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ABSTRACT
Readily available imaging technologies have made it possible to acquire multiple imaging modalities
with complementary information for the same patient. These imaging modalities describe different
properties about the organ of interest, providing an opportunity for better diagnosis, staging and treat-
ment assessments. However, existing research in combining multi-modality imaging data has not been
transformed into a clinical decision support system due to lack of flexibility, accuracy, and interpretability.
This article proposes a multi-modality imaging-based diagnostic decision support system (MMI-DDS) that
overcomes limitations of existing research. MMI-DDS includes three inter-connected components: (1) a
modality-wise principal component analysis (PCA) that reduces data dimensionality and eliminates the
need for co-registration of multi-modality images; (2) a novel constrained particle swarm optimization
(cPSO) classifier that is built upon the joint set of the principal components (PCs) from all of the imaging
modalities; (3) a clinical utility engine that employs inverse operations to identify contributing imaging
features (a.k.a. biomarkers) in diagnosing the disease. To validate MMI-DDS, we apply it to a migraine
dataset with multi-modality structural and functional magnetic resonance imaging (MRI) data. MMI-DDS
shows significantly improved diagnostic accuracy than using single imaging modalities alone and also
identifies biomarkers that are consistent with findings in migraine literature.

1. Introduction

Imaging has become an indispensable part of modernmedicine,
and is being extensively used to support diagnosis and other
clinical decision making on various diseases such as brain
diseases, cardiovascular diseases, and cancer. With the rapid
advance of imaging technologies, it is now possible to acquire
multiple modalities of imaging data for the same patient. These
modalities consist of different but complementary information
about the organ of interest, providing an opportunity for bet-
ter clinical decision support. Taking brain diseases as an exam-
ple, such as migraine and Alzheimer’s disease (AD), a number
of imaging modalities can be acquired, which can be broadly
classified into structural imaging and functional imaging. Typ-
ical structural imaging modalities include computed tomogra-
phy (CT) andmagnetic resonance imaging (MRI); CT shows the
gross structure of the brain based ondifferential absorption ofX-
rays, whileMRI produces detailed structural images of the brain
using magnetic field and radio waves. Typical functional imag-
ing modalities include functional MRI (fMRI), positron emis-
sion tomography (PET), and magnetoencephalography (MEG);
fMRI measures blood oxygenation related to neural activity,
PET measures physiologic functions in the brain by measuring
radiation emitted from tracers injected in the bloodstream, and
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MEGmeasuresmagnetic fields produced by the brain’s electrical
activity using superconducting quantum interference devices.

Recognizing the importance of combining multi-modality
imaging data to support disease diagnosis, extensive research
has been done, which can be generally categorized into data
fusion and data integration. The former interrogates the
covariation between different imaging modalities, facilitating
knowledge discovery and understanding of the disease biophys-
iology (Groves et al., 2011; Sui et al., 2011; Calhoun et al., 2006).
However, it does not directly support the diagnosis of each
individual patient. Data integration aims at utilizing the differ-
ent but complementary information contained in the multiple
imaging modalities in order to assist with disease diagnosis.
Methods for data integration share a common idea of building
a classifier that links a combined set of features from individual
imaging modalities with the diagnostic result. Commonly used
classificationmodels include linear discriminant analysis (LDA)
(Huang et al., 2011; Hu et al., 2015), quadratic discriminant
analysis (QDA) (Schwedt et al., 2015; Chong et al., 2016; Zhang
et al., 2016), support vector machines (SVM) (Fan et al., 2008;
Yang et al., 2010; Zhang et al., 2011), and multitask learning
(Yu et al., 2014; Yuan et al., 2012). Integrating multi-modality
imaging data has been shown to produce better classification
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accuracy than using a single modality alone in a number of
diseases, such as AD (Huang et al., 2011; Fan et al., 2008; Zhang
et al., 2011; Yu et al., 2014; Yuan et al., 2012), schizophrenia
(Yang et al., 2010), migraine (Schwedt et al., 2015; Chong et al.,
2016), and glioblastoma (Hu et al., 2015, in press).

Despite the abundance of existing research, the research has
not yet been transformed into a clinical decision support sys-
tem due to the lack of three important traits: flexibility, suffi-
cient accuracy, and interpretability. Flexibility means that the
system can incorporate image features defined at various aggre-
gation levels, such as voxels and regions of interest (ROIs).
Both voxel-level and ROI-level features are commonly used in
imaging-based studies and have their respective strengths: the
former preserves the raw information in an image, which avoids
information loss; the latter combines prior knowledge (e.g., the
anatomical structure of an organ) to guide feature definition.
Furthermore, a system with flexibility should be able to take
image features of various types, such as element-wise (voxel
or ROI) features and connectivity-based features. Examples of
element-wise features include cortical thickness, area, and vol-
ume using MRI and regional metabolism using PET. Exam-
ples of connectivity-based features include functional connec-
tivity z-maps using fMRI and white matter tractography using
diffusion tensor imaging (DTI). Lastly, most multi-modality-
imaging-based studies require co-registration to ensure that the
images are aligned into the same coordinate system (Maintz and
Viergever, 1998; Hill et al., 2001), which is time-consuming and
error-prone. A system with flexibility should provide an option
for opting out of this procedure.

Sufficient accuracy means a superior performance of the
classification model, which can be used for individual patient
diagnosis instead of group-based analysis. Given the high-
dimensionality of the joint feature set produced by multi-
modality images, searching for the subset of features with near-
global optimal classification accuracy is very challenging. An
exhaustive search is practically impossible. Greedy search-based
methods such as sequential forward selection and sequential
backward selection suffer from a variety of problems, such
as stagnation in local optima and a high computational cost.
Recently, evolutionary computation (EC) techniques such as
genetic algorithms (GA) (Fraser and Burnell, 1970), genetic pro-
gramming (GP) (Koza, 1990), differential evolution (DE) (Storn
and Price, 1997), and neuroevolution (Floreano et al., 2008)
have attracted significant attention with some initial success
in feature selection and classification for medical applications.
A new emerging field in EC is swarm intelligence (Bonyadi
and Michalewicz, 2016; Kennedy et al., 2001), which models
the collective behavior of social swarms in nature, such as ant
colonies, honeybees, and bird flocks. Although individuals in
a swarm are relatively unsophisticated, with limited capabili-
ties on their own, they interact together with certain behavioral
patterns to cooperatively achieve tasks necessary for their sur-
vival. This “intelligent” behavior of the swarm has inspired new
algorithmic developments in solving large complex optimiza-
tion problems with a wide range of application domains, such as
machine learning (Das et al., 2009), bioinformatics (Das et al.,
2008), dynamical systems and operations research (Parsopou-
los, 2010). Particle swarm optimization (PSO) is a computa-
tional algorithm based on swarm intelligence that mimics the

behavior of flying birds and their means of information
exchange to solve optimization problems. Each potential solu-
tion is seen as a particle with a certain velocity, flying through
the problem space. Each particle adjusts its flight according to
its ownflying experience and its companions’ flying experiences.
The particle swarms find optimal regions over complex search
spaces through the interaction of individuals in a population of
particles. PSO has been successfully applied to a number of dif-
ficult combinatorial optimization problems (Jarboui et al., 2008;
Chu et al., 2012). PSO has also been shown to be computation-
ally less expensive, converge more quickly, and find better solu-
tions than classic EC algorithms such as GA (Wang et al., 2007;
Jarboui et al., 2007).

Interpretability is another important trait that a clinical
decision support system should possess. In general, mathe-
matical models can be described as black-box, white-box, or
grey-box (Khan and Khan, 2012). Black-box models do not
convey information about their inner-workings, and only the
input and output are known. White-box models convey explicit
information about their internal structure, allowing the user to
infer the different components and their connections. Grey-box
models display partial theoretical information and use the data
that are available to complete the model. In this research, white-
box approaches in feature processing and model building are
employed to achieve interpretability to allow for identification
of an analytic pathway that traces back from the classifica-
tion accuracy to the contributing features and their respective
contributing weights. This has at least two benefits: First, it facil-
itates identification of biomarkers for the disease. Biomarker
identification is of vital importance inmedical research, not only
for disease diagnosis, but also for understanding the biological
basis and developing effective treatments. Second, practitioners
tend to be reluctant to adopt black-box approaches, regardless
of the performance. White-box approaches allow for ready
clinical adaptation and dissemination.

In this research, we develop amulti-modality-imaging-based
diagnostic decision support system (MMI-DDS) aiming to pos-
sess the aforementioned three traits. MMI-DDS includes three
key steps. First, a modality-wise principal component analy-
sis (PCA) is applied to each imaging modality independently.
Imaging features are typically high-dimensional. Some features
are naturally highly correlated due to their spatial proximity
or functional similarity. These pose challenges to downstream
classification model development. PCA is a well-known statis-
tical method for dimension reduction and de-correlation. PCA
is also a white-box approach because it applies a linear trans-
formation to the imaging features, which allows for a later
inverse-transformation to identify the contributing features to
the classification accuracy (i.e., the biomarkers). In MMI-DDS,
a modality-wise PCA is employed in order to account for the
fact that different imaging modalities may measure the organ
of interest from different perspectives. This also provides an
option for opting out tedious and error-prone co-registration
for themulti-modality images. Second, a novel constrained PSO
(cPSO)-based classifier is built on the joint set of principal com-
ponents (PCs) across the multi-modalities. cPSO is an opti-
mizer that searches through the joint PC set to find a small
subset of PCs with near-global optimal classification accuracy.
In this sense, cPSO combines feature (i.e., PCs) selection and
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classification in a single framework. The ability of feature selec-
tion is important for medical applications, since medical data
tend to contain many features. Simply training a classifier to
all of the available features would likely cause overfitting, since
many of the features are likely to be noise. In theory, the cPSO
optimizer can be used for all classification models. In this arti-
cle, we choose white-box models such as LDA, QDA, and linear
SVM (LSVM) to enable inverse-transformation and biomarker
identification in the next step. Third, a clinical utility engine
is developed to derive the analytic pathway that traces back
from the classification accuracy to the contributing features
(i.e., biomarkers) and their respective contributingweights. This
allows for interpretation of the diagnostic result and knowledge
discovery about the disease.

The rest of the article is structured as follows: Section 2 pro-
vides a literature review. Section 3 presents development of the
MMI-DDS. Section 4 presents an application of MMI-DDS for
migraine diagnosis using multi-modality structural and func-
tional imaging data. Section 5 is the conclusion.

2. Literature review

As mentioned in the Introduction, research on combining
multi-modality imaging data falls into two categories: data
fusion and data integration. This article belongs to the latter cat-
egory, but we will review the existing work in both categories in
this section due to their relevance.

For data fusion, multivariate statistical methods such as
canonical correlation analysis (CCA), partial least squares
(PLS), and independent component analysis (ICA) provide
viable approaches. CCA finds linear combinations of two sets of
variables, called canonical variables, with themaximum correla-
tion between each other. The original CCA can only model two
datasets. It was later extended to a multiset-CCA (M-CCA) that
finds canonical variables from multiple datasets to achieve the
maximum overall correlation (Kettenring, 1971). M-CCA was
used to perform data fusion of concurrently acquired fMRI and
EEG in an auditory task to find covarying amplitude modula-
tions in both modalities and the corresponding spatial activa-
tions (Correa et al., 2010). It was also used to fuse fMRI, EEG,
and MRI to make group inference for schizophrenia patients
compared with healthy controls (Correa et al., 2009).

PLS is a statistical model that finds the multidimensional
direction in the space of the independent variables that explains
the maximummultidimensional variance direction in the space
of the dependent variables. Multiway PLS, as an extension to
PLS, was developed for fusion of EEG and fMRI by decompos-
ing EEG and fMRI each as a sum of “atoms” (Martinez-Montes
et al., 2004). Each EEG atom was the outer product of spatial,
spectral, and temporal signatures and each fMRI atom the prod-
uct of spatial and temporal signatures. The decomposition was
constrained tomaximize the covariance between corresponding
temporal signatures of the EEG and fMRI. This fusion aimed at
identifying the coherent systems of neural oscillators that con-
tribute to the spontaneous EEG.

ICA is a generative model that assumes the observed mul-
tivariate data to be weighted sums of unobserved independent
components. ICA is a popular approach in image analysis. Ear-
lier work focused on single imagingmodalities such as fMRI and

EEGwith the purpose of separating the imaging data intomean-
ingful constituent components correlated with subjects’ experi-
mental task performance. Recently, ICA has been extended in a
number ofways formulti-modality data fusion. Joint ICA (jICA)
assumes that the data from multiple imaging modalities share
a common demixing matrix (Calhoun and Adali, 2009). Sev-
eral studies demonstrated the use of jICA in fusion of fMRIs
from multiple tasks, MRI and fMRI, fMRI and EEG, and MRI
and DTI for identifying group difference between patients with
schizophrenia and controls (Calhoun et al., 2006; Calhoun and
Adali, 2009; Xu et al., 2009). Parallel ICA (paraICA) (Sui et al.,
2011; Calhoun and Adali, 2009; Liu et al., 2009) was devel-
oped to relax the strong “common demixing matrix” assump-
tion posed by jICA and provide a more flexible approach by
creating the mixing matrices for different modalities separately
with the goal of maximizing the independence of components
within eachmodality while maximizing the correlation between
the mixing matrices. paraICA was used to fuse fMRI and SNP
(a genetic modality) in studying schizophrenia (Liu et al., 2009)
and to fuse fMRI and DTI in comparing schizophrenia with
bipolar disorder (Sui et al., 2011). Tensor ICA (Beckmann and
Smith, 2005) was developed to fuse three-way (spatial, tempo-
ral, and cross-subject) fMRI data by decomposing the data into
a set of independent spatial maps together with associated time
courses and estimated subject modes. It was applied to fMRI
data collected under a visual, cognitive, and motor paradigm
and was able to extract plausible activation maps, time courses,
and session/subject modes, as well as provide a rich descrip-
tion of additional processes of interest, such as image artifacts
and secondary activation patterns. Link ICA adopted a Bayesian
framework for simultaneously modeling and discovering com-
mon features across multiple modalities (Groves et al., 2011). It
enjoyed the flexibility of fusing imaging modalities with com-
pletely different units, signal- and contrast-to-noise ratios, voxel
counts, spatial smoothness and intensity distributions by using
a Bayesian formulation to automatically weigh the modalities
appropriately.

While being a popular research area, multi-modality imag-
ing data fusion does not directly support diagnosis of each
individual patient, but instead provides an exploratory tool for
knowledge discovery and group inference. The former is the
objective of multi-modality imaging data integration. Research
on data integration shares a common idea of building a clas-
sifier from a training dataset, which links a combined set of
features from individual imaging modalities with a diagnostic
result. This classifier can then be used to produce a proba-
bility of having the target disease for each new patient, thus
providing decision support for clinical diagnosis. In theory,
such a classifier can be built using any statistical classification
method. Typical methods that have been used for integrating
multi-modality imaging data include LDA (Huang et al., 2011;
Hu et al., 2015), QDA (Schwedt et al., 2015; Chong et al., 2016),
SVM (Fan et al., 2008; Yang et al., 2010; Zhang et al., 2011), and
multitask learning (Yu et al., 2014; Yuan et al., 2012). Integrating
multi-modality imaging data has been shown to produce better
classification accuracy than using a single modality alone in a
number of brain diseases, such as AD (Huang et al., 2011; Fan
et al., 2008; Zhang et al., 2011; Yu et al., 2014; Yuan et al., 2012),
schizophrenia (Yang et al., 2010), migraine (Schwedt et al.,
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2015; Chong et al., 2016), and glioblastoma (Hu et al., 2015, in
press). Despite the abundance of existing literature, the research
is still limited in clinical usability due to lack of flexibility (e.g.,
only applicable to certain imaging modalities or requiring
co-registration), insufficient accuracy (e.g., using off-the-shelf
software to build a classification model without exploiting
advanced optimizers to improve the performance), and insuf-
ficient interpretability (e.g., black-box methods prohibiting
rigorous identification of contributing features or biomarkers).

3. ProposedMMI-DDS for disease diagnosis

As shown in Fig. 1, MMI-DDS includes the following main
components: (1) a modality-wise PCA; (2) a cPSO-based classi-
fier for diagnosis; and (3) a clinical utility engine for biomarker
identification.

3.1. Modality-wise PCA

PCA is a statistical method that transforms the imaging features
that are potentially high-dimensional and correlated into a small
number of uncorrelated PCs. Each PC is a linear combination
of the imaging features. The transformation is performed in
such a way that the first PC has the largest possible variance and
each succeeding PC has the highest variance possible under
the constraint that it is uncorrelated with all the preceding
PCs. We propose to perform PCA on each imaging modality
separately. This is to account for the fact that different imaging
modalities measure the organ of interest from different perspec-
tives and therefore combining their features in a single PCA is
inappropriate. This also provides the flexibility for opting out co-
registration of the multi-modality images. Specifically, suppose
there are M imaging modalities. Let Xm = [X1,m, . . . ,Xnm,m]T
be the set of features corresponding to the m-th modality,
m = 1, . . . ,M. nm is the number features for them-th modality.

Figure . Layout of MMI-DDS.

Let Zm = [Z1,m, . . . ,Zpm,m]T be the set of PCs. Each PC is a
linear combination of the features; i.e., Zi,m = wT

i,mXm. wi,m
consists of the combination coefficients and is called the loading
vector. To obtain the loading vectors for all of the PCs, a dataset
on the features Xm needs to be collected, which consists of
measurements on Xm from N samples (i.e., patients). Using the
dataset, a sample correlationmatrix ofXm, Sm, can be computed
and an eigendecomposition is further performed on Sm. The
eigenvalues will be ordered from the largest to the smallest,
λ1,m, . . . , λpm,m, and the corresponding eigenvectors are the
loading vectors for the first through the last PC. Note that not
all of the PCs need to be kept for subsequent analysis, since the
PCs corresponding to small eigenvalues are likely to capture
noise in the data but not useful information. To determine
the number of PCs to keep, a typical approach is to keep track
of the cumulative percentage of variance explained by adding
more PCs until a pre-specified threshold is reached. Setting the
threshold to be a number between 80–90% has been found to be
adequate for most applications (Hu et al., 2015; Schwedt et al.,
2015; Chong et al., 2016).

3.2. cPSO-based feature selection and classification

PSO was originally developed as a population-based stochastic
optimization technique, and then extended for feature selection
in classification. In this section, we first briefly introduce how
generic PSO works for solving an optimization problem and for
feature selection. Then, we propose a modified PSO algorithm
that can honor a pre-specified maximum number of features to
better avoid overfitting, called cPSO.

Consider an optimization problem with decision variables
x1, . . . , xD and an objective function f(x1, . . . , xD) to optimize.
PSO is initialized with a population of random solutions called
particles. Let xi = (xi1, . . . , xiD) represent the i-th particle, i =
1, . . . , I. Each particle adjusts its position according to its own
experience and the positions of other particles. Specifically, at
the t-th iteration, let pti be the best previous position of the
i-th particle (i.e., the position giving the best value for the
objective function) and ptg be the best position among all of the
particles. Then, the position adjustment, called velocity, of the
i-th particle along the d-th dimension is given by:

v tid = ωtv t−1
id + c1r1

(
ptid − xtid

)+ c2r2
(
ptgd − xtid

)
, (1)

d = 1, . . . , D. Here, ωt, c1, and c2 are called the inertia weight,
cognitive learning factor, and social learning factor, respectively.
A proper choice for ωt provides a balance between global and
local exploration, and results in fewer iterations on average
to find a sufficiently optimal solution. c1 and c2 represent the
weighting of the stochastic acceleration terms that pull each
particle toward pti and ptg (Wang et al., 2007). ωt, c1, and c2 can
be treated as tuning parameters of the PSO algorithm. Alterna-
tively, they can be set by users. A number of appropriate values
for the three parameters have been suggested (Poli et al., 2007).
r1 and r2 are sampled from a uniform distribution U[0, 1].
Furthermore, according to the velocity in (1), the i-th particle
can move to a new position; i.e.,

xt+1
id = xtid + v tid. (2)
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Kennedy and Eberhardt (1997) proposed modifications on
the previously described generic PSO, so that the resulting algo-
rithm can be used for feature selection in classification. Suppose
there are D features, Z1, . . . , ZD. Each feature Zd is associated
with a binary decision variable xd. xd = 1 if Zd is selected and xd
= 0 otherwise. The objective function f(x1, . . . , xD) is a cross-
validated classification error that is computed using the selected
features on a training dataset. Because of the binary nature of
the decision variables, (2) is changed to (3) while (1) remains
the same.

xt+1
id =

{
1, if S

(
vtid
)

> r
0, otherwise , (3)

where S(v tid ) is a sigmoid function used to map v tid to [0,1]; i.e.,
S(v tid ) = 1

1+e−vtid
. r is sampled from U[0, 1].

In this article, we propose a cPSO algorithm that can honor a
pre-specified maximum number of features to avoid overfitting.
Specifically, we modify (3) as follows: Let K denote the maxi-
mumnumber of features allowed in the classificationmodel. For
each particle, we order its velocities along all the dimensions
from the largest to the smallest. Without loss of generality, we
denote the ordered velocities of the i-th particle by v ti1, . . . , v

t
iD.

Keep the first K largest velocities, v ti1, . . . , v tiK . A simple modifi-
cation on (3) could be to make xt+1

id = 1 if d � K and xt+1
id = 0

otherwise. Although this approach guarantees K features to be
selected, the selected features may have poor quality. Here, we
consider a feature to have poor quality if it has a negative veloc-
ity, v tid < 0, which leads to the sigmoid function S(v tid ) < 0.5.
Therefore, (3) is modified into (4) in cPSO:

xt+1
id =

{
1, if d ≤ K and S

(
vtid
)

> 0.5
0, otherwise . (4)

Using (4), only theK largest features that have good quality—
i.e., have a higher probability of being selected than not being
selected—will be kept. Therefore, the number of selected fea-
tures can be less than or equal to K.

Next, we present the detailed steps of the cPSO algorithm.
The input to cPSO includes a training dataset on the joint set of
PCs by pooling together the PCs from each imaging modality,
denoted by Z1, . . . , ZD, and a diagnostic result Y. The input also
includes several user-specified parameters: the maximum num-
ber of PCs, K; the number of particles, I; the number of itera-
tions, T; themaximum velocity used to limit further exploration
after convergence to an optimal value, Vmax. Set ωt = 0.9 − t ·
0.5/T, c1 = 2, and c2 = 2, which are recommended values by the
literature (Poli et al., 2007). In addition, a classification model
needs to be specified. In theory, cPSO canworkwith any classifi-
cationmodel. In this article, we focus on white-boxmodels such
as LDA, QDA, and LSVM. This is to facilitate identification of
the contribution features (i.e., biomarkers) and their respective
contributing weights to the classification accuracy in a mathe-
matically and computationally tractable way.

The proposed cPSO algorithm:

Step 1 (initialization): Set the initial position of the i-th particle,
x0i , by randomly choosing K elements in x0i to be one while
making other elements to be zero. Use the PCs corresponding
to the non-zero elements in x0i to compute a cross-validated

(CV) classification error on the training dataset, f (x0i ). Set
the initial velocity, v0i , by sampling each element in v0i fromU[
− Vmax,Vmax]. Use (4) to update the initial position of each
particle and get x1i . Iterate Steps 2–3 with t = 1, 2, . . . T.

Step 2 (velocity updating): Examine all previous positions of
the i-th particle, f (x0i ), . . . , f (xt−1

i ), and find the position
giving the smallest CV classification error, pti . Examine the
current positions of all the particles, f (xt1 ), . . . , f (xtI ) and
find the position giving the smallest CV classification error,
ptg. Sample r1 and r2 from U[0, 1]. Use (1) to compute the
velocity vti . If v tid > Vmax, set v tid = Vmax; if v tid < −Vmax, set
v tid = −Vmax.

Step 3 (position updating): Order the elements in vti from the
largest to the smallest. Use (4) to compute the new posi-
tion xt+1

i . If the maximum number of iterations has been
reached—i.e., t + 1 = T—examine the current positions of
all the particles, f (xt+1

1 ), . . . , f (xt+1
I ), and output the posi-

tion giving the smallest CV classification error as the optimal
solution, together with the corresponding CV error and the
PCs that are selected. Otherwise, go back to Step 2.

Finally, we discuss how to select the maximum number of
PCs, K. A general trend is that the CV classification error will
decrease as K increases. However, this does not mean that a
largerK is always preferred, because the decrease in theCV error
after K is beyond a certain value is so minimal that it is neither
statistically significant nor practically useful. Allowing a larger
K than needed will produce an overcomplicated model that
likely has problems with overfitting. Therefore, a recommended
approach for choosing the optimal K—i.e., K∗—is to plot the
CV errors against different values of K with K ranging from the
smallest to the largest, and look for the “elbow” point as the K∗.
This is a similar idea to the scree plot used to find the optimal
number of PCs in PCA. Alternatively, we may adopt a more rig-
orous approach that uses hypothesis testing (e.g., a two-sample
t-test) to compare the CV errors corresponding to K and K + 1,
K= 1, 2, . . .. TheK∗ could be onewhoseCV error is significantly
smaller than that of K∗ − 1 but not than K∗ + 1. Other methods
for choosing K∗ might also be adopted, such as penalizing the
error with K (similar to the methods used with AIC and BIC).
We acknowledge that this is an open area that no single approach
dominates. In practice, these alternative approaches could be
tried and the results may be cross-referenced with each other.

3.3. Clinical utility engine for clinical interpretation and
biomarker identification

The goal of the clinical utility engine is to identify the contribut-
ing original features and their respective contributing weights
to the model with best classification accuracy found by cPSO.
These can be analytically derived for white-box classification
models such as LDA, QDA, and LSVM. We first define some
common notations: Let z be the set of PCs selected by cPSO.
z = [zT1 , . . . , zTM]T , where zm represents the selected PCs from
them-th modality,m = 1, . . . , M.

zm = WT
mXm , (5)

where Wm is the loading matrix obtained from the modality-
wise PCA discussed in Section 3.1. Let w j T

m be the j-th row of
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Wm. Then, (5) can be written as

zm =
nm∑
j=1

w j
mXj,m. (6)

Next, we will present the development of three inverse-
operators for LDA, QDA, and LSVM in achieving the goal of
the engine.

LDA inverse operator
The LDA model takes the following form:

log
P (Y = 1|z)
P (Y = 0|z) = (

μ1 − μ0
)T

�−1z

− 1
2
μT
1 �−1μ1 + 1

2
μT
0 �−1μ0 + log

π

1 − π
,

(7)

where μ1 and μ0 are the means of z for the two classes. LDA
assumes that the two classes have the same covariance matrix of
z, which is represented by �. π = P(Y = 1). The classification
rule of LDA is that if log P(Y=1|z)

P(Y=0|z) > 0, assign the sample to class
1, and to class 0 otherwise.

μ1,μ0,�, andπ can be estimated from training data bymax-
imum likelihood estimation (MLE). Then, (7) can be simplified
as:

log
P (Y = 1|z)
P (Y = 0|z) = vTz + v0, (8)

where v = � − 1(μ1 − μ0) and v0 = − 1
2μ

T
1 �−1μ1 +

1
2μ

T
0 �−1μ0 + log π

1−π
. Letting v = [vT1 , . . . , vTM]T , where vm

are the coefficients corresponding to zm, and substituting (6)
into (8), we get

log
P (Y = 1|X)

P (Y = 0|X)
=

M∑
m=1

nm∑
j=1

vTmw
j
mXj,m + v0. (9)

It is clear from (9) that the magnitude of vTmw
j
m indicates

the contribution of each imaging feature Xj,m to the classifica-
tion accuracy. The sign of vTmw

j
m indicates the direction of the

contribution.
QDA inverse operator
The QDA model takes on the following form:

log
P (Y = 1|z)
P (Y = 0|z) = −1

2
zT
(
�−1

1 − �−1
0
)
z

+ (
μT
1 �−1

1 − μT
0 �−1

0
)
z − 1

2
μT
1 �−1

1 μ1 + 1
2
μT
0 �−1

0 μ0

+ log
π

1 − π
+ log

√
|�0| / |�1|, (10)

QDA assumes that the two classes have the different covari-
ance matrices of z, which are represented by �1 and �0. Then,
(10) can be simplified as:

log
P (Y = 1|z)
P (Y = 0|z) = zT�z + qTz + q0, (11)

where � = − 1
2 (�

−1
1 − �−1

0 ), q = �−1
1 μ1 − �−1

0 μ0, and q0 =
− 1

2μ
T
1 �−1

1 μ1 + 1
2μ

T
0 �−1

0 μ0 + log π
1−π

+ log
√|�0|/|�1|. � is a

block diagonal matrix under the assumption that the modalities
are independent; i.e.,

� =

⎡
⎢⎣

�1 0 0

0
. . .

...
0 · · · �M

⎤
⎥⎦

where �m is the matrix corresponding to the m-th modality,
m = 1, . . . , M. Letting q = [qT1 , . . . , qTM]T , where qm are the
coefficients corresponding to zm, and substituting (6) into (11),
we get

log
P (Y = 1|X)

P (Y = 0|X)

=
M∑

m=1

nm∑
j=1

w j T
m �mw

j
mX2

j,m +
M∑

m=1

nm∑
j=1

qTmw
j
mXj,m

+
M∑

m=1

nm∑
j=1

nm∑
k=1
k�= j

w j T
m �mwk

mXj,mXk,m + q0. (12)

It is difficult to assess the contribution of each imaging fea-
ture Xj,m to the classification accuracy based on (12), because of
the existence of the cross-terms Xj,mXk,m, k = 1, . . . , nm, k �= j.
To tackle this difficulty, we propose to take the expectation of
log P(Y=1|X)

P(Y=0|X)
with respect to the Xk,ms, or equivalently the condi-

tional expectation of log P(Y=1|X)

P(Y=0|X)
with respect to Xm given Xj,m.

This would average out the contribution from each Xk,m and
leave only the Xj,m to be linked with the classification accuracy.
Specifically,

EXm|Xj,m

[
log

P (Y = 1|X)

P (Y = 0|X)

]
= w j T

m �mw
j
mX2

j,m + qTmw
j
mXj,m

+
nm∑
k=1
k�= j

wk T
m �mwk

m · EXm|Xj,m

[
X2
k,m
]

+
nm∑
k=1
k�= j

qTmw
k
m · EXm|Xj,m[Xk,m]

+ 2 ·
nm∑
k=1
k�= j

w j T
m �mwk

m · Xj,m · EXm|Xj,m

[
Xk,m

]

+
nm∑
k=1
k�= j

nm∑
l=1
l �= j
l �=k

wk T
m �mwl

m · EXm|Xj,m[Xk,mXl,m] + q0,m

+ f (X−m) , (13)

where q0,m denotes the portion of q0 that is associated with the
m-th modality. Since our purpose here is to assess the con-
tribution of Xj,m, the imaging features from other modalities
than the m-th modality are not relevant. Therefore, the terms
involving these features are put into f(X − m). Furthermore,
assume that the imaging features in each modality follows a
multivariate normal distribution; i.e.,Xm ∼ N(μm,�m ), where
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μm = (μ1,m . . . μnm,m)T and

�m =

⎛
⎜⎝

σ1,1,m · · · σ1,nm,m
...

. . .
...

σnm,1,m · · · σnm,nm,m

⎞
⎟⎠ .

μm and�m can be estimated from training data. Under this dis-
tribution, the expectations in (13) can be derived as:

EXm|Xj,m[Xk,m] = μk,m + σk, j,m
(
Xj,m − μ j,m

)
σ j, j,m

, (14a)

EXm|Xj,m[X
2
k,m] = σk,k,m −

σ 2
k, j,m

σ j, j,m

+
(

μk,m + σk, j,m
(
Xj,m − μ j,m

)
σ j, j,m

)2

,

(14b)

EXm|Xj,m[Xk,mXl,m] = σk,l,m − σk, j,mσl, j,m

σ j, j,m

+
(

μk,m + σk, j,m
(
Xj,m − μ j,m

)
σ j, j,m

)

×
(

μl,m + σl, j,m
(
Xj,m − μ j,m

)
σ j, j,m

)
.

(14c)

After substituting (14 a–c) into (13), (13) can be simplified to
the general form of

EXm|Xj,m

[
log

P (Y = 1|X)

P (Y = 0|X)

]
= Qj,m · X2

j,m + Lj,m · Xj,m + c j,m,

where Qj,m and Lj,m given by:

Qj,m = w j T
m �mw

j
m +

nm∑
k=1
k�= j

(
σk, j,m

σ j, j,m

)2

wk T
m �mwk

m

+ 2 ·
nm∑
k=1
k�= j

(
σk, j,m

σ j, j,m

)
w j T
m �mwk

m

+
nm∑

k = 1
k �= j

nm∑
l=1
l �= j
l �=k

(
σk, j,mσl, j,m

σ 2
j, j,m

)
wk T
m �mwl

m,

(15a)

Lj,m = qTmw
j
m +

nm∑
k=1
k�= j

(
σk, j,m

σ j, j,m

)
qTmw

k
m

+ 2 ·
nm∑
k=1
k�= j

(
σk, j,m

σ j, j,m

(
μk,m − σk, j,m

σ j, j,m
μ j,m

))
wk T
m �mwk

m

+ 2 ·
nm∑
k=1
k�= j

(
μk,m − σk, j,m

σ j, j,m
μ j,m

)
w j T
m �mwk

m

+
nm∑
k=1
k�= j

nm∑
l=1
l �= j
l �= k

(
σl, j,m

σ j, j,m

(
μk,m − σk, j,m

σ j, j,m
μ j,m

)

+ σk, j,m

σ j, j,m

(
μl,m − σl, j,m

σ j, j,m
μ j,m

))
wk T
m �mwl

m, (15b)

and cj,m includes terms that do not have Xj,m so there is no need
to explicitly spell it out. It is clear that Qj,m and Lj,m indicate the
quadratic and linear contribution of each imaging feature Xj,m
to the classification accuracy, respectively.

LSVM inverse operator
The LSVMmodel takes the following form:

f (z) = sTz + s0, (16)

where s and s0 are estimated from the objective function
mins,s0,ξ

1
2 s

T s +C
∑

i ξi subject to yif(zi)� 1− ξ i and ξ i � 0�i,
whereC is the penalty parameter, ξ i is the slack variable for sam-
ple i in a training dataset, yi is the class of sample i, and f(zi) is the
predicted value of sample i. Letting s = [sT1 , . . . , sTM]T , where
sm are the coefficients corresponding to zm, and substituting
(6) into (16), we get

f (X) =
M∑

m=1

nm∑
j=1

sTmw
j
mXj,m + s0. (17)

It is clear from (17) that the magnitude of sTmw
j
m indicates

the contribution of each imaging feature Xj,m to the classifica-
tion accuracy. The sign of sTmw

j
m indicates the direction of the

contribution.

4. Clinical application: Amigraine study

Approximately 36 million Americans suffer from migraine
(Daniel and Mauskop, 2016). Current clinical diagnosis is pri-
marily symptom-based, which is prone to patient subjectivity.
Imaging has shown great promise for providing objective mea-
sures of the disease and for improving the diagnostic accuracy
(Schwedt et al., 2015; Chong et al., 2016). However, most exist-
ing research onmigraine diagnosis focuses on single modalities.
In this section, we present a study of using MMI-DDS to inte-
grate multi-modality structural and functional imaging data for
migraine diagnosis.

4.1. Subject selection and image acquisition and
preprocessing

The data used for this application were obtained from Mayo
Clinic Arizona and Washington University School of Medicine
in St. Louis. A total of 106 subjects who had structural and
functional MRI data were included in this analysis, consisting
of 57 individuals with migraine (PMs) and 49 healthy controls
(HCs). These 106 subjects were a subset of subjects included
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Table . CV classification errors (avg+/− std error) of the proposed MMI-DDS applied to MRI alone, fMRI alone, and MRI+fMRI combined.

MRI (area+thickness+volume) fMRI MRI+fMRI

LDA .%+/− .% .%+/− .% .%+/− .%
QDA .%+/− .% .%+/− .% .%+/− .%
LSVM .%+/− .% .%+/− .% .%+/− .%

in prior analyses (Schwedt et al., 2015; Chong et al., 2016).
PMs were diagnosed in accordance with the diagnostic criteria
defined by the International Classification of Headache Disor-
ders (Headache Classification Committee, 2013).

Structural MRI data were obtained from two Siemens 3 T
MRI machines. Using a cortical reconstruction and segmen-
tation program in the FreeSurfer image analysis suite (version
5.3, http://www.surfer.nmr.mgh.harvard.edu/), cortical area,
thickness and volumemeasurements of 68 ROIs were extracted.
Additionally, resting-state functional connectivities—i.e., fMRI
data—were collected for each subject. Standard Statistical Para-
metric Mapping (SPM) methods were used to preprocess the
fMRI data. Specifically, fMRI signals were temporally filtered
between 0.01 to 0.1 Hz to retain the low-frequency components.
Variance relating to signals of no interest was removed through
linear regression. Thirty-three ROIs were chosen based on
commonly cited regions for which PMs show abnormalities
(Mainero et al., 2011; Russo et al., 2012). Among the 33 ROIs,
there are 16 pairs; each pair consists of two regions with the
same name but located at the left and right sides of the brain,
respectively. The remaining one ROI is located in the middle
of the brain. We aggregated each pair of ROIs into one ROI
by averaging their respective time courses. This reduces the
number of ROIs to 16+1 = 17. Partial correlations between
the 17 ROIs were computed, forming 136 connectivity features.
Note that we also tried keeping the original 33 ROIs without

pair-wise aggregation, but the result was not as good as the one
with aggregation.

In summary, this study utilizes two imaging modalities in
terms of the image acquisition techniques; i.e., structural MRI
and fMRI. Structural MRI produces three sets of features for 68
ROIs; i.e., area features, thickness features, and volume features.
Because these three sets measure different aspects of the brain
structure, they are treated as three modalities in our analysis. As
a result, four modalities are used in MMS-DDS, including cor-
tical area (68 features), thickness (68 features), volume (68 fea-
tures), and resting-state functional connectivity (136 features).

4.2. Classification accuracy bymulti-modality imaging
data integration

In this experiment, we show the performance of our system in
integrating all of the imaging modalities. Specifically, we first
apply modality-wise PCA to each modality and keep the PCs
that explain 85% of the variance in the data of the respective
modality. Then, cPSO takes as input the data on the combined
PC set across all the modalities. The optimal parameter K for
cPSO is found to be K∗ = 8, 6, and 9, respectively. K∗ was cho-
sen as the value at the “elbow” of the plot of CV errors against
different values of K. Table 1 (last column) shows the CV classi-
fication errors corresponding to LDA, QDA, and LSVM under
their respectiveK∗. For comparison, we also apply our system to

Figure . ROIs corresponding to the area features in Table  shown on an average inflated brain surface. Front. pole= frontal pole; inf. temporal= inferior temporal; mid.
temporal=middle temporal; sup. temp (bank)= bank of the superior temporal; transv. temporal= transverse temporal.

http://www.surfer.nmr.mgh.harvard.edu/
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integrating the three sets of features from structural MRI—i.e.,
cortical area, thickness, and volume—and the result is shown in
the first column of Table 1. Furthermore, we report the result
on using resting-state functional connectivity from fMRI alone.
These analyses aim to show the benefit of integrating structural
and functional imaging data.

In all three classifiers, our system’s ability for integrating data
from structural and functional imaging modalities is evident.
Using a two-sample t-test, the CV error of MRI+fMRI is sig-
nificantly lower than MRI alone with p values of 0.0062, 2.2 ×
10−5 and 2.8 × 10−4 for LDA, QDA, and LSVM, respectively.
Because the CV errors of MRI are lower than fMRI, there is no
need to compare MRI+fMRI with fMRI. We conclude that the
integration ofmulti-modality imaging can significantly improve
the diagnosis accuracy. Furthermore, among the three classi-
fiers, LSVM achieves the lowest error—i.e., highest accuracy of
83%—using MRI+fMRI.

It is important to note, in the single modality migraine study
(Schwedt et al., 2015) where structural MR data were analyzed,
the classification accuracy was 68%; and the single modality
migraine study using fMRI data had 81% classification accu-
racy (Chong et al., 2016). One may argue that the 83% accuracy
reported in this study is a marginal improvement compared to
81% accuracy. We contend that Table 1 indicates the statistical
differences between the two approaches (fMRI+MRI vs. fMRI)
using the same features sets. Next, a voxel-by-voxel connectivity
approach was adopted in (Chong et al., 2016), while 136 fea-
tures measuring the correlations among 17 ROIs were used in
this research. Since one of the key traits of the proposed MMI-
DDS is interpretability, the use of a ROI-based approach may
have easy adoption in clinical practice. It is certainly in the inter-
est of the team to explore the use of a voxel-by-voxel approach
to investigate whether a better accuracy may be achieved from
this dataset.

4.3. Biomarker identification

For each classification model in the last column of Table 1, we
apply the proposed clinical utility engine to find the contribu-
tion of each feature in the respective imaging modality. Because
LSVM gives the highest accuracy, we examine the result for
LSVM more closely. Specifically, we would like to focus on the
features that have large positive or negative contributions to the
classification accuracy; i.e., features whose contribution weights
are large in magnitude. These features have higher likelihood of
being potential migraine biomarkers. To this end, we pool the
weights from all of the modalities together and rank them from
the largest to the smallest in terms of their magnitudes. This
would give us a rank for the features. Table 2 lists the features
that rank in the top 5%. These roughly correspond to features
that are significant at a 0.05 significance level, a common choice
for assessing statistical significance. Figure 2 highlights the
ROIs corresponding to the area features in Table 2 on the brain
surface. Figure 3 shows the resting-state functional connectivity
in Table 2 on the brain surface.

As expected, given the symptoms of migraine, the brain
regions most contributing to migraine classification (those
listed in Table 2) play important roles in pain processing and

Table . Imaging features that rank in the top % in terms of the magnitudes of
contribution weights for LSVM (L: left hemisphere of the brain; R: right hemisphere
of the brain).

Feature set Features

Area (MRI) Frontal pole (L), Inferior temporal (L), Middle temporal
(L), Transverse temporal (L), Transverse temporal (R),
Banks of the superior temporal (R), Precentral (R),
Paracentral (R), Entorhinal (R)

Thickness (MRI) Insula (R)
Volume (MRI) None
Resting-state
functional
Connectivity
(fMRI)

< Posterior cingulate, Dorsolateral prefrontal>
< Anterior cingulate, Amygdala>
< Inferior lateral parietal, Supplementary motor>
< Primary somatosensory, Temporal pole>

< Temporal pole, Caudate>
<Middle cingulate, Secondary somatosensory>

< Inferior lateral parietal, Temporal pole>

processing of multisensory stimuli. Whereas some are regions
that are predominantly responsible for sensory-discriminative
pain processing (e.g., somatosensory cortex), others are respon-
sible for affective-emotional processing (e.g., amygdala, anterior
cingulate cortex), cognitive processing (e.g., prefrontal cortex),
or integration of incoming sensory information from differ-
ent domains (e.g., temporal pole). Several of these regions

Figure . Resting-state functional connectivities corresponding to Table . For illus-
tration purposes, functional connectivities are shown on an inflated right hemi-
sphere average brain surface. DLPC=dorsolateral prefrontal; ant. cingulate= ante-
rior cingulate; inf. lat. parietal = inferior lateral parietal; mid. cingulate = middle
cingulate; post. cingulate = posterior cingulate; prim. somatosensory = primary
somatosensory; sec. somatosensory = secondary somatosensory; supp. motor =
supplementary motor; temp. pole= temporal pole.
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have commonly been identified as having atypical structure
or function in previous migraine studies. The temporal pole,
a multisensory region that integrates somatosensory, visual,
auditory, and olfactory stimuli (Schwedt, 2013), has frequently
been identified as having atypical structure, function and func-
tional connectivity in migraine studies (Schwedt et al., 2014b;
Rocca et al., 2006). Atypical function of the temporal pole in
PMs might contribute to common migraine symptoms, such as
the exacerbation of migraine headache intensity when exposed
to lights and sounds. The anterior cingulate cortex is involved
in affective components of pain processing, including pain
anticipation (Palermo et al., 2015), and has been shown to have
atypical activation, structure, and functional connectivity in
PMs (Russo et al., 2012); Jin et al., 2013; Schwedt et al., 2013).
The amygdala and middle cingulate cortex are also involved
with determining pain affect, with the middle cingulate cor-
tex possibly having additional roles in the integration of other
aspects of pain processing (e.g., sensory discriminative, affective,
cognitive) (Palermo et al., 2015; Simons et al., 2014). One fMRI
study on heat pain processing found that interictal PMs showed
stronger middle cingulate cortex activation than HCs (Schwedt
et al., 2014a). PMs have also been demonstrated to have atypical
stimulus-induced activation of the amygdala during migraine
attacks and atypical functional connectivity of the amygdala
compared to HCs (Schwedt et al., 2013; Stankewitz and May,
2011). Our findings are consistent with these previous findings.

5. Conclusion

In this article, we developed a clinical decision support sys-
tem, MMI-DDS, which integrates multi-modality imaging data
for disease diagnosis. The system was designed to achieve
flexibility, sufficient accuracy, and interpretability, which are
three important traits required for clinical decision support sys-
tems but, unfortunately, are inadequately addressed by prior
research. Specifically, our proposed system included amodality-
wise PCA, a cPSO algorithm for classification, and a clinical
utility engine for identifying contributing features to facilitate
biomarker identification. We applied the proposed MMI-DDS
to migraine diagnosis by integrating cortical thickness, area,
and volume data acquired from structural MRI and resting-
state functional connectivity data from fMRI. A high accuracy
of 83%was achieved by integrating the structural and functional
modalities together, which is significantly better than using sin-
gle modalities alone. Furthermore, the clinical utility engine
identified contributing features to the classification accuracy.
Highly ranked features according to their respective contribut-
ing weights were found to be relevant to migraine, as confirmed
by existing studies. Future research includes extending the sys-
tem’s capability to multi-class classification that is useful for
disease subtype classification, and to prediction of numerical
response variables, such as disease severity.
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