
Enhanced trapezoidal rule for discontinuous functions

Bengt Fornberg ∗

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

Andrew Lawrence †

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

July 15, 2023

Abstract

In many applications, data to be integrated is available only in the form of function values at
predetermined equispaced points. For smooth periodic functions, the trapezoidal rule gives very
accurate approximations to the integral, but is only second order accurate in more commonly
arising non-periodic cases. The Gregory approach for end corrections can improve the accuracy
order to 9 before the onset of negative weights, and of rapidly increasing ill-conditioning. In
recent work, this has been extended to accuracy orders around 20.

This present study focuses on the more general case when one or both end points of the inte-
gration interval do not coincide with any of the equispaced grid points. We show that accuracy
orders up to around 10 can also then be achieved, with all quadrature weights still remaining
non-negative. This method can be utilized for example when functions to be integrated feature
discontinuities at locations that can be separately determined (at or in between the equispaced
grid points).

Keywords: Gregory’s method, trapezoidal rule, Simpson’s rule, Newton-Cotes, quadrature.
AMS classification codes: Primary: 65D30, 65D32; Secondary: 65B15.

1 Introduction

When a function that is to be integrated can be evaluated numerically at arbitrary locations,
Gaussian quadrature-type methods are often used. To avoid loss of accuracy caused by the Runge
phenomenon, these methods require data points to be clustered in very specific ways towards
each end of the integration interval. However, in non-trivial applications, quadrature is usually a
secondary task, and such specific data availability is then unrealistic. It is much more common that
function values are available only at equispaced locations. Examples can include data from a time
series, from grid-based calculations, pixel-based data from images, etc. Integration intervals that
do not coincide with grid intervals can arise for numerous reasons. For example, when obtaining
data, all future integration intervals needed for post-processing may not be known a priori. When
using grid-based node layouts in more than 1-D, curved boundaries and interfaces are often serious
complications. The present method applies in such cases to integrations along grid lines.

∗Email : fornberg@colorado.edu , ORCID 0000-0003-0014-6985
†Email : Andrew.Lawrence@colorado.edu

1

In the case of smooth functions and integration intervals starting and ending at grid points, the
trapezoidal rule (TR)

ˆ xN

x0

f(x)dx ≈ h
N∑
k=0

f(xk)−
h

2
[f(x0) + f(xN)] (1)

is second order accurate. In this formula, the nodes xk are spaced a distance h apart. Already
James Gregory1 recognized that the dominant errors are caused by end effects, and described a
method for end corrections (thus not interfering with the TR spectral accuracy throughout the
interval interior).2

This approach by Gregory, summarized below in Section 2.2, allows the accuracy order to be
increased to O(h9) before some weights become negative. A recently introduced variation, based on
optimizing the solution to an under-determined system, increased this to O(h20) [5], as summarized
below in Section 2.4.3 The present study shows that up to O(h10) accuracy can be realized even in
cases when integration interval end locations do not coincide with grid points. This is a situation
which has received surprisingly little previous attention in the literature (further commented on in
Chapter 5).

2 Summary of previous results: Grid aligned with interval end point

The sections in this Chapter 2 provide the background for the present extension to end points not
aligned with grid points, which is then described in Chapter 3.

2.1 The Gregory method

Since the two interval ends can be considered separately, we describe at first Gregory’s correction
procedure at the left end of an infinite interval. We can further simplify the algebra by setting
h = 1 since, for a general grid spacing h, one simply needs to multiply all obtained weights by h.
Rather than the weights being all one (as in the leading sum in (1)), the Gregory approach gives
accuracy order p when adding (to the value one) the correction set shown on line p in Table 1.4

The p = 2 case corresponds to the standard trapezoidal rule.

At the right end of the integration interval, one similarly applies the correction set flipped left-right.5

For intervals with only a few node points, the corrections from the two sides may overlap.

1James Gregory, 1638-1675, Scottish mathematician and astronomer. In describing this work in 1670 [7], Gregory
used what later became known as Taylor expansions and generating functions well before calculus was presented by
Leibniz (1684) and Newton (1687).

2TR for periodic functions is described in [14] (i.e., with no consideration of end effects).
3Building on ideas previously presented in [6].
4The accuracy order increases by one for each additional correction entry [11] (and not in steps of two as for the

Newton-Cotes formulas and for derivative orders in the Euler-Maclaurin formulas).
5The Newton-Cotes approach (with Simpson’s rule a special case) compensates for end errors by modifying the

weights across the entire integration interval (no matter how long this is) - inconvenient as well as damaging the very
high TR accuracy across interval interiors (c.f., [14]).

2

p = Gregory corrections dk to the weights all being one

2 −1
2

3 − 7
12

1
12

4 −5
8

1
6 − 1

24

5 −469
720

59
240 − 29

240
19
720

6 −193
288

77
240 − 7

30
73
720 − 3

160

7 −41393
60480

23719
60480 −11371

30240
7381
30240 − 5449

60480
863

60480

8 −12023
17280

6961
15120 − 66109

120960
33
70 − 31523

120960
1247
15120 − 275

24192

9 −2558783
3628800

1908311
3628800 −299587

403200
115963
145152 −426809

725760
112477
403200 − 278921

3628800
33953

3628800

10 −63887
89600

427487
725760 −3498217

3628800
500327
403200 -64675670

2616161
3628800 −24019

80640
263077
3628800 − 8183

1036800

...
...

...
...

...
...

...
...

...
...

. . .

Table 1: Corrections dk to the weights all being one, according to Gregory’s formulas, up through
accuracy order p = 10 (shown for the left end of an interval in case of grid spacing h = 1). The
middle entry on the p = 10 line shows the first instance of a correction dk < −1, leading to a
negative weight wk = 1 + dk.

2.2 Derivation of Gregory coefficients and correction weights

Gregory’s idea was to look for an improved TR formula of the form

ˆ ∞
0

f(x)dx ∼

(∞∑
k=0

f(k)

)
+
[
b0∆

0 + b1∆
1 + b2∆

2 + . . .
]
f(0) , (2)

and to include only a few leading terms in the second sum. The operator ∆ denotes here forward
differences, i.e., ∆f(k) = f(k + 1)− f(k), and thus

∆0f(0) = f(0)
∆1f(0) = f(1)− f(0)
∆2f(0) = f(2)− 2f(1) + f(0)
∆3f(0) = f(3)− 3f(2) + 3f(1)− f(0)

...
...

(3)

Substituting f(x) = e−zx into (2)6 gives

1

z
=

1

1− e−z
+
[
b0 − b1(1− e−z) + b2(1− e−z)2 − b3(1− e−z)3 +− . . .

]
. (4)

With the further substitution
w = (1− e−z) , (5)

6Here following Gregory’s pioneering use of the now-standard tool of generating functions.

3

i.e. z = − log(1− w), this becomes

1

log(1− w)
+

1

w
= −b0 + b1w − b2w2 + b3w

3 −+ . . . (6)

The coefficients bk can now be calculated recursively based on the Taylor expansion of log(1− w)

b0 = −1

2
, b1 =

1

12
, b2 = − 1

24
, b3 =

19

720
, b4 = − 3

160
, b5 =

863

60480
, b6 = − 275

24192
, . . . (7)

If one decides to use the first n + 1 coefficients b0, b1, . . . , bn, it follows from (2), (3) that the
corrections d0, d1, . . . , dn to the leading n+ 1 weights are obtained by

d0
d1
...

...
dn


=



1 −1 1 −1 1 · · ·
1 −2 3 −4 · · ·

1 −3 6 · · ·
1 −4 · · ·

1 · · ·
. . .





b0
b1
...

...
bn


, (8)

or equivalently 

1 1 1 1 1 · · ·
1 2 3 4 · · ·

1 3 6 · · ·
1 4 · · ·

1 · · ·
. . .





d0
d1
...

...
dn


=



b0
b1
...

...
bn


. (9)

2.3 Free parameter enhancement: Concept

Modifying the weights at the p − 1 node points closest to the end of the interval (from being
all one), provides the right number of free parameters to be able to satisfy the p − 1 (linear)
constraint equations that are required for ensuring the accuracy order p. Unfortunately, the Runge
phenomenon causes weights obtained in this way to grow in magnitude exponentially with p. The
key idea behind the enhancement in [5, 6] was to note that, if deciding on an accuracy order p
but modifying the weights at N > p − 1 nodes, the constraints for reaching accuracy order p can
be satisfied, with N − (p − 1) parameters still remaining free. These can then be used for other
purposes, such as to reduce the magnitudes of the weight corrections dk. This idea of introducing
extra free parameters, and then re-purposing these for other tasks (than maximizing the order of
accuracy) has been used several times in other contexts7.

2.4 Free parameter enhancement: Implementation

Since the bk sequence is alternating in sign and is only slowly decreasing, the rapid growth in the
Pascal triangle entries in (8) causes the central entries in the dk sequence to grow rapidly with

7Examples include [8] for reducing weights in Newton-Cotes-type formulas (however still with nontrivial weights
across the entire interval), and [4] for optimizing stability domains of parallel-in-time high-order ODE solvers when
applied to wave type PDEs.

4

n (and make the Gregory method impractical for higher accuracy orders). As noted above, the
approach for greatly reducing this growth, developed in [5, 6], was to choose N > n and then
correct N + 1 leading weights while enforcing only the first n+ 1 order conditions, thus obtaining
N − n free parameters. Equation (9) can for this purpose be generalized to



1 1 1 1 1 · · ·
1 2 3 4 · · ·

1 3 6 · · ·
1 4 · · ·

1 · · ·
. . .

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·





d0
d1
...

...
dn
dn+1

...
dN


=



b0
b1
...

...
bn


. (10)

Here, the rows of the Pascal matrix continue for another N − n columns. The form of the under-
determined system (10) is well suited for providing the constraint equations when seeking optimized
dk entries (with the goal of ensuring that the dk sequence is decreasing in magnitude while satisfying
wk = 1 + dk ≥ 0).

To incorporate a quadrature scheme in application codes, it can furthermore be convenient if the
weights are all relatively simple rational numbers. One example, noted in [5], is the order p = 10
scheme with weight corrections d0, d1, . . . , d10 given by

1
504

{
−22763

64 , 59501
225 ,−

64849
180 ,

11027
32 ,−40069

225 ,
6071
7200 ,

45847
800 ,−

40171
1440 ,−

289
2880 ,

2917
800 ,−

1957
2400

}
. (11)

3 The present method: Grid not aligned with the interval’s end points

3.1 Gregory-type coefficients and free parameter enhancement

As in Chapter 2, we base the derivation of weights again on unit-spaced nodes at x = 0, 1, 2, . . .,
but with the integration interval [ξ,∞] instead of [0,∞], i.e., the integral in the left hand side of
(2) is now replaced by

´∞
ξ f(x)dx, with −1 < ξ ≤ 0. Denoting the resulting expansion coefficients

bk(ξ) (with bk above now corresponding to bk(0)), the steps that led to (6) now instead give

(1− w)ξ

log(1− w)
+

1

w
= −b0(ξ) + b1(ξ)w − b2(ξ)w2 + b3(ξ)w

3 −+ (12)

(reducing to (6) for ξ = 0). Since both log(1−w) and (1−w)ξ have simple Taylor expansions, the
bk(ξ) coefficients are readily obtained numerically (c.f., the first two lines of executable code in the
MATLAB function in the Appendix). Figure 1 shows (−1)k+1bk(ξ) as function of −1 ≤ ξ ≤ 0 and
k = 0, 1, 2, ..., 15.

The bk(ξ) coefficients will in the present work be utilized only numerically. Nevertheless, some

5

Figure 1: (−1)k+1bk(ξ) as function of ξ and k.

explicit expressions may be of interest:

b0(0) = −1
2 , b0(ξ) = b0(0) + (−ξ)

b1(0) = 1
12 , b1(ξ) = b1(0) +

(
−1

2ξ
2
)

b2(0) = − 1
24 , b2(ξ) = b2(0) +

(
1
4ξ

2 − 1
6ξ

3
)

b3(0) = 19
720 , b3(ξ) = b3(0) +

(
−1

6ξ
2 + 1

6ξ
3 − 1

24ξ
4
)

b4(0) = − 3
160 , b4(ξ) = b4(0) +

(
1
8ξ

2 − 11
72ξ

3 + 1
16ξ

4 − 1
120ξ

5
)

· · · · · ·

From results in [13] follows that

bk(0) = −
ˆ 1

0

(
s

k + 1

)
ds, and bk(ξ) = bk(0) +

ˆ −ξ
0

(
−s
k

)
ds.

This implies further that bk+1(0) = bk(−1) + bk+1(−1) and that, for large k, bk(0) ∼ (−1)k+1

k(log k)2
and

bk(−1) ∼ (−1)k
log k .

4 Numerical implementation

4.1 Floating point calculation of weight sets

The Appendix shows MATLAB code that computes corrections dk(ξ) for specified values of n, N,
and xi (with xi the variable name for ξ). It is only for certain combinations of n and N that it finds
valid corrections for all ξ in the required range −1 < ξ ≤ 0. Such combinations include n = 4,
N = 8 and n = 8, N = 20, in which cases the corrections dk(ξ) become as seen in Figures 2 and
3. At ξ = −1, a few of these corrections are −1, making the corresponding weights zero. The code
is set to minimize

∑N
k=0 dk(ξ)

2(k + 1)8 while enforcing dk(ξ) ≥ −1.8 The order of accuracy p = 10

8The power 8 in the sum is very arbitrary; low numbers do not force the correction weights to smoothly approach
zero, while much higher numbers may cause difficulties for the optimization algorithm to converge.

6

Figure 2: Corrections dk(ξ) in the case of n = 4, N = 8, as computed by the algorithm in the
Appendix, seen from two perspectives in the k, ξ-plane.

appears to be as high as this procedure works across the full interval −1 < ξ ≤ 0. In the special
case of ξ = 0, this code provides an alternative to the least square-based code in the Appendix of
[5] (see Test Problem 2 below).

4.2 Numerical tests

Two test problems are described next (with three more in Chapter 5). In four of these examples, we
consider the case of two functions meeting discontinuously at some non-grid point location within
the interval instead of a single smooth function with integration endpoints not coinciding with grid
points. This gives rise to an identical type of numerical problem, previously considered in [2].

The rates of convergence as h → 0 are jagged in all but the second test case, since the relative
alignment of the discontinuity with its nearby grid points varies irregularly with h. The errors
nevertheless in all cases follow their theoretically predicted rates. The second test problem repeats
one from [5], serving to confirm that the present approach works just as well as the least squares-
based method used previously in the standard case of interval ends aligning with grid points.

In all cases, as h decreases, the accuracy reaches and then remains at the level of machine rounding
errors, i.e., around 10−16. Although optimization algorithms often do not reach to this level of
accuracy, we can note that the accuracy conditions and the non-negativity constraints in the present
method are implemented precisely, and optimization only enters for the secondary task of ensuring
the decay of the weight corrections dk.

4.3 Test problem 1: Discontinuity within the integration interval.

Approximate

1ˆ

0

f(x)dx with f(x) =

{
e−3x sin(20x) , 0 ≤ x < 1/

√
2

−2
5 cos(10x) , 1/

√
2 ≤ x ≤ 1

(13)

7

Figure 3: Corrections dk(ξ) in the case of n = 8, N = 20, as computed by the algorithm in the
Appendix, seen from two perspectives in the k, ξ-plane.

8

0 0.2 0.4 0.6 0.8 1

x

-0.5

0

0.5

1

f(
x
)

Figure 4: The test function (13), with a discontinuity at x = 1/
√

2.

using equispaced nodes over [0, 1]. Figure 4 shows this test function. Because the discontinuity
location 1/

√
2 is irrational, it will not coincide with a grid point at any level of refinement. Figure

5 shows the obtained rate of convergence using three methods:

1. Straight trapezoidal rule (TR). Instead of O(h2) convergence for smooth integrands, the
discontinuity reduces the rate to O(h1),

2. The present method with n = 4, N = 8, featuring weight corrections as illustrated in Figure
2, and

3. The present method with n = 8, N = 20, featuring weight corrections as illustrated in Figure
3.

As theoretically derived, the convergence rates in the two latter cases are given by p = n+ 2, i.e.,
they are O(h6) and O(h10), respectively.

4.4 Test problem 2: Re-visit of the first test problem in [5]

The special case of ξ = 0 applies to equispaced quadrature nodes coinciding with both ends of
the integration interval, and with no internal discontinuity. In this case, the accuracy orders can
be increased well beyond p = 10. The test case of approximating

´ 1
0 cos(20

√
x)dx was considered

previously in [5] for orders of accuracy up to p = 20. We quickly revisit this test case to show
that the presently used optimization algorithm handles this special ξ = 0 case just as well as the
previously described least squares approach.

Figure 6 shows the dk coefficients the algorithm in the Appendix give with N = 10 and N = 36 in
the cases of p = 10 and 20, respectively. Figure 7 shows the integrand in this test (sharply peaked
at x = 0). Figure 8 (computed in extended precision using the Advanpix toolbox9) shows the how
the errors go to zero in these two cases under node refinement (as well as TR results), confirming

9Advanpix, Multiprecision computing toolbox for MATLAB, http://www.advanpix.com/, Advanpix LLC, Yoko-
hama, Japan.

9

10
-3

10
-2

h

10
-20

10
-15

10
-10

10
-5

10
0

|E
rr

o
r|

O(h
10

)

O(h
6
)

O(h
1
)

TR, p = 1

 p = 6 (n = 4, N = 8)

 p = 10 (n = 8, N = 20)

Figure 5: Error as function of h in Test problem 1. In the last case (n = 8, N = 20), converging as
O(h10), the error level reaches the machine precision 10−16 around h = 2 · 10−3 (and then remains
at this level).

0 5 10 15 20 25 30 35

Node number k

-1

0

1

d
k

p = 10, n = 8, N = 10

0 5 10 15 20 25 30 35

Node number k

-1

0

1

d
k

p = 20, n = 18, N = 36

Figure 6: Weight corrections at the left interval end in the case of ξ = 0.

the expected convergence rates. Increasing p past 20 has not been pursued here, as the stencil sizes
(N -values) then become impractically large.10

5 Brief comments on some other methods for obtaining quadrature weights

Since the value of an integral is a linear functional of the integrand, it is for this discussion natural to
focus on linear quadrature schemes, i.e., methods expressible in the form of quadrature weights11.
Key aspects of equispaced numerical quadrature methods are (i) how these handle interval end

10Very high accuracies also require the function that is integrated to be correspondingly many times differentiable
(between discontinuities), which may in some applications be an unrealistic assumption.

11An example of a nonlinear scheme would be to integrate analytically a rational approximation of the integrand,
as obtained for example with the AAA algorithm [12]. It is described for interpolation of equispaced data in [9]
(although not for quadrature). Approximating the integrand with a combination of polynomials and partial fractions
with known pole locations is a linear task, discussed in [15].

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1

-0.5

0

0.5

1

f(
x
)

Figure 7: The integrand cos(20
√
x) in Test problem 2.

10
1

10
2

10
3

Number of subintervals

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

|E
rr

o
r|

O(h
2
)

O(h
10

)

O(h
20

)

Figure 8: The curves, below the top one showing the convergence for the trapezoidal rule, use the
weight sets shown in Figure 6 (with matching colors for the curves).

effects, (ii) how close their weights are to being constant throughout domain interiors12, and (iii)
all weights being non-negative.13

With equispaced data available, linear approaches typically amount to obtaining weights by means
of integrating functional interpolants or approximations of such. Below are some possibilities:

Least-square polynomial: Figure 9 (a) illustrates the case of n = 60 nodes over [0,1], equispaced
by h = 1

n+1 , placed at xi = ih, i = 1, 2, . . . , n. The weights are seen to grow rapidly as the
polynomial degree is increased. While the accuracy can be good in special cases, this is only if the
integrand is well represented by a single polynomial of low degree14 . The wave-nature seen in the
quadrature weights will lead to very large errors whenever an integrand contains any similar-looking
frequency component.

Barycentric interpolation: Linear barycentric rational quadrature is described in Chapter 9 of
[1], and is shown to be competitive with 6th order accurate Newton-Cotes (Boole’s rule) in the
case of interval end points coinciding with node points. Since barycentric-based quadrature has
not been described without this end point assumption, nor for higher accuracy orders, we do not

12Realized by the trapezoidal rule (TR) and its Gregory-type generalizations; this gives spectral accuracy across
interval interiors.

13In the (unlikely) case that analytic derivative information is available on each side of a discontinuity (assumed
not to be the case in the present study), Euler-Maclaurin-based enhancements have been described [10].

14Fitting (by least squares) the equispaced data instead with Chebyshev polynomials and then integrating these
exactly, as discussed in [3], makes no difference to the shown weights. That reference also notes that numerical
stability requires N = O(n2), where N is the number of nodes (samples) and n is the polynomial degree (i.e., N
typically needs to be far larger than n).

11

(a) Least square fit by polynomials (b) Interpolating cubic spline

Figure 9: Quadrature weights obtained by integrating approximating functions.

include it in the present illustrations of weights..

Cubic spline: Figure 9 (b) shows the weights with n = 10, 20, . . . , 80 nodes over [0,1] (again
with h = 1

n+1 , placed at xi = ih, i = 1, 2, . . . , n.). The excellent ‘locality property’ of cubic

spline cardinal functions15 leads to virtually constant weights across the domain interior. The
problematic issues in this case becomes instead the low resulting order of accuracy and large
magnitude (including negative) weights near the boundaries, c.f., Figure 9 (b) .

Enhanced Romberg-type quadrature: The recent study [2] describes a Romberg-type ex-
trapolation method which includes a correction process for function disconuities. Its first three
examples are here illustrated in Figures 10-12 and compared against the present method (in its
O(h10) version). Part (a) in these figures show the test functions (with analytic forms given in [2]),
Part (b) shows as red dots the results tabulated in [2]. In the last two cases, two implementation
versions were given (in which case, some h-values became inapplicable). Corresponding results for
the present method are shown by the blue curves. In all cases, these latter curves level out close
to the machine precision level of O(10−16). Concerns about the enhanced Romberg-type method
include:

1. As is common for Romberg-type methods, only certain numbers of total node points can be
used (and, with that, only certain h-values),

2. The algorithm has no counterpart to the present method’s property of all weights being non-
negative. It is noted on page 78 of [2] that “... sometimes the solution of the system suffers
gravely from the ill-conditioning”.

6 Discussion and conclusions

In computational contexts when high accuracies are needed, it is often cost-effective to use high
order accurate numerical methods. One situation where this opportunity has not been much utilized

15Taking the value one at one node point and zero at all other nodes.

12

0 0.2 0.4 0.6 0.8 1

x

-0.5

0

0.5

1

1.5

f(
x
)

10
-3

10
-2

h

10
-15

10
-10

10
-5

10
0

|E
rr

o
r|

(a) Test function (b) Errors

Figure 10: First test case in [2]. In Part (b) of Figures 10-12, tabulated results from [2] are shown
by red circles and results with the present method are shown by the blue (bottom) curve.

0 0.2 0.4 0.6 0.8 1

x

-0.5

0

0.5

1

1.5

2

f(
x
)

10
-3

10
-2

h

10
-15

10
-10

10
-5

10
0

|E
rr

o
r|

(a) Test function (b) Errors

Figure 11: Second test case in [2].

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

1.5

f(
x
)

10
-3

10
-2

h

10
-15

10
-10

10
-5

10
0

|E
rr

o
r|

(a) Test function (b) Errors

Figure 12: Third test case in [2] (re-scaled to the interval 0 < x < 1)

13

is numerical integration of a smooth function based only on equispaced function values, in cases
where the integration end point(s) do not align with grid points. We show here that accuracy
orders up to around O(h10) can readily be achieved by merely modifying standard trapezoidal rule
weights near the interval ends (with all weights still remaining non-negative).

The present method applies also to functions sampled equidistantly and with a discontinuity at
some known location (at or in-between grid points). In reverse, the present approach can also be
used to accurately determine a discontinuity location from equispaced data if the integral is known
(e.g., by means of some conservation law).

Funding: Andrew Lawrence acknowledges support from the US Air Force.16

7 Appendix: MATLAB code for finding weights using the quadprog routine

The following shows a MATLAB function for computing end corrections. We recall that the only
parameter range that is relevant for ξ is −1 < ξ ≤ 0.

function dk = d k(n,N,xi)

% Input parameters

% n Specify accuracy order p = n+2

% N Modify the first N+1 weights. It is required that N >= n.

% xi The \xi parameter, typical range -1 < xi <= 0.

% Output parameter

% dk Row vector of the weight corrections (from all = 1) for the first N+1 grid points. It

% will depend on n,N,xi if this function can find a solution for which all dk are <= -1.

c = cumprod([1,((0:n)-xi)./(1:n+1)]); c = [c,zeros(1,n+1)];

bk = deconv(c,1./(1:n+2)).*cumprod(-ones(1,n+2)); bk(1) = []; bk = bk’;

% Solve constrained optimization problem

P = pascal(N+1,1)’; P = P(1:n+1,:); P = P.*cumprod([1;-ones(n,1)]);

options = optimset(’Algorithm’,’active-set’,’Display’,’off’);

H = diag((1:N+1).^8); % H-matrix; Optimize using quadprog

dk = quadprog(H,[],[],[],P,bk,-1*ones(N+1,1),[],zeros(N+1,1),options); dk = dk’;

end

References

[1] J.-P. Berrut and G. Klein, Recent advances in linear barycentric rational interpolation, J.
Comp. Appl. Math. 259 (2014), 95–107.

[2] J.-P. Berrut and M.R. Trummer, Extrapolation quadrature from equispaced samples of functions
with jumps, Numerical Algorithms 92 (2023), 65–88.

[3] J.P. Boyd and F. Xu, Divergence (Runge phenomenon) for least-squares polynomial approxi-
mation on an equispaced grid and Mock-Chebyshev subset interpolation, Appl. Math. Comput.
210 (2009), 158–168.

[4] A.C. Ellison and B. Fornberg, A parallel-in-time approach for wave-type PDEs, Numerische
Matematik 148 (2021), 79–98.

16The views expressed in this article are those of the authors and do not reflect the official policy or position of the
Air Force, the Department of Defense or the U.S. Government.

14

[5] B. Fornberg, Improving the accuracy of the trapezoidal rule, SIAM Review 63 (2021), no. 1,
167–180.

[6] B. Fornberg and J.A. Reeger, An improved Gregory-like method for 1-D quadrature, Num.
Math. 141 (2019), no. 1, 1–19.

[7] J. Gregory, Letter to J. Collins, 23 November 1670., Oxford University Press (1841), 203–212,
In Rigaud: Correspondence of Scientific Men.

[8] D. Huybrechs, Stable high-order quadrature rules with equidistant points, Comput. Appl. Math.
231 (2009), 933–947.

[9] D. Huybrechs and L.N. Trefethen, AAA interpolation of equispaced data, BIT 63 (2023),
Article Nr 21.

[10] J.N. Lyness, The calculation of Fourier coefficients by the Möbius inversion of the Poisson
summation formula. Part II. Piecewise continuous functions and functions with poles near the
interval [0,1], Math. Comput. 25 (1971), no. 113, 59–78.

[11] E. Martensen, Optimale Fehlerschranken für die Qadraturformel von Gregory, ZAMM 44
(1964), no. 4/5, 159–168.

[12] Y. Nakatsukasa, O. Sète, and L.N. Trefethen, The AAA algorithm for rational approximation,
SIAM J. Sci. Comput. 40 (2018), no. 3, A1494–A1522.

[13] G.M. Phillips, Gregory’s method for numerical integration, The Amer. Math. Monthly 79
(1972), no. 3, 270–274.

[14] L.N. Trefethen and J.A.C. Weideman, The exponentially convergent trapezoidal rule, SIAM
Review 56 (2014), 384–458.

[15] J.A.C. Weideman and D.P. Laurie, Quadrature rules based on partial fraction expansions,
Numerical Algorithms 24 (2000), 159–178.

15

