“cutting" plane for each edge in the triangulation T so that both of the two triangles containing

4

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

Figure 1: An illustration of a central flat triangle and its three immediate neighbors, all

with the normal vectors shown as solid arrows. The three dashed vectors are displayed

as originating from the projection point associated with the central flat triangle, and each

goes through one side of it. These dashed vectors are defined by nAkBk
= 1

2 (nAkBkCk
+

sign(nT
AkBkCk

nAkBkEk
)nAkBkEk

), nBkCk
= 1

2 (nAkBkCk
+ sign(nT

AkBkCk
nBkCkFk

)nBkCkFk
)

and nCkAk
= 1

2 (nAkBkCk
+ sign(nT

AkBkCk
nAkCkDk

)nAkCkDk
) .

a given edge will define the same plane. Throughout the remainder of this paper, the subscript k

will be used to indicate that the steps are carried out for each triangle separately. When further

subscripting is necessary–for instance, to indicate entries of a vector, matrix, or a set–the necessary

indexing will follow after a comma.

Consider the flat triangle tk = tAkBkCk
in figure 1. The cutting plane along the edge AkBk

is defined to contain the edge and to be parallel to the average of the normals nAkBkCk
and

nAkBkEk
of tAkBkCk

and tAkBkEk
, respectively, pointing in the same general direction (that is,

the angle between them is less than π
2). This average vector is given by

nAkBk
=

1

2

(

nAkBkCk
+ sign

(

n
T
AkBkCk

nAkBkEk

)

nAkBkEk

)

.

The vectors nBkCk
and nCkAk

can be defined similarly as in figure 1.

ii Locating a Projection Point

Once the cutting planes have been defined, for each flat triangle in T the point, xOk
, of

intersection of the three cutting planes is found. The three cutting planes for each of the flat

triangles will, in general, intersect at a single point in three dimensional space (with a special

case of a point at infinity when nAkBk
, nBkCk

, and nCkAk
are all three parallel and the projection

into the plane becomes the orthogonal projection). This point can be written as, for example,

xOk
= xAk

+
nOkBkCk

· (xBk
− xAk

)

nOkBkCk
· vOkAk

vOkAk
.

where nOkAkBk
=nAkBk

× (xBk
− xAk

), nOkCkAk
=nCkAk

× (xAk
− xCk

), and

vOkAk
= nOkAkBk

× nOkCkAk
,

with × the vector cross product. An illustration of this point of intersection can be found in figure

1.

5

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

(b) Step 2: Project Locally to the Plane Containing the Flat Triangle

Once the point xOk
is available, points x in a neighborhood of the flat triangle tAkBkCk

(and

on the surface S) must be projected into the plane containing tAkBkCk
for the interpolation

procedure described in section (c). The projection occurs by determining the intersection of this

plane and the line through xOk
and in the direction of (x− xOk

). Denote the region of S that

projects onto tAkBkCk
(including its boundary) to be τAkBkCk

= τk . The projection neighborhood

containing 12 neighboring vertices is illustrated in the left frame of figure 2.

To reduce the dimension of the interpolation problem a 2-dimensional coordinate system in

the plane containing tAkBkCk
is defined by first translating the original coordinate system so

that xOk
is at the origin. This translated coordinate system is then rotated so that nABC aligns

with the vertical axis. This rotation can be realized by multiplication by the matrix (as long as
√

n2
xk

+ n2
yk

6= 0 in which case Rk = I)

Rk =

nxk
nzk

√

n2
xk

+n2
yk

√

n2
xk

+n2
yk

+n2
zk

nyk
nzk

√

n2
xk

+n2
yk

√

n2
xk

+n2
yk

+n2
zk

−
√

n2
xk

+n2
yk

√

n2
xk

+n2
yk

+n2
zk

−nyk
√

n2
xk

+n2
yk

nxk
√

n2
xk

+n2
yk

0

nxk
√

n2
xk

+n2
yk

+n2
zk

nyk
√

n2
xk

+n2
yk

+n2
zk

nzk
√

n2
xk

+n2
yk

+n2
zk

,

where nxk , nyk and nzk are the three components of nAkBkCk
.

Let Nn
k =

{

xk,j

}n

j=1
be the set containing the n nearest points in SN to the flat triangle

tAkBkCk
. After projecting, shifting and rotating the point in Nn

k , their representations in the

two-dimensional coordinate system may be centered at a point far from the origin in the two-

dimensional space. This can create numerical issues when inverting the RBF interpolation matrix

because of the size of the polynomial terms. To remedy this situation one final translation is

performed and the coordinates are define as

χk =

[

1 0 0

0 1 0

]

Rk
1

nAkBkCk
· (x− xOk

)
(nAkBkCk

× ((x− xOk
)× (xMk

− xOk
))) (2.2)

to place the projection of the average of the triangle vertices, xMk
= 1/3(xAk

+ xBk
+ xCk

), at

the origin. The two-dimensional coordinates of the points in a neighborhood of the central curved

triangle in the left frame of figure 2 are shown in the right frame of the same figure.

(c) Step 3: Find quadrature weights over the local projected node set

For the simplicity of discussion consider approximately evaluating the double integral of a

function g(χk) over a planar triangle tAkBkCk
. Denote this integral by

ItAkBkCk
(g) :=

¨

tAkBkCk

g(χk)dA (2.3)

It can be evaluated approximately by integrating the RBF interpolant of g(χk) with basis

functions φ
(∥

∥χk − χk,j

∥

∥

)

centered at the projections of the n points in Nn
k , which are all in a

neighborhood of tAkBkCk
. RBF interpolation has been used successfully in the approximation of

differential operators over subsets of scattered data through the concept of RBF-FD [3,6,29,30].

Following common RBF/RBF-FD procedures, let {πl(χk)}Ml=1, with M =
(m+1)(m+2)

2 be the

set of all of the bivariate polynomial terms up to degree m. The interpolant is constructed as

s(χk) :=
n
∑

j=1

cRBF
k,j φ

(∥

∥χk − χk,j

∥

∥

)

+
M
∑

l=1

cp
k,l

πl(χk)

where cRBF
k,1 , . . . , cRBF

k,n , cp
k,1, . . . , c

p
k,M

∈R are chosen to satisfy the interpolation conditions

s(χk,j) = g(χk,j), j =1, 2, . . . , n, along with constraints
∑n

j=1 c
RBF
k,j πl(χk,j) = 0, for l=

1, 2, . . . ,M . By integrating the interpolant the approximation of the integral of g is reduced

6

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 2: An illustration of the projection of a triangle and its neighbors. Left: Here τAkBkCk
is the

central triangle and n= 12 of its nearest neighbors (including the 3 vertices) are projected from

xOk
into the plane containing the vertices of τAkBkCk

. The dashed line segments originating

at xOk
illustrate the projection of each of the nearest neighbors into the plane. Right: The 2D

coordinates of the nearest neighbors from the left frame, which are computed from (2.2).

to ItAkBkCk
(g)≈∑n

j=1 w
RBF
k,j g(χk,j). A simple derivation can be carried out to show that the

weights can be found by solving the linear system ÃkWk = Ĩk with

Ãk =

[

AT
k Pk

PT
k 0

]

, Ĩk =

[

IRBF
k

Ip
k

]

, and Wk =

wRBF
k,1

...

wRBF
k,n

wp
k,1
...

wp
k,M

,

where Ak,ij = φ
(∥

∥χk,i − χk,j

∥

∥

)

, Pk,il = πl(χk,i), IRBF
k,j = ItAkBkCk

(

φ
(∥

∥χk − χk,j

∥

∥

))

, and

Ip
k,l

= ItAkBkCk
(πl(χk)), for i, j =1, 2, . . . , n and l= 1, 2, . . . ,M [3, Section 5.1.4]. When a node set

comes from an application such as solving a system of PDEs, chances for singularities to occur are

for all practical purposes negligible (cf. [31], Theorem 8.21 for precise non-singularity conditions).

To guarantee nonsingularity, a node set of high quality does not seem to be needed. However,

some care would need to be taken if the nodes form patterns of extreme regularity, such as for

satellite obtained data that might be very densely sampled along a just few near-straight paths.

The integrals Ip
k,l

= ItAkBkCk
(πl(χk)), l=1, 2, . . . ,M , can be evaluated exactly via, for

instance, Green’s theorem or through the conversion of the integral to barycentric coordinates.

Exact evalutations of IRBF
k,j = ItAkBkCk

(

φ
(∥

∥χk − χk,j

∥

∥

))

, j = 1, 2, . . . , n, are described in great

detail in [12], where the integration over an arbitrary planar triangle is replaced by a combination

of integrals over six right triangles (all available analytically). The results presented at the end

of this article use the basis function φ(r) = r7, with r=
∥

∥χk −χk,j

∥

∥

2
, where the integral over a

right triangle, t, with χk,j a vertex located at one of the acute angles has closed form

¨

t

r7dA=
α
(

105α8 sinh−1
(

β
α

)

+ β
√

α2 + β2
(

279α6 + 326α4β2 + 200α2β4 + 48β6
))

3456
.

In the preceding expression α is the distance (the base) between χk,j and the vertex at the

right angle and β is the length (the height) of the opposite side. Such expressions have also

been found for many of the most popular choices of RBFs (e.g., φ(r) = r2k+1 or φ(r) = r2kln r,

7

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

k= 1, 2, 3, · · · , or for Gaussian, multiquadric, or inverse multiquadric basis functions). For a

theoretical discussion on the impact of the choice of φ on the convergence of the interpolant

(which, will have an effect on the performance of this method for computing quadrature weights)

see, for example, [32] or [31]. Default choices of the number of nearest neighbors and maximum

polynomial order are n= 80 and m=7, respectively. These choices were made to balance

computation time with accuracy and for comparison to the method in [12], which uses the same

parameters. An illustration of this balance appears in figure 4.

(d) Step 4: Convert Quadrature Weights in the Plane to Weights for the Surface Integral

The projections developed in the previous sections amount to changes of variables in the

integrals in (2.1) that relate the surface integral to an integral over an area in a plane. Denote

the surface normal to S to be nS . This could be given by

nS(x) :=
∇h(x)

‖∇h(x)‖2
or nS(x) :=

∂
∂ux(u, v)× ∂

∂vx(u, v)
∥

∥

∥

∂
∂u

x(u, v)× ∂
∂v

x(u, v)
∥

∥

∥

2

depending on whether S is described implicitly as a level surface or explicitly through a

parameterization, respectively. For simplicity let nPk
be the unit length vector in the direction

of nAkBkCk
. Then the surface integral over an individual curved “surface" triangle τk is

¨

τAkBkCk

f(x)dS =

¨

tAkBkCk

f(x(χk))
nPk

· (x(χk)− xOk
)

nS(x(χk)) · (x(χk)− xOk
)

(

nAkBkCk
· (x(χk)− xOk

)

nAkBkCk
· (xAk

− xOk
)

)2

dA.

(2.4)

To understand the last two terms in (2.4) consider a local parameterization, x(η, ξ), of the

points on S in a neighborhood of tAkBkCk
, and consider the points x(η, ξ), x(η +∆η, ξ) and

x(η, ξ +∆ξ) . Then
∥

∥

∥

∥

(

x(η +∆η, ξ)− x(η, ξ)

∆η

)

×
(

x(η, ξ +∆ξ)− x(η, ξ)

∆ξ

)

∆η∆ξ

∥

∥

∥

∥

2

is the area of a parallelogram in three dimensions with these points as three of the vertices. Taking

the limit of this area as ∆η and ∆ξ approach zero, the infinitesimal surface area element on S is

given by

dS =

∥

∥

∥

∥

∂

∂η
x(η, ξ)× ∂

∂ξ
x(η, ξ)

∥

∥

∥

∥

2

dηdξ,

Further, consider the two-dimensional coordinates after projection given by (2.2) of each of the

vertices of the parallelogram. The infinitesimal area element in two dimensions with these points

as vertices is similarly

dA=

∥

∥

∥

∥

∂

∂η
χk(x(η, ξ))×

∂

∂ξ
χk(x(η, ξ))

∥

∥

∥

∥

2

dηdξ

=
|nAkBkCk

· (xAk
− xOk

)|2

|nAkBkCk
· (x(η, ξ)− xOk

)|3
∣

∣

∣

∣

(

∂

∂η
x(η, ξ)× ∂

∂ξ
x(η, ξ)

)

· (x(η, ξ)− xOk
)

∣

∣

∣

∣

‖nAkBkCk
‖2 ,

where the last line follows from (2.2). Noting that dS = dS
dAdA and ∂

∂ηx(η, ξ)× ∂
∂ξx(η, ξ) is a

vector pointing in the same direction (or opposite) as nS , the last two terms in (2.4) follow.

In (2.4) the value of nS can be evaluated in closed form if such expressions describing the

surface are available; however, at the start it was assumed that the surface may be given only as

the set of points SN on the surface and the triangulation T . In the case where the closed form is

not available the surface normal must be approximated (known from solving PDEs on surfaces

to be a particularly large source of errors). Notice that after the projection, shifts, and rotation in

8

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

section (b) a local “explicit" parameterization of each point x on the surface is available. That is,

each point is parameterized by xk(χk) where χk is a point in the two dimensional coordinate

system after projection.

For each of the points in Nn
k the parameterization is known exactly via xk,j = xk(χk,j).

Knowledge of the parameterization at these points allows each component to be approximated

through interpolation via

xk(χk)≈ sxk(χk) :=
n
∑

j=1

c
RBF
xk,j φ

(∥

∥χk − χk,j

∥

∥

)

+
M
∑

l=1

c
p
xk,l

πl(χk),

where sxk
:R2 7→R

3. Here the vectors c
RBF
xk,1 , . . . , cRBF

xk,n , cp
xk,1

, . . . , cp
xk,M

∈R
3 are chosen to

satisfy the interpolation conditions sxk(χk,j) = xk(χk,j), j = 1, 2, . . . , n, along with constraints
∑n

j=1 c
RBF
xk,j

πl(χk,j) = 0, for l= 1, 2, . . . ,M . These vectors of coefficients are determined by

solving ÂkCxk =X′
k with

Âk =

[

Ak Pk

PT
k 0

]

, X′
k =

xk(χk,1)
T

xk(χk,2)
T

...

xk(χk,n)
T

0M

=

x
T
k,1

x
T
k,2
...

x
T
k,n

0M

, and Cxk =

c
RBF
xk,1

T

...

c
RBF
xk,n

T

c
p
xk,1

T

...

c
RBF
xk,M

T

,

where Ak and Pk are as defined in section (c) and 0M is an M × 3 zero matrix. Since Ak is

symmetric, Âk in this section equals Ãk from section (c) allowing the vector Wk and the columns

of Cxk to be found efficiently with, for instance, the QR decomposition of Ãk in hand. Once the

approximation for the explicit parameterization is found an approximation to the normal vector

can be computed via the vector cross product between the first partial derivatives of sxk(χk)

(with respect to the entries of χk)).

Applying step 3 to the double integral (2.4) over a flat triangle tk ∈ T gives, for instance

¨

tAkBkCk

f(x(χk))
nPk

· (x(χk)− xOk
)

nS(x(χk)) · (x(χk)− xOk
)

(

nAkBkCk
· (x(χk)− xOk

)

nAkBkCk
· (xAk

− xOk
)

)2

dA

≈
n
∑

j=1

wRBF
k,j f(xk,j)

nPk
· (xk,j − xOk

)

nS(xk,j) · (xk,j − xOk
)

(

nAkBkCk
· (xk,j − xOk

)

nAkBkCk
· (xAk

− xOk
)

)2

. (2.5)

(e) Step 5: Combine the Weights Over the Entire Surface

Summing over all of the curved triangles in T leads to the approximation of the surface integral

over S

IS(f)≈
K
∑

k=1

n
∑

j=1

wRBF
k,j f(xk,j)

nPk
· (xk,j − xOk

)

nS(xk,j) · (xk,j − xOk
)

(

nAkBkCk
· (xk,j − xOk

)

nAkBkCk
· (xAk

− xOk
)

)2

. (2.6)

Let Ki, i= 1, 2, . . . , N , be the set of all pairs (k, j) such that χk,j 7→ xi. Then the surface integral

over S can be rewritten as

IS(f)≈
N
∑

i=1

∑

(k,j)∈Ki

wRBF
k,j

nPk
· (xk,j − xOk

)

nS(xk,j) · (xk,j − xOk
)

(

nAkBkCk
· (xk,j − xOk

)

nAkBkCk
· (xAk

− xOk
)

)2

 f(xi)

=

N
∑

i=1

wif(xi). (2.7)

9

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

3 Computational Cost

Just as with the method developed in [12], the method introduced in this article requires O(N)

time and O(N) memory to construct a set of quadrature weights, even on node sets numbering

in the millions. This is illustrated in figure 3. Neglecting the construction of the triangulation of

the surface of the sphere discussed in [12], the computation time for that method is provided for

comparison to the method introduced in this paper. A slight increase in computation time then

comes from the determination of the projection point xOk
in the case where the exact normal to

the surface is known. When the surface normals must be approximated, the cost is greater (but

still scales like O(N)) because of the additional systems of linear equations that must be solved.

For all choices of N , memory use is the same for each of the methods considered.

Since the method considers each curved triangle individually (as in [12]), the method is again

embarrassingly parallel. Further, if a GPU is available, the Matlab function pagefun allows all of

the linear systems to be solved at near peak GPU speeds.

The ability to parallelize this algorithm warrants that the cost in computation time be further

broken down when considering each curved triangle, in turn. The greatest cost when considering

each curved triangle is the solution of a linear system or linear systems of size O((n+m2)3). In

the Matlab implementation, the dense linear system appearing when the normal to the surface

is available are solved using the backslash (“\") command. When the normal to the surface must

be approximated, the increase in computation time is more significant, since there are three more

linear systems of equations that must be solved for each curved triangle. In this case, the Matlab

implementation uses the built in qr function (at a cost of O((n+m2)3) operations) to construct

the decomposition, and then solves each upper triangular linear system using Matlab’s linsolve

command (O((n+m2)2) operations). The other operations performed in the calculation of the

quadrature weights for an individual triangle effect the overall cost much less significantly. For

instance, evaluation of the integrals of the RBFs and of the polynomial terms in closed form

requires much less time than solving the systems of linear equations at approximately O(n) and

O(m3.5), respectively.

The cost of locating the n nearest neighbors to each triangle should also be mentioned, since

it could have a more significant effect on the overall computation time when the triangles are

not considered in parallel. The method discussed in [33] requires O(N n log N) operations in the

nearest neighbor search using the kd-tree algorithm; however, all computational tests for parallel

scalability have not shown this cost to impact the effectiveness of the parallelization.

4 Test Integrands and Results

The present method is demonstrated on a two parameter family of surfaces and on three test

integrands featuring varying degrees of regularity. The current default settings for the method

are n=80 (number of nearest neighbors) and m=7 (maximum order of bivariate polynomial

terms in interpolation). Figure 4 illustrates the effects of different choices of m and n on accuracy

and computational cost and suggests that the default parameter choices balance these competing

attributes. When using the approximate normal the computational cost is roughly double that

of when using the exact normal. Further, an order of magnitude is lost in accuracy when

approximating the surface normal, although the convergence rate is unaffected.

Consider the level surfaces defined by

h(x) = h(x, y, z) = (x2 + y2 + z2)2 − 2a2(x2 − y2 − z2) + a4 − b4 = 0, (4.1)

which can also be parameterized explicitly via

x(θ, φ) = ρ(φ)cos(φ)

y(θ, φ) = ρ(φ)sin(φ)sin(θ)

z(θ, φ) = ρ(φ)sin(φ)cos(θ)

10

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

Figure 3: Left: CPU time (in seconds) to compute quadrature weights for evaluting IS(f) where

f is a scalar function. Right: Required memory (in Bytes) required to compute the quadrature

weights. In both frames the method from [12] is only applicable to the sphere. The computations

in this figure were performed in Matlab on a laptop with 32 GB of DDR3 1500MHz memory and

an Intel Core i7-4900MQ processor featuring four cores at 2.80 GHz.

with θ ∈ [0, 2π), φ∈ [0, π], and ρ(φ) =
√

√

(b4 − a4) + a4cos2(2φ) + a2cos(2φ). This family is a

set of surfaces of revolution generated by rotating the Cassini Oval in the (x, y)-plane about the

x-axis. In either case, the surface depends on the two parameters a and b, and the demonstrations

here will consider a= λb for 0<λ< 1 (specifically, λ= 0, 0.8, 0.95). Notice that in the case of a=0

(λ= 0) the surface reduces to a sphere of radius b. In the case of a= b (λ= 1) the surface self

intersects, and the slice in the (x, y)-plane forms the Bernoulli lemniscate. Finally, if a> b (λ> 1)

is considered, two separate surfaces are generated. The parameter b in this work is chosen so that

the surface area is equal to 1. Since the area of this surface of revolution is not known explicitly, b

is chosen by finding the root of

R(b) = 1− 8

√
a2+b2
ˆ

0

√√
b4+4a2x2−a2−x2

ˆ

0
√

√

√

√

a2b4 − (b4 + 4a2x2)
3

2 + 4a2x2
√
b4 + 4a2x2

a2b4 − (b4 + 4a2x2)
3

2 + 4a2x4 + 4a4x2 + b4x2 + b4y2 + 4a2x2y2
dydx

with a= λb using Matlab’s fsolve command paired with its quad2d function to an absolute and

relative tolerance of O(10−15). Figure 5 illustrates the three test surfaces. Node sets in all cases

were generated using a modified version of “distmeshsurface", a Matlab code made available

at [34] and motivated in [35]. This code generates a set of N points (and triangulation) on the

surface with nearly uniform spacing between each point and its neighbors (in Euclidean distance

in R
3).

Along with the three different test surfaces, demonstrations are performed on three different

test integrands. First, recall that the surface S being considered is a surface of revolution about

the x-axis, and in the (x, y)-plane r(x) := y(x) =
√

−a2 − x2 +
√
b4 + 4a2x2, which comes from

11

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

Figure 4: Left: Contour plot of log base 10 of the error when approximating the surface integral of

(4.2) over the surface described implicitly by (4.1) when a= λb and b chosen that the surface area

equals 1 for various m and n. In this case, the approximate normal is used. Right: Contour plots

of computation time in seconds when computing the quadrature weights for various m and n.

The dashed parabola in both plots represent the boundary n=M below which the linear system

ÃkWk = Ĩk becomes singular. The vertical axes are the same in the two plots. These computations

were performed in Matlab on a workstation with 2 Intel Xeon E5-2697 v3 2.6GHz processors that

have 14 cores each (a total of 28 cores) and 256 GB of DDR4 2133MHz memory.

Figure 5: Examples of the surface S defined implicitly by (4.1) when a= λb and b chosen that

the surface area equals 1. On each surface ten contours are shown indicating the value of f2(x)

evaluated at the points on the surface.

solving h(x, y, 0) = 0. Therefore, if

f1(x) :=
1

3
x · ∇h(x)

‖∇h(x)‖2
(4.2)

12

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

Figure 6: Absolute error in the surface integral of f1. For each N the error presented here is the

maximum over 1000 random rotations of the node set about the x-axis. The label “from [12]"

indicates that the weights used were generated using the method from [12]. This curve was

included for comparison. The errors presented in the left frame are for the case where the exact

normal is available, the right considers when the normal is approximated.

(and 0< a≤ b), then the volume contained by the surface (recalling the divergence theorem) is

IS(f1) = 2

√
a2+b2
ˆ

0

πr(x)2dx=
π

6a

(

2a(b2 − 2a2)
√

a2 + b2 + 3b4sinh−1

(

2a
√
a2 + b2

b2

))

.

Figure 6 illustrates the error when computing the IS(f1) for various λ. In the case of λ= 0 two

curves are included. The first is the error when using the weights from the method presented in

this paper. The second, labeled “from [12]" uses the weights as computed in that paper. It is clear

that when considering an integrand that is C∞(S) (with no sharp gradients), convergence rates

of O(N−3.5) or better can be achieved when the nodes in SN are nearly uniformly spaced on S.

This is true in both of the cases where the exact normal of the surface is known for use in (2.4) and

where the normal needs to be approximated.

The only difference between the methods that produced the errors in the left and right frames is

that an approximate surface normal, nS , was used in (2.7) for the construction of the weight sets

in the right frame. This approximate surface normal is the result of RBF-based approximations

to the partial derivatives of the local parameterization of the surface that is a consequence of

the projection presented in section (b). As with other methods of approximating the derivative,

the one presented here falls victim to machine rounding errors. That is, the large increases in

error as N moves beyond roughly 104.5 are a results of working in double precision floating

point arithmetic. Computational experiments in extended precision (34 digit quadruple precision)

using the Advanpix multiprecision computing toolbox [36] available for Matlab resolve these

large increases in error at the expense of significantly greater computation time.

Second, consider f2(x, y, z) =
2
π tan−1(100z), such that IS(f2) = 0. This test integrand is

represented in figure 5 by ten level curves (contours) evenly spaced between -1 and 1. While

13

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

Figure 7: Absolute error in the surface integral of f2. For each N the error presented here is the

maximum over 1000 random rotations of the node set about the x-axis. The label “from [12]"

indicates that the weights used were generated using the method from [12]. This curve was

included for comparison. The errors presented in the left frame are for the case where the exact

normal is available, the right considers when the normal is approximated.

f2 ∈C∞(S), the integrand features a sharp gradient where S intersects the plane z =0. Figure 7

displays the absolute error in IS(f2). Notice that, while f2 ∈C∞(S), in the presence of the steep

gradient the convergence rate is slightly degraded. For N -values beyond the present range, the

rate would be expected to again become O(N−3.5).

Finally, consider f3(x, y, z) = sign(z), where sign represents the signum function. Therefore,

f3 is discontinuous where z =0 intersects S. Figure 8 displays the absolute error in IS(f3). In this

case, the integrand is not even continuous, and, as expected, the convergence rate is degraded to

less than O(N−1).

5 Conclusions

The method presented in this paper allows the computation of quadrature weights for evaluating

the surface integral of a scalar function over smooth, closed surfaces. These quadrature weights

can be computed in O(N) time and O(N) memory. When applied to C∞(S) integrands without

sharp gradients, the convergence rate will be roughly O(N−3.5). Sharp gradients in the integrand

only degrade the convergence marginally. Future work will inlcude tests with still higher N -

values, and also consider generalizations to surfaces with boundaries, thereby also allowing

improved accuracy in cases of piecewise smooth surfaces and integrands.

Data Accessibility. All presented data can be reproduced with the publicly available codes at Matlab

Central’s File Exchange [24] or on Github for Python or Julia implementations (see, [25] or [26].)

Authors’ Contributions. JAR contributed to the conception and design of the research, acquisition and

analysis of the data, and drafting and revising the article; BF contributed to the conception and design of

the research and revising the article; MLW contributed to acquisition of the data and drafting the article. All

authors gave final approval for publication.

Competing Interests. We have no competing interests.

14

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

Figure 8: Absolute error in the surface integral of f3. For each N the error presented here is the

maximum over 1000 random rotations of the node set about the x-axis. The label “from [12]"

indicates that the weights used were generated using the method from [12]. This curve was

included for comparison. The errors presented in the left frame are for the case where the exact

normal is available, the right considers when the normal is approximated.

Funding. JAR and MLW were supported by the Department of Defense.

Acknowledgements. We would like to thank the referees for their helpful comments and critiques.

Disclaimer. The views expressed in this article are those of the authors and do not reflect the official policy

or position of the United States Air Force, Department of Defense, or U.S. Government.

References

1. R. L. Hardy.
Theory and Applications of the Multiquadric-Biharmonic Method.
Comput. Math. Appl., 19(8-9):163–208, 1990.

2. J. P. Bardhan.
Efficient Numerical Algorithms for Surface Formulations of Mathematical Models for Biomolecule
Analysis and Design.
PhD thesis, Massachusetts Institute of Technology, 2006.

3. B. Fornberg and N. Flyer.
A Primer on Radial Basis Functions with Applications to the Geosciences.
SIAM, 2015.

4. G. E. Fasshauer.
Meshfree Approximation Methods with MATLAB, volume 6 of Interdisciplinary Mathematical
Sciences.
World Scientific, 2007.

5. W. Chen, Z.-J. Fu, and C. S. Chen.
Recent advances in Radial Basis Function collocation methods.
Springer-Verlag Berline Heidelberg, 2014.

6. N. Flyer, G.B. Wright, and B. Fornberg.
Radial basis function-generated finite differences: A mesh-free method for computational

15

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

geosciences.
In W. Freeden, M. Z. Nashed, and T. Sonar, editors, Handbook of Geomathematics. Springer Verlag
Berlin Heidelberg.
doi: 10.1007/978-3-642-27793-1 61-1.

7. C. Piret.
The orthogonal gradients method: A radial basis functions method for solving partial
differential equations on arbitrary surfaces.
J. Comput. Phys., 231:4662–4675, 2012.

8. E.J. Fuselier and G.B. Wright.
A high-order kernel method for diffusion and reaction-diffusion equations on surfaces.
J. Sci. Comput., 56:535–565, 2013.

9. Z. P. Bažant and B. H. Oh.
Efficient Numerical Integration on the Surface of a Sphere.
Zamm-Z. Angew. Math. ME., 66:37–49, 1986.

10. A. Sommariva and R. Womersley.
Integration by RBF over the Sphere.
Appl. Math. Report AMR05/17, 2005.

11. R. S. Womersley and I. H. Sloan.
Interpolation and Cubature on the Sphere.
http://web.maths.unsw.edu.au/ rsw/Sphere/, 2003/2007.

12. J. A. Reeger and B. Fornberg.
Numerical quadrature over the surface of a sphere.
Stud Appl Math, 2016.
doi: 10.1007/978-3-642-27793-1 61-1.

13. P. Keast and J. Diaz.
Fully Symmetric Integration Formulas for the Surface of the Sphere in S Dimensions.
SIAM J. Numer. Anal., 20(2):406–419, 1983.

14. V. Lebedev.
Quadratures on a Sphere.
USSR Comp. Math. Math.+, 16:1–23, 1976.

15. A. Stroud.
Approximate Calculation of Multiple Integrals.
Prentice-Hall, 1971.
New Jersey, USA.

16. B. Fornberg and J. M. Martel.
On spherical harmonics based numerical quadrature over the surface of a sphere.
Adv. Comput. Math., 40:1169–1184, 2014.

17. K. E. Atkinson.
Numerical Integration on the Sphere.
J. Aust. Math. Soc. B, 23:332–347, 1982.

18. E. Fuselier, T. Hangelbroek, F. J. Narcowich, J. D. Ward, and G. B. Wright.
Kernel based quadrature on spheres and other homogeneous spaces.
Numer. Math., 127:57–92, 2014.

19. D. Chien.
Numerical Evaluation of Surface Integrals in Three Dimensions.
Math. Comput., 64(210):727–743, 1995.

20. J. D’Elía, L. Battaglia, A. Cardona, and M. Storti.
Full Numerical Quadrature of Weakly Singular Double Surface Integrals in Galerkin Boundary
Element Methods.
Int. J. Numer. Meth. Eng., 27(2):314–334, 2011.

21. G. Green.
An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism.
Author, 1828.
Nottingham.

22. C. Ahrens and G. Beylkin.
Rotationally invariant quadratures for the sphere.
Proc. Roy. Soc. A, 465:3103–3125, 2009.

23. R.I. Saye.

16

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..

High-order quadrature methods for implicitly defined surfaces and volumes in
hyperrectangles.
SIAM J. Sci. Comput., 37:A993–A1019, 2015.

24. J. A. Reeger.
Smooth_Closed_Surface_Quadrature_RBF(Quadrature_Nodes,Triangles,h,gradh) (2016).
(https://www.mathworks.com/matlabcentral/fileexchange/57082-smooth-closed-
surface-quadrature-rbf), MATLAB Central File Exchange. Accessed 11 May
2016.

25. J. A. Reeger.
Smooth_Closed_Surface_Quadrature_RBF-python: v1.0, May 2016.
(https://github.com/jareeger/Smooth_Closed_Surface_Quadrature_RBF-
python/releases/tag/v1.0), Github. Accessed 19 May 2016. doi: 10.5281/zenodo.51687.

26. J. A. Reeger.
Smooth_Closed_Surface_Quadrature_RBF-julia: v1.0, May 2016.
(https://github.com/jareeger/Smooth_Closed_Surface_Quadrature_RBF-
julia/releases/tag/v1.0), Github. Accessed 19 May 2016. doi: 10.5281/zenodo.51686.

27. MATLAB R©, version 9.0.0.341360 (R2016a).
The MathWorks Inc., Natick, Massachusetts, 2016.

28. J. P. Snyder.
Map Projections: A Working Manual.
Geological Survey (U.S.), Washington, DC, U.S., 1987.

29. N. Flyer, E. Lehto, S. Blaise, G. B. Wright, and A. St-Cyr.
A guide to RBF-generated finite-differences for nonlinear transport: Shallow water simulations
on a sphere.
J. Comput. Phys., 231(11):4078–4095, 2012.

30. B. Fornberg and N. Flyer.
Solving PDEs with radial basis functions.
Acta Numerica, 24:215–258, 2015.

31. H. Wendland.
Scattered Data Approximation, volume 17.
Cambridge University Press, 2004.
United Kingdom.

32. M. D. Buhmann.
Radial Basis Functions.
Acta Numerica, 9:1–38, 2000.

33. J. H. Friedman, J. L. Bentley, and R. A. Finkel.
An algorithm for finding best matches in logarithmic expected time.
ACM Trans Math Softw, 3(3):209–226„ 1977.

34. P. Persson.
Distmesh - a simple mesh generator in MATLAB (2012).
http://persson.berkeley.edu/distmesh/. Accessed 10 June 2015.

35. P. Persson and G. Strang.
A Simple Mesh Generator in MATLAB.
SIAM Rev., 46(2):329–345, June 2004.

36. ADVANPIX: Multiprecision Computing Toolbox, version 3.4.2.3222.
Advanpix.com, Yokohama, Japan, 2016.

	1 Introduction
	2 A Description of the Method
	(a) Step 1: Find a Projection Point
	i Defining the ``Cutting" Plane
	ii Locating a Projection Point

	(b) Step 2: Project Locally to the Plane Containing the Flat Triangle
	(c) Step 3: Find quadrature weights over the local projected node set
	(d) Step 4: Convert Quadrature Weights in the Plane to Weights for the Surface Integral
	(e) Step 5: Combine the Weights Over the Entire Surface

	3 Computational Cost
	4 Test Integrands and Results
	5 Conclusions
	References

