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A Novel Semi-Supervised Learning Model for
Smartphone-Based Health Telemonitoring
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Abstract— Telemonitoring is the use of electronic devices such
as smartphones to remotely monitor patients. It provides great
convenience and enables timely medical decisions. To facilitate
the decision making for each patient, a model is needed to
translate the data collected by the patient’s smartphone into a
predicted score for his/her disease severity. To train a robust
predictive model, semi-supervised learning (SSL) provides a
viable approach by integrating both labeled and unlabeled
samples to leverage all the available data from each patient.
There are two challenging issues that need to be simultane-
ously addressed in using SSL for this problem: (1) feature
selection from high-dimensional noisy telemonitoring data; and
(2) instance selection from many, possibly redundant unlabeled
samples. We propose a novel SSL model allowing for simulta-
neous feature and instance selection, namely the S2SSL model.
We present a real-data application of telemonitoring for patients
with Parkinson’s Disease using their smartphone-collected activ-
ity data such as tapping and speaking. A total of 382 features
were extracted from the activity data of each patient. 74 labeled
and 563 unlabeled instances from 37 patients were used to
train S2SSL. The trained model achieved a high accuracy of
0.828 correlation between the true and predicted disease severity
scores on a validation dataset.

Note to Practitioners—Telemonitoring is an emerging health
care platform enabled by smartphones and wearables. Because
it allows for health data to be collected anytime and anywhere,
patients can be frequently monitored and medical decisions can
be made more timely and effectively. This paper addresses the
data science challenges in leveraging the telemonitoring platform
to benefit patient care. Specifically, we propose a new model,
S2SSL, to tackle these challenges and provide better robustness,
accuracy, and efficiency. This paper may be interesting to health
care practitioners seeking advanced analytics capabilities to
model and integrate the data collected through telemonitoring
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devices, with ultimate purposes of improving the decision in treat-
ing each patient and increasing patient access to specialized care.

Index Terms— Machine learning, statistical modeling, health
care, mobile health, telemonitoring, Parkinson’s disease.

I. INTRODUCTION

TELEMONITORING is the use of electronic devices to
remotely monitor patients. Recent years have witnessed

a surge of using smartphones for telemonitoring. According to
a 2019 Pew Research Survey, approximately 81% of American
adults own a smartphone [67]. Various sensors are equipped
on a smartphone, such as a microphone, camera, accelerom-
eter, and gyroscopes. Together with specially-designed apps,
smartphones can collect abundant health data of the users.

In this paper, we focus on smartphone-based telemonitoring
of Parkinson’s Disease (PD). PD is the second most com-
mon neurodegenerative disorder (after Alzheimer’s Disease).
PD currently affects seven to ten million people worldwide [1].
Patients suffer from movement disorder, tremors, and voice
impairment. There is no known cure for PD, but effective
treatment may slow down the progression.

Conventionally, to assess PD severity, patients need to go
to a specialized clinic to be examined. One of the commonly
used clinical instruments to assist the examination is called the
Movement Disorder Society Unified Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS) [3]. MDS-UPDRS is a survey with
65 questions. The total score summing over a patient’s answers
to these questions ranges from 0 to 64 indicating the worst pos-
sible disability. The limitation of in-clinic examination is that it
cannot be done frequently due to practical constraints such as
cost, clinical staffing, and logistic inconvenience. Thus, clinical
visits of most patients range from four to six months, and this
situation is even worse for patients living in remote, resource-
poor areas. Infrequent examinations make it difficult to closely
track disease progression, which poses a significant challenge
to timely adjustment of treatment for the optimal result.

To overcome the challenge and limitations of in-clinic
examination, telemonitoring provides great promise. Several
smartphones or smartwatch-based apps for PD have been
developed in recent years such as mPower [2], Fox Wearable
Companion [72], and PDMove [73]. These apps guide the user
through some pre-designed activities to measure PD symptoms
such as walking, tapping, and speaking. The activity data is
collected by built-in sensors of the smartphone/smartwatch
such as a microphone, accelerometer, and gyroscope. As the
app can be used at patient self-designated times and places,
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this flexibility makes it possible to collect frequent data about
each patient for timely assessment.

Accompanying the advantages of telemonitoring data are
data science challenges regarding how to integrate the multi-
modal, high-dimensional, noisy datasets collected by the tele-
monitoring platform. Specifically, this paper focuses on the
task of building a machine learning model to predict a disease
severity score Y (e.g., MDS-UPDRS total score) based on
the activity data X collected by the telemonitoring app (e.g.,
tapping, speaking, etc.). With this model, the disease severity
of a patient can be predicted each time the patient uses the
app to perform the activities. This allows the disease severity
to be assessed in a timely manner, progression to be closely
tracked, and treatment to be properly adjusted.

There are several challenging issues in building the pre-
dictive model. First, although the activity data X can be col-
lected frequently through telemonitoring (e.g., daily), disease
assessment Y is significantly less frequent (e.g., in months).
As a result, the labeled samples of (X, Y) for each patient
are quite limited, which is insufficient to train a robust
model. Furthermore, although it could be helpful to include
the abundant unlabeled samples (i.e., samples of X without
matching Y) to facilitate the model training, it remains a
challenge how to effectively leverage these unlabeled samples.
In machine learning, the subfield of integrating labeled and
unlabeled samples for building a predictive model is known
as semi-supervised learning (SSL). However, the existing SSL
models lack a simultaneous feature selection and instance
selection (S2) capability.

The S2 capability of SSL is essential for our problem. Fea-
ture selection is important because the activity data collected
via telemonitoring is high-dimensional and noisy. Instance
selection refers to the selection of informative unlabeled
samples to include in model training. As mentioned previously,
it is easy to generate activity data, which results in many
unlabeled samples from each patient. However, including all
of them in modeling training is computationally inefficient.
Also, because the activity is performed by patients without
supervision, the data quality of unlabeled samples could vary
depending on environmental disturbance and patient compli-
ance. Thus, it is important to select informative unlabeled
samples to include in model training. To our best knowledge,
there is limited work in SSL that simultaneously addresses
feature and instance selection in a unified framework.

In this paper, we propose a novel S2SSL model, and the
contributions of this work are summarized as follows:

• New model formulation to integrate S2 into the SSL
design: We propose a novel mathematical formulation of
S2SSL based on manifold learning in the Reproducing
Kernel Hilbert Space (RKHS). Both feature and instance
selection are integrated within the same non-linear model
framework that provides flexibility for modeling the com-
plicated relationship between the activity data and MDS-
UPDRS.

• Algorithm for parameter estimation of S2SSL: We
develop an algorithm for estimating the parameters
of the proposed S2SSL model by integrating integer

programming and bio-inspired swarm intelligence opti-
mization. The former helps find the optimal instance
subset efficiently and meanwhile preserves the manifold
underlying the original instance set. The latter provides a
flexible wrapper approach for feature selection, allowing
for finding the near-optimal solution efficiently using
parallel computing resources.

• Contribution to telemonitoring of PD: we apply S2SSL
to an application of smartphone-based telemonitoring of
PD patients using activity data collected by mPower.
S2SSL achieves high accuracy in predicting MDS-
UPDRS. The selected features by our algorithm also
shed some light on which aspects of the movement and
speech functions of PD patients are mostly impaired by
the disease. We discuss how the proposed method can
potentially help improve health care automation in several
aspects such as: enabling frequent, remote health monitor-
ing for each patient and timely medical decisions; improv-
ing patient access to advanced care; and facilitating the
design of efficient and effective patient triage systems.
A general framework for the telemonitoring workflow
to translate activity data collected from smartphones or
smartwatch-based apps into a severity score of the disease
is shown in Fig. 1).

The remainder of this paper is organized as follows: Section II
reviews related works and points out gaps. Section III presents
the mathematical formulation of S2SSL. Section IV presents
the parameter estimation algorithm. Section V conducts sim-
ulation experiments. Section VI provides the application case
study. Section VII concludes the paper.

II. RELATED WORKS

The methodological development of this paper is related
to SSL in machine learning. We first provide an overview
of different SSL models (Sec. II.A). Then, we review the
existing work of instance selection in SSL (Sec. II.B) and the
existing work of feature selection in SSL (Sec. II.C). We found
that there is limited work for integrating instance and feature
selection in a unified framework (Sec. II.D). This gap drives
the methodological development of this paper.

A. Semi-Supervised Learning (SSL)

SSL models fall into several major categories including
generative models [4], [5], [54], [76] self-training [6], [7],
[55], [77] co-training [8], [9], [56], [78] low-density separation
[10], [11], [57], [79] and manifold learning [12], [13], [58],
[59], [80]. Among these methods, manifold learning has drawn
much attention in recent years due to the rigorous mathe-
matical formulation and demonstrated good performance in
various applications. Specifically, graph-based manifold learn-
ing is considered an excellent choice with high-dimensional
features. For example, Zhu and Lafferty [12] proposed a
regularized generative mixture model with graph Laplacian
and demonstrated its application on handwritten digit and
teapot image datasets. Xie et al. [58] introduced a novel man-
ifold regularization (MR) based distributed SSL algorithm on
the “Concrete” and “Breast Cancer Wisconsin (Diagnostic)”
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Fig. 1. Overview of telemonitoring workflow, data science challenges in predictive modeling, and proposed solution. Telemonitoring Workflow: First a patient
performs exercises on a smartphone. The information from the exercises is then recorded by the smartphone and sent to a database where feature extraction
is performed. Next, predictive model takes as input the extracted features and makes a prediction on the disease severity for a timely medical decision.
In Predictive Modeling, there are three common issues in telemonitoring that are addressed by this work: (1) small sample size of labeled data (addressed by
semi-supervised learning), (2) high-dimensional and noise features (addressed by feature selection), and (3) many (redundant) unlabeled instances (addressed
by instance selection). The main contribution of this work is building a model that can perform all three tasks simultaneously to predict a continuous disease
severity score.

datasets. Zhao et al. [59] developed a semi-supervised broad
learning system using manifold regularization on the G50C,
MNIST, and NORB datasets. Belkin et al. [13] proposed
a graph-based regularization framework that relied on the
properties of RKHS to enable efficient and accurate prediction.
In this paper, graph-based manifold learning is chosen to form
the base model of the proposed S2SSL.Research works that
extended the model in [13] have mainly focused on transfer
learning [84], [85], [86], [87], [88], domain adaptation [89],
[90], [91], [92], [93], non-negative matrix factorization [94],
[95], [96], graph convolutional neural networks [97], [98],
[99], [100], and other deep learning applications [101], [102],
[103], [104], [105], [106], [107]. There is also some work on
feature selection [62], [75], [108], [109], [110], [111], [112]
and instance selection [113], [114], [115]. However, none of
these existing works have covered simultaneous instance and
feature selection in semi-supervised regression. The reason
why we considered the original model in [13] as our base
model is because of the simplicity of its implementation for
finding a solution via the Representer Theorem [35]. With
a given set of features and instances, our proposed S2SSL
reduces to the original Laplacian Regularized Least Squares
in reference [13], allowing for ease in implementation by
practitioners who are familiar with the method and need to
augment it with feature and instance selection.

B. Instance Selection in SSL

In graph-based manifold learning, the graph is constructed
with nodes being labeled and unlabeled instances. The weight
of an edge between two nodes is computed by a kernel in the
feature space. Because the graph is used as an input to an SSL

algorithm, the computational efficiency and accuracy of the
algorithm are affected by the graph. To reduce the complexity
of the graph, there are several ways: graph sparsification, graph
embedding, and instance selection.

Graph sparsification reduces edges, not instances/nodes.
Typical algorithms include KNN [14], b-matching [15], and
minimum spanning tree [16]. Graph embedding reduces the
complexity of the graph Laplacian matrix by sparse coding
[17], [18] or low-rank approximation [19]. Instance selection
reduces the nodes, which results in a smaller graph. Because
an SSL algorithm typically needs to invert the graph Laplacian
matrix, instance selection provides a more direct approach
to help stabilize the matrix inversion and improve compu-
tational efficiency. Despite the advantage, instance selection
is less studied in the SSL literature. We noted one work
by Sun et al. [20], in which a manifold-preserving instance
selection algorithm was proposed to maximize the total edge
weight between the selected and unselected instances/nodes
under a given number of selected instances.

C. Feature Selection in SSL

Feature selection has been primarily investigated for super-
vised learning methods. Less work is done for SSL [63].
Some of the methods developed for supervised learning can be
applied to SSL. Feature selection methods can be divided into
filter, embedded, and wrapper methods. Filter methods do not
need the labels of samples/instances. Therefore, theoretically
speaking, any filter method developed for supervised learning
can be used for SSL. However, because feature filtering
does not consider the predictive value of the features to the
response variable, there is a high risk that relevant features
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may be filtered out. Embedded methods incorporate feature
selection into the objective function of fitting a predictive
model [21], [22], [23], [62], [66], [75], [81]. These methods
enjoy the benefit of integrating feature selection and predictive
modeling fitting. The limitation, however, is that the integra-
tion/embedding mechanism must be designed specifically for
each type of predictive model, and therefore is not universally
applicable.

In contrast, wrapper methods do not cling to any particular
predictive model and can be wrapped around any base learner.
This provides greater flexibility. In SSL, wrapper methods such
as sequential feature selection have been integrated with self-
training [24], [25], [65], [82]. Ensemble learning has been used
to extend the capability of a single base learner to improve the
robustness [26], [27], [28], [64], [83].

D. Gaps of the Existing Research

From our literature review of SSL papers, we found that
although feature selection and instance selection have been
separately explored for SSL models, there is limited work
for integrating instance and feature selection in a unified
framework. This drives our methodological development in
this paper. Specifically, the proposed S2SSL uses graph-based
manifold learning as the base model and augments its capacity
by simultaneous feature and instance selection. For instance
selection, we propose a novel integer programming optimiza-
tion to find the minimum number of instances that are needed
to preserve the manifold. This overcomes several limitations of
existing algorithms, e.g., requiring a pre-determined number of
selected instances and using a greedy search [20]. For feature
selection, we propose a flexible wrapper approach based on
bio-inspired swarm intelligence optimization, which allows
for finding the near-optimal solution efficiently using parallel
computing resources.

There has been limited work performed with SSL in the area
of telemonitoring[60], [61]. Deshmukh et al. [60] proposed
a semi-supervised transfer learning model that was tested
on the Parkinson’s Disease Telemonitoring dataset from the
UCI machine learning repository for prediction accuracy.
Gogna et al. [61] developed an autoencoder-based framework
that simultaneously reconstructs electrocardiogram and elec-
troencephalograms in a semi-supervised fashion. Neither of
these works address feature or instance selection in semi-
supervised frameworks, and there is still much work to be
performed in the area of SSL in telemonitoring.

III. MATHEMATICAL FORMULATION OF S2SSL

Suppose there are L labeled samples/instances, {xl,yl}L
l=1.

Note that we will use “samples” and “instances” interchange-
ably in this paper. xl is a set of features (e.g., the features
extracted from smartphone-collected activity data). yl is the
response variable (e.g., the MDS-UPDRS summary score).
Assume yl is on a continuous scale, whereas the extension
to other types of response is straightforward. For example,
if one were interested in classification using a binary response
variable yl can be transformed by using a sigmoid function
and thresholding. In addition, suppose there are U unlabeled

instances. {xl}L+U
l=L+1. The base model we will build S2SSL

upon is a graph-based manifold learning model developed
by Belkin et al. [13]: (1) as shown at the bottom of the
next page, f is a predictive function on the RKHS, i.e.,
f ∈ HK , with a Mercer Kernel K , which can model a
non-linear relationship between the features and the response
variable. � f �2

K is a norm on HK , which encourages stability
and generalizability of the solution. γA and γI are tuning
parameters. The 3rd term in (1) deserves more explana-
tion: f =( f (x1), . . . , f (xL+U ))T contains the predictions on all
labeled and unlabeled instances. � is a (L + U) × (L + U)
matrix that regularizes f . A common choice of � is the
Laplacian matrix of a graph G =(V , W ). V contains labeled
and unlabeled instances as nodes of the graph. W contains
edge weights

�
wi j

�
between each pair of nodes. The weight

is higher if two nodes/instances are closer on the feature space.
Under this definition �, the 3rd term is equivalent to:

fT �f =
�

i, j=1,...,L+U,i< j
wi j

�
f (xi) − f

�
x j

��2
.

The role of this term is to encourage the predictions of two
instances to be similar if these instances have a bigger weight
in the graph. This is also known as manifold learning because
the graph characterizes the manifold underlying the observed
features.

The model in (1) has two major areas for improvement:
First, it includes all the unlabeled instances. This creates
problems in numerical stability and computational efficiency
in solving the optimization. Second, it includes all the features,
but some of them may be noisy.

To enable simultaneous instance and feature selection,
we propose to modify the SSL model in (1) to the following
form, namely the S2SSL model: (2) as shown at the bottom
of the next page.

Comparing the new model in (2) with (1), two new notations
are introduced: R and S. RD×D = diag(r1, . . . , rD) is a
diagonal matrix. rd = 1 if the corresponding feature is selected
and rd = 0 otherwise, d = 1, . . . , D. S(L+U)×(L+U) =
diag(s1, . . . , sL+U ). sl = 1 if the corresponding instance is
selected and sl = 0 otherwise, l = 1, . . . , L + U . Also,
since the graph Laplacian is computed based on the selected
features, we use �(R) to denote that � is a function of the
selected features. The formulation in (2) has three parameters
to be estimated: f , R and S, which is not easy. In the next
section, we propose an algorithm to solve this formulation.

IV. PARAMETER ESTIMATION OF S2SSL BY INTEGRATING

INTEGER PROGRAMMING AND SWARM INTELLIGENCE

OPTIMIZATION

Existing algorithms do not suffice for solving the S2SSL
formulation in (2). Simultaneously solving all three parame-
ters is impossible. Coordinate descent types of algorithms
[29] that iteratively cycle through each parameter also do
not work because the descending direction is hard to find.
Furthermore, having the parameters complicatedly entangled
with one another rules out other algorithms that tackle mixed-
integer nonlinear optimization problems, such as alpha branch
and bound (α-BB) [30], [31] and factorable programming
trees [32], [33].
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A. Overview of the Proposed Algorithm
It is very difficult to solve the feature selection matrix R

in (2) directly, because it is embedded in the graph Laplacian
matrix �. To alleviate this challenge, we propose to use a
wrapper approach to identify the optimal feature subset. The
advantage of wrapper algorithms in feature selection is that
the algorithm can be integrated with any base learner. In our
case, the base learner, i.e., with a fixed feature subset, is (2)
with only two parameters: the predictive function f and the
instance selection matrix S. This base learner is much easier
to solve than the original formulation with three parameters.
Furthermore, note that in the base learner with two parameters,
the instance selection matrix S only appears in the last term
that regularizes the predictive functions on all labeled and
unlabeled samples. This observation sheds some light on how
to select instances. Specifically, our idea is that the instances
should be selected as those that preserve the underlying
manifold formed by all the labeled and unlabeled samples.
In this way, the selected instances would impose a similar
regularization effect as that by including all the instances,
while at the same time greatly reducing the computational
complexity.

Specifically, our proposed algorithm includes three key
components:

• Instance selection: Given R (a feature subset), a manifold-
preserving integer programming optimization is proposed
to solve for S(R), which is the optimal instance subset
under this specific feature subset. This optimization will
be discussed in Sec. IV.B.

• Solving the predictive function: With the R and S(R), the
predictive function f can be solved using the Representer
Theorem. This will be discussed in Sec. IV.C.

B. Manifold-Preserving Integer Programming Optimization
for Instance Selection

Focus on the 3rd term of (2) that involves S. S�(R)S
produces a submatrix of �(R) that only involves selected
instances. For example, consider a simple case with five
instances and the first three being selected. Then,

S =

⎡
⎢⎢⎢⎢⎣

1
1

1
0

0

⎤
⎥⎥⎥⎥⎦, and S�(R)S =

⎡
⎢⎢⎢⎢⎣

ϕ11 ϕ12 ϕ13 0 0
ϕ21 ϕ22 ϕ23 0 0
ϕ31 ϕ32 ϕ33 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦.

Because this submatrix is used to regularize the predictive
function, the submatrix is considered adequate if it can exert
a similar regularization effect as the full matrix. In other
words, the selected instances in this submatrix can preserve
the underlying manifold formed by all the instances. To find
the adequate submatrix (i.e., to solve for S), we propose the
following optimization: (3) as shown at the bottom of the next
page.

The last constraint deserves some explanation: ali is an 0/1
variable indicating if instance i is a neighbor of instance l.
ali is obtained by applying a K-Nearest Neighbors (KNN)
algorithm to the graph G(R) and converting it into an
unweighted graph (i.e., with 0/1 weights). Refer to Sec. III for
the definition of G. G(R) is a graph constructed in a similar
way but only using the selected features in R.

L+U
i=1 ali si

counts how many neighbors of instance l are selected. This
number is required to be at least λ, which is a tuning parameter.
The λ parameter can be determined by using a line search. The
purpose of this constraint is to make sure a certain number of
neighbors of each instance to be selected, so that in case that
instance is not selected, it still has a good representation in the
model by its neighbors. The optimization in (3) is an integer
programming problem and can be solved by commonly used
solvers such as branch and bound [34].

C. Solving Predictive Function by Representer Theorem

With fixed R and S, the formulation in (2) has only the
predictive function f to be solved, i.e.,

argmin
f ∈HK ,

1

L

�L

l=1
(yl − f (xlR))2 + γA� f �2

K + γI fT S�(R)Sf .

(4)

Using the Representer Theorem [35], we know that the solu-
tion of (4) takes the following form:

f (xR) = αT K (xR, ·)S, (5)

where x is any instance we want to predict, K (xR, ·) =
(K (xR, x1R), . . . , K (xR, xL+U R))T contains the kernels com-
puted between x and each instance in the training set using
the selected features in R. α= (α1, . . . , αL+U )T contains the
coefficients. To solve these coefficients, insert (5) into (4).

f ∗ = argmin
f ∈HK

loss on labeled
instances� �� �

1

L

�L

l=1
(yl − f (xl))

2 +

model
complexity� �� �
γA� f �2

K +

regularization on
predictions of labeled

and unlabeled instances� �� �
γI fT �f (1)

argmin
f ∈HK ,R,S

1

L

�L

l=1
(yl − f (

feature
subset����
xlR) )2 + γA� f �2

K + γl

instance����
fT S �(R)Sf . (2)
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Then, we get

argmin
α

1

L
(y − JKα)T (y − JKα)

+γAαT SKSα + γI α
T SK�(R)KSα (6)

where y= (y1, . . . , yL , 0, . . . , 0)T is a (L + U) × 1 vector
that contains the responses of L labeled instances followed
by U zeros. K is a (L + U) × (L + U) kernel matrix over
the labeled and unlabeled instances in the training set using
the selected features in R. J is a diagonal matrix with the
first L diagonal elements being ones and the next U elements
being zeros. We can derive the minimizer to the optimization
problem in (6) as:

α∗ �
�

α̃
0

�
,

where 0 corresponds to the instances that are not selected in
S, and

α̃ = �
J̃K̃+γALI+γIL�̃(R)K̃

�−1
ỹ.

Here, the overhead “∼” is used to denote a sub-matrix
or sub-vector after removing the rows/columns or elements
corresponding to the instances that are not selected in S.

D. PSO-Based Wrapper for Feature Selection

The solution of the predictive function f , as described in
Sec. C, assumes that a feature subset R and an instance subset
S have been given. Because S can be solved with a given R
(Sec. B), the performance of f is ultimately affected by what
features are selected in R.

To find the optimal feature subset, we adopt a wrapper
method due to its flexibility of being able to integrate with
any type of predictive model. The basic idea of a wrapper
method is to use an efficient algorithm to search through
the solution space, which in our case is the space containing
different subsets of the features. Since this space is typically
very large, an exhaustive search is impossible. We propose
to use PSO to search for the optimal solution due to its
demonstrated efficiency and optimality in various of other
applications [36], [37].

In what follows, we present the detailed design of using PSO
to search for the optimal feature subset in our problem. The
algorithm starts by putting together a collection of m particles.
The initial position of each particle in the feature space is
randomly assigned and represented by r0

i . r0
i is a D ×1 vector

of 0/1 with one representing the corresponding feature being

selected and zero otherwise, i.e., r0
i corresponds to a subset of

features. Then, these particles will move with their velocities
determined by the following equation: (7) as shown at the
bottom of the next page. In (7), vt

i is the velocity of particle i
at the t-th iteration. On the right-hand side, vt−1

i is the velocity
at the previous iteration. p0:t

i is the historically best position
of particle i . pt

g is the globally best position among all the
particles. We will discuss how to find these best positions
later in this section. rt

i is the current position of particle i . b1

and b2 are sampled from a uniform distribution U [0, 1] to add
stochasticity. ωt , c1 and c2 are weights to combine the three
parts in determining the velocity of particle i . Appropriate
values for ωt , c1, and c2 are discussed in [38].

After the velocity of each particle is computed by (7), the
position of the particle in the next iteration is updated by

r t+1
id =

�
1, if H

�
v t

id

�
> 0.5

0, otherwise
(8)

In (7), r t+1
id is the d-th element of the position vector rt+1

i .
v t

id is d-th element of the velocity vector vt
i . H

�
v t

id

� = 1

1+e−v t
id

is a sigmoid function that squashes v t
id into the range of [0,1].

Fig. 3 shows a simple example to demonstrate the basic idea
of the PSO algorithm.

• Feature selection: The predictive function corresponding
to the optimal R∗ and S∗(R∗), i.e., f ∗, will be searched
using a wrapper method based on Particle Swarm Opti-
mization (PSO). This will be discussed in Sec. IV.D.

Sec. B-D will discuss each component respectively. Fig. 2 pro-
vides a schematic overview of the inter-relationship of these
components that compose the algorithm.

Note that we have a remaining question yet to be addressed
in the above description of the PSO algorithm, i.e., how to find
the historically best position of a particle and the globally best
position among all the particles. This question boils down to
how to evaluate the goodness for the position of each particle
i at each iteration t , rt

i . Recall that a “position” in our context
corresponds to a feature subset. For a given position/feature
subset, we can use the method in Sec. C to solve the predictive
function. The prediction accuracy, either on a validation set or
through cross validation, can be used to assess the goodness
of the position.

1) Convergence and Repeatability of PSO: Limited theoret-
ical work has been done to investigate the convergence of PSO
due to the difficulty of fully understanding the dynamics of the
algorithm. Practical recommendations have been given by a
few researchers. Eberhart and Shi [39] stated that a pragmatic

min
s

�L+U

l=1
sl . . . . . . . . . . . . . . . . . . Minimize the number of selected instances

s.t. sl ∈ {0, 1}, l = L + 1, . . . , L + U . . . . . .
Binary decision variable
for each instance

sl = 1, l = 1, . . . , L . . . . . . . . . . . . . . . . . . . . . .
Labeled instances must
be selected.�L+U

i=1
ali si ≥ λ, l = 1, . . . , L + U · · · · · · At least λ neighbors of

each instance must be selected.
(3)
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Fig. 2. A schematic overview of the proposed algorithm to solve the S2SSL
model formulation in (2).

Fig. 3. PSO iterations to find the optimal feature subset (for this toy example
assume we have three candidate features in a search space represented by
a 3-dimensional unit cube): At Iteration 0, particles are chosen such that
a random set of candidate features are used to solve a particular objective
function (note positions of particles can only be at corners of the cube, (1,0,0),
(0,1,0), …(1,1,1), where 1 indicates that a feature has been selected, and
0 otherwise); based on model performance, particles velocities are updated
(eq. (7)) and new candidate features are chosen (eq. (7)). This process
continues until the particles’ candidate feature sets converge or when PSO
reaches Iteration N (the predefined maximum number of iterations).

approach is to have minimum and maximum values that each
particle’s velocities can take, Vmin and Vmax , respectively.
In particular for binary PSO, it has been suggested to set
Vmin = −6 and Vmax = 6 to avoid oversaturation in the
sigmoid function. Additionally, it has practically been found
that using an inertia weight ω set to decrease linearly from
0.9 to 0.4 across the chosen iterations allows PSO to explore
a large area at the start of the iterations and to refine the search

later by gradually decreasingω [40]. Additionally, we have
found PSO to be more repeatable when more particles are
used in the search space. Having more particles increases
computation, but with PSO it is easy to implement distributed
computing to achieve a solution that is near-globally optimal.
Since each particle that contains a potential solution in the
swarm is independently trained and tested for a given iteration,
parallel computing can be implemented to handle a swarm
with many particles to search the solution space for the global
optimum. These strategies were used in our experiments,
and we have not seen convergence to be an issue. Finally,
we summarize the steps of the S2SSL algorithm by integrating
Sec. B-C (see Algorithm on the next page).

2) Tuning Parameter Selection: There are three major
tuning parameters including the γA and γI in (2) and the
neighborhood size λ in (3). We use a grid search on these
parameters to minimize the prediction error on a validation
set. Please see Sec. V and VI for more details.

V. SIMULATION STUDY

A. Comparison Between S2SSL and Supervised Learning

We adopt the commonly used S-shape manifold from scikit-
learn [41] to generate simulation data (Fig. 4(a)). The training
set includes 150 instances (6 labeled and the others unlabeled).
Response variables of the labeled instances are indicated by
different colors. A separate validation set of 25 instances is
generated for evaluating model accuracy.

In training the S2SSL model, edge weights of the graph
over labeled and unlabeled instances were computed using a
Gaussian kernel (when compared to other kernels, such as
linear or polynomial, using a Gaussian kernel resulted in the
most accurate predictions). In order to input the graph into the
instance selection algorithm (Eq. (3)), the graph must be binary
and indicate each instance’s nearest neighbors (with 1 indicat-
ing a nearest neighbor, and 0 otherwise). Thus, the graph was
converted to an unweighted one using a KNN algorithm. The
best performance was achieved when K=6. The λ parameter
in the instance selection algorithm (eq. (3)) was determined
by a line search over [1,7]. γA and γI were searched over
a grid of

�
1 × 10−3, . . . , 1 × 101

� × �
1 × 10−3, . . . , 1 × 101

�
.

For comparison, a supervised learning (SL) model was also
trained using only the labeled instances, which is equivalent to
setting γI to be zero. Fig. 4 (b) shows the mean absolute error
(MAE) between predicted and true responses on the validation
set for the two models. S2SSL significantly outperforms SL
(p < 0.001).

B. Utility of Feature Selection in S2SSL

We added noise features to the dataset from the Sec. A
by sampling each feature from N(0, 5). Experiments were

vt
i = ωt vt−1

i + b1c1

move to historical
best position� �� ��

p0:t
i − rt

i

� +b2c2

move to global
best position� �� ��

pt
g − rt

i

�
. (7)
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Fig. 4. (a) 150 training instances (6 labeled – in red circles; others unlabeled – grey dots) on S-shape manifold. (b) MAE (s) denotes Mean Absolute
Error (MAE) ± standard deviation (s) of prediction on the validation set by supervised learning and semi-supervised learning capability provided by S2SSL.
(c) MAE of S2SSL without and with the feature selection capacity under different numbers of noise features.

performed with 1, 5, 10, 50, and 100 noise features. S2SSL
models were trained with feature selection using PSO and
without feature selection. For the former model, the number
of particles used in PSO was 10 times the number of noise
features. Fig. 4 (c) shows the result. Without feature selection,
the model performance deteriorates as more noise features
are included. With feature selection, the MAE is significantly
lower ( p < 0.001).

C. Utility of Instance Selection in S2SSL

We increased the number of instances in Sec. A to 2000
(6 labeled and the rest unlabeled) (Fig. 5(a)). No noise
features were added. S2SSL models were trained with instance
selection by the proposed integer programming optimization
and without instance selection. For the former model, the
best performance was achieved at λ = 2 (see Table I). With
instance selection, the MAE is smaller but the difference is not
statistically significant. However, there is a 70.4% reduction
of model training time.

D. Performance of Simultaneous Feature and Instance
Selection in S2SSL

This final experiment is based on a simulation dataset with
noise features (1, 5, 10, 50, 100) and a large number of
instances (2000). Depending on the number of noise features,
3-100 particles were used in the PSO algorithm for feature
selection. λ = 2, the best setting found in Sec. C, is used
for the instance selection algorithm. Fig 5(b) shows the result.
It is clear that the MAE with feature and instance selection is
significantly lower (p < 0.001).

VI. APPLICATION TO SMARTPHONE-BASED

TELEMONITORING OF PD

In this section, we present an application of S2SSL for pre-
dicting the severity of PD using data collected from patients’
smartphones.

A. Data Collection

The data collection was guided by a patient’s smartphone
running an app mPower, which was developed by Sage
Bionetworks and released in March 2015. Sage Bionetworks
organized a nationwide study that enrolled patients with PD
to use mPower to collect their activity data [2]. To partic-
ipate in the mPower study, each participant needed to self-
navigate through eligibility criteria and submit e-consent to
the conditions. Once the consent process is finished, users
were presented with the option of performing several activities
guided by the mPower app, such as “tapping”, “speaking”, etc.,
which were intended to measure PD-related symptoms.

For the tapping activity, the app instructs the user to use
two fingers on the same hand to tap alternately between two
fixed points on the screen for a period of 20 seconds (Fig. 6).
Time series data of the tapping process is recorded. For the
speaking activity, the user is instructed to say ‘Aaaaah’ into
the microphone at a steady volume for at most 10s (Fig. 6).
The voice signal is recorded.

Each participant of the mPower study not only has the activ-
ity data collected through their smartphones at least once per
day, but also has data of the clinical instrument/questionnaire,
MDS-UPDRS, collected at a much less frequent basis (usually
on a monthly basis). The summary score of MDS-UPDRS
is used as the response variable for representing PD sever-
ity. A score of 0 denotes no disability, while a score of
64 indicates the worst possible disability. For additional
information and demonstration of specific case examples,
we refer the reader to the mPower Public Researcher Portal
(https://www.synapse.org/mpower).

B. Feature Extraction From Smartphone-Collected Data

43 features were extracted from the tapping data based
on previous studies [42], [43], [44]. These features measure
tapping speed, inter-tap interval, position, fatigue, etc. 339
features were extracted from the speaking time series data,
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Fig. 5. (a) 2000 training instances on S-shape manifold. (b) MAE (s) denotes MAE ± standard deviation (s) of S2SSL without and with the simultaneous
instance & feature selection capacity under different numbers of noise features.

TABLE I

COMPARISON OF S2SSL AT DIFFERENT LEVELS OF λ. VALIDATION ERRORS ARE IN TERMS OF MEAN ABSOLUTE ERROR (MAE ± STANDARD

DEVIATION) AND PEARSON CORRELATION; TIME REFERS TO THE TIME TO SAMPLE + TRAIN + TEST; NUMBER SAMPLED IS THE NUMBER

OF INSTANCES SAMPLED FROM THE DATASET. THE BEST SAMPLING RESULT IS λ = 2 (IN BOLD)

Fig. 6. Smartphone-collected activities used in our application and feature
extraction.

based on previous studies [45], [46]. These features character-
ize amplitude (shimmer variants), frequency (jitter variants),

increased noise (signal-to-noise measures), etc (Fig. 6). Mod-
eling by S2SSL.

A subset of 37 PD patients from the mPower study was
included in our application. These patients were selected on
the basis of having monthly MDS-UPDRS scores for at least
three months as well as complete daily tapping and speaking
information. S2SSL was trained on three different datasets:
(1) tapping, (2) speaking, (3) tapping + speaking combined.
The reason why we decided to test on combined datasets of
tapping and speaking is because there is significant variability
in the presentation and progression of PD symptoms [2] across
patients, and we hypothesize that having a model trained on
different types of PD symptoms will result in significantly
improved results. For each dataset, two labeled instances
(i.e.., instances with MDS-UPDRS available) were randomly
selected from each patient and included in the training set,
together with unlabeled instances. The remaining labeled
instances from each patient were included in the validation set.
The training set contained a total of 563 unlabeled instances
and 74 labeled instances, while the validation set contained
70 instances. There was a total of 144 labeled instances (with
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Fig. 7. (a) Prediction accuracy of S2SSL trained on tapping, speaking, and tapping + speaking datasets (where MAE (s) denotes MAE ± standard deviation
(s) and Pearson correlation is used). (b) Selected features and their definitions from the model trained on the tapping + speaking dataset.

TABLE II

COMPARISON OF PROPOSED S2SSL WITH BENCHMARKS ACROSS ALL SIMULATION AND APPLICATION TESTS. S2SSL PERFORMED SIGNIFICANTLY
BETTER THAN THE COMPETING METHODS FOR BOTH SIMULATION DATASETS (P < 0.001) AND THE PD TELEMONITORING APPLICATION

DATASET (P < 0.005). MAE (S) DENOTES MAE ± STANDARD DEVIATION (S). SSL-RF=SEMI-SUPERVISED LEARNING RANDOM FOR-
EST TREE ENSEMBLES; MSSRA=MULTI-SCHEME SEMI-SUPERVISED REGRESSION APPROACH; GS3FS=GRAPH-BASED SEMI-

SUPERVISED SPARSE FEATURE SELECTION

both tapping/speaking features and MDS-UPDRS available)
from the 37 patients. The 144 instances were approximately
equally split between the training set (74) and the validation
set (70). In the training set, two instances were included from
each patient to avoid the potential risk that the model may be
biased by some patients (if more data from these patients were
included than others).

To expedite the training process of S2SSL, computing was
performed using two Intel Xeon E5-2680 v4 CPUs running at
2.40 GHz, which provide 28 CPU cores to perform calcula-
tions for each particle in the PSO in parallel. To further limit
the computational time, we constrained the maximum number
of ones in the position vector of each particle to be 20.

C. Results and Interpretation

Fig. 7 (a) provides a summary of the results for S2SSL
trained on tapping, speaking, and tapping + speaking features.
Inclusion of both tapping and speaking features has a clear
benefit. The reduction of MAE is significant (p = 0.01). Also,
we plotted the predicted versus actual MDS-UPDRS, which
shows better correlation of using combined features.

Since S2SSL trained on tapping + speaking features
achieved the highest accuracy, we examine this result more
closely. 10 features were selected in the combined dataset (2

from tapping and 8 from speaking). Fig. 7(b) provides the
definition for each feature chosen.

The tapping features chosen were the kurTapInter and
madDriftRight. kurTapInter is the kurtosis of the inter-tap
interval. madDriftRight is the median absolute deviation of
drift of finger position between consecutive taps in the right
button. PD patients have been found to have a higher intra-
individual variability of finger tapping due to a lack of control
in fine motor capabilities [47].

The speaking features chosen fit under three categories:

1) Shimmer (Shimmer->F0_PQ5_classical_Schoentgen
and Shimmer->F0_FM),

2) Mel Frequency Cepstral Coefficients (MFCCs)
(mean_MFCC_1st, mean_MFCC_6th, and
std_8th_delta_delta), and

3) Wavelet measures (det_TKEO_mean_10_coef,
app_LT_entropy_log_1_coef, and app_LT_entropy_
log_5_coef).

The shimmer (cycle-to-cycle variation in amplitude) of voice
signal is known to be higher in PD patients than healthy
controls [48], [49], [50]. Shimmer has frequently been used
as a measure of voice signal for PD. Mel Frequency Cepstral
Coefficients (MFCCs) capture variation in both vocal folds
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Algorithm 1 for Solving the S2SSL Optimization in (2)
Input: a training set and a validation set; maximum number
of PSO iterations; γA and γI

Initialization: initialize the positions of m particles, r0
i , i =

1, . . . , m
Iterate: At the t-th iteration and for each particle i , do the
following:

1. Construct the feature subset corresponding to the posi-
tion of the particle, Rt

i = diag
�
rt

i

�
;

2. Construct a graph of all the labeled and unlabeled
instances based on the selected features, G

�
Rt

i

�
, and

compute the graph Laplacian �
�
Rt

i

�
;

3. Convert G
�
Rt

i

�
into an unweighted graph using KNN;

4. Solve the integer programming optimization in (3) to
get the optimal instance subset under this feature subset,
S
�
Rt

i

�
;

5. Solve the predictive function under this instance subset
and feature subset using (6), denoted by f

�
Rt

i , S
�
Rt

i

��
;

6. Apply the predictive function on the validation set and
compute the prediction accuracy;

7. Update the velocity of this particle, i.e., vt
i , using (7);

8. Compute the position of the particle in the next iteration,
rt+1

i , using (7), and go to the next iteration.

Output: f ∗, R∗, and S∗(R∗) corresponding to the highest vali-
dation accuracy—found when the error is no longer decreasing
after a predefined number of iterations or when the maximum
available number of iterations has been reached (t = N).

and the vocal tract (i.e., tongue, lips, jaw, etc.). PD research
has demonstrated that, in addition to the vocal folds that
traditional measures capture, articulators of the vocal tract
(i.e., tongue, lips, jaw, etc.) are affected by the disease [51].
Wavelet measures are derived from the discrete wavelet
transform (DWT), which can quantify both regularity effects
(scale aspects) and transient processes (time aspects) [52].
DWT decomposes the wavelet signal into detail information
(detail coefficients) and course approximation (approximation
coefficients). The main rationale for wavelet measures is that
people with pathological voices cannot sustain a vowel with
minimum deviation from exact periodicity, while healthy
controls can [53].

Table II additionally shows the performance of S2SSL
relative to three semi-supervised learning benchmarks in the
recent literature—namely, Semi-Supervised Learning Random
Forest Tree Ensembles (SSL-RF) [116], Multi-scheme Semi-
Supervised Regression Approach (MSRRA) [117], and Graph-
based Semi-Supervised Sparse Feature Selection (GS3FS)
[75]. Results reported include both simulation datasets and
the PD Telemonitoring dataset.

D. Discussion on Utilities of the Results for Health Care
Automation

There are multi-fold utilities: 1) For a patient with PD,
a predicted MDS-UPDRS score that reflects his/her disease
severity can be generated as soon as the patient performs
activities (e.g., tapping, speaking) guided by the smartphone
app. This prediction can be remotely shared with his/her

physician to make timely medical decisions. Since the patient
can almost perform the activities “anytime anywhere”, his/her
disease progression can be closely monitored and thus better
controlled. 2) With the aid of the proposed telemonitoring
method, patients and medical specialists do not have to be in
physical proximity for the patients to receive medical advice.
This will greatly improve patient access to advanced health
care resources, especially for individuals living in resource-
poor regions or counties. 3) Using the predicted MDS-UPDRS
as a surrogate, hospitals and clinics can design more effective
and efficient patient triage systems. This will facilitate better
decision making regarding which patients should come to a
physical clinic and at what time in order to receive further
evaluation and treatment. This will not only benefit patients
but also prevent overloading the health care system and staff.

VII. CONCLUSION

We proposed a novel semi-supervised learning model,
S2SSL, that allows for simultaneous feature and instance
selection to improve model building from datasets with few
labeled instances, many available features, and an abundance
of unlabeled instances. Because there is no analytical solution
for S2SSL, a parameter estimation method using particle
swarm optimization and integer programming was also devel-
oped.

S2SSL was applied to the activity data of patients with
PD collected by their smartphones and demonstrated excellent
accuracy in predicting their disease severity (0.828 Pearson
correlation on tapping and voice features). Clinically relevant
features were also selected and provided more information
about which features are more effective at predicting the MDS-
UPDRS Parkinson’s Disease severity score.

Future research includes the methodological extension to
other types of response variables and alternative algorithms
for solving the S2SSL formulation, as well as applications
to the telemonitoring of other diseases, such as Alzheimer’s
Disease and post-traumatic headache.
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