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ABSTRACT
In recent years, information available from multiple data modalities has become increasingly com-
mon for industrial engineering and operations research applications. There have been a number
of research works combining these data in unsupervised, supervised, and semi-supervised fashions
that have addressed various issues of combining heterogeneous data, as well as several existing
open challenges that remain to be addressed. In this review paper, we provide an overview of
some methods for the fusion of multimodal data. We provide detailed real-world examples in
manufacturing and medicine, introduce early, late, and intermediate fusion, as well as discuss sev-
eral approaches under decomposition-based and neural network fusion paradigms. We summarize
the capabilities and limitations of these methods and conclude the review article by discussing
the existing challenges and potential research opportunities.
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1. Introduction

Evaluating, analyzing, and modeling complex systems
require a multi-perspective data acquisition framework. Such
a framework gathers data through different instruments,
sensors, and experiments to be translated into information
and knowledge about the system. Like Rumi’s elephant in
the dark room, each instrument or sensor collects partial
information about a few characteristics of the system.
However, when the partial information is combined, one
may be able to discern a more complete picture. We refer to
information collected by each instrument as a data mode
and the full dataset obtained from the multi-perspective
acquisition framework as a multimodal dataset. A multivari-
ate dataset may also contain features collected from multiple
instruments; however, there is no distinction of particular
perspectives represented by one or more of the features. In
contrast, a multimodal dataset is organized in such a way
that data can be grouped into multiple perspectives, for
which each perspective consists of at least one feature.
Improvements in sensing technology have created opportu-
nities for the acquisition of multimodal data, which can be
used for analysis that goes beyond separate evaluation of
each mode of the data. In this article, data fusion is defined
as the process of integrating different modes of multimodal
data to achieve a more comprehensive or accurate under-
standing of the system that could not be achieved otherwise
by analysis of each mode.

The relationship between multiple data sets was first ana-
lyzed in the breakthrough work by Hotelling (1936). Since
then, the number of analysis methods for multimodal

datasets has increased rapidly. Techniques such as multiset
canonical correlation analysis, parallel factor analysis
(PARAFAC), and tensor decomposition were introduced in
the 1960s and 1970s (Tucker, 1964; Ilarshman, 1970;
Kettenring, 1971). Nevertheless, only a limited number of
domains, including chemometrics, benefited from these
developments. With the recent insurgence of multimodal
datasets, an increasing number of domains, including manu-
facturing, healthcare, and renewable energy, demonstrate
interest in exploiting the potential benefits of these datasets.

A systematic analysis and fusion of multimodality data-
sets results in increased understanding that can facilitate
decision making and result in systems improvement. We
define systems improvement as the practice of using data-
driven actions that increase the efficiency of the system’s
processes. This increase of efficiency can be due to more
effective descriptive and predictive models, more reliable
abnormality detection methods, or more accurate and inter-
pretable features extracted from data that facilitate decision
making. Examples of such systems improvement include the
following applications: in systems prognostics, where the
remaining useful lifetime of a system component is pre-
dicted for better maintenance scheduling; in healthcare,
where medical imaging and other patient data are used for
more accurate identification of a disease; in renewable
energy, where consumption data is used to improve energy
management; and in agriculture, where imaging and weather
data can be used for crop yield predictions and crop health
management. Even though the benefits of analyzing multi-
modal data sets is evident, the knowledge of how to exploit
the similarities and differences of modalities is still limited.
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Problems such as heterogeneity of data (i.e., modes are in
different dimension or structure), differences in scale, reso-
lution, accuracy, conflicting modes, and redundant modes
create significant challenges that hinder the advancements of
multimodal data analysis.

We group the multimodal data fusion algorithms into
two classes: (i) algorithms that do not use neural networks
and mainly focus on decomposition techniques; (ii) methods
that use neural networks to perform data fusion. Tensor
data analysis, factor analysis, and generalized principal com-
plement analysis belong to the first group of algorithms, and
are suitable when the sample size is small compared with
the number of variables. Deep neural networks with archi-
tectures that contain several layers of fusion belong to
second class of algorithms. In this article, we refer to the
first class of algorithms as decomposition-based fusion algo-
rithms and to the second class of algorithms as neural net-
work-based algorithms. Within both of these categories,
three ways of fusion are available: (i) early fusion (low-level
fusion), (ii) late fusion (high-level fusion), and (iii) inter-
mediate fusion. Some application areas tend to take one way
over others. For example, whereas in healthcare applications
late fusion is more common (Zhang and Ma, 2012; Suk
et al., 2017; Khasha et al., 2019; Liu, Chen, Wu, Weidman,
Lure, Li and Alzheimer’s Disease Neuroimaging Initiative,
2020), in systems monitoring and prognostics early fusion is
more prevalent (Liu et al., 2013; Liu and Huang, 2014; Liu
et al., 2015; Fang et al., 2017; Chehade et al., 2018; Song
and Liu, 2018).

Early fusion (or low-level fusion) is the process of fusing
modalities by only using information from the predictors
(i.e., independent variables). Early fusion can either occur as
a preprocessing task before incorporation into the main
model, or as a purely unsupervised task to generate features
that best describe the underlying patterns across modalities.
In feature preprocessing, the main goal is to combine raw
features from different modalities to generate new features
that combine complementary information of the raw fea-
tures from different modalities. These new features are then
inputted to a supervised model for a training task. Early
fusion as a purely unsupervised task has the goal of combin-
ing features across modalities to discern underlying patterns
present across different modalities or generate visualization
that aptly describes information from the different modal-
ities (i.e., combining different types of medical imaging to
generate another image that displays complementary infor-
mation) (He et al., 2010; Moin et al., 2016; Rajalingam and
Priya, 2017). Principal component regression is an example
of early fusion, in which Principal Component Analysis
(PCA) is performed to extract input features that are then
employed to predict an output value.

Late fusion (or high-level fusion) is fusion at the decision
level. When modalities have been processed and modeled
separately, the individual predictions from each modality
can be combined in a number of ways depending on the
importance of each modality for the prediction task, the
appropriateness of the modality combination (whether the
fusion should be modeled as an element-wise summation

(Brentan et al., 2017), weighted average (Kahou et al., 2016),
bi-linear product (Chen and Irwin, 2017), etc.), the noise
level present in each modality, and/or other considerations
deemed appropriate by the practitioner. Some popular
examples of late fusion include ensemble learning (Yokoya
et al., 2017; Sagi and Rokach, 2018; Samareh et al., 2018)
and deep late fusion (Simonyan and Zisserman, 2014;
Kahou et al., 2016; Wu et al., 2016; Ramachandram and
Taylor, 2017).

Intermediate fusion is the process of incorporating fea-
tures from different modalities in the model training pro-
cess, using both predictors (i.e., independent variables) and
response (i.e., dependent variables). These methods incorp-
orate fusion directly in the model training process and make
decisions on fusion in a way to optimize the objective (e.g.,
accuracy, detection rate, etc.). Partial Least Square (PLS) is
an example of intermediate fusion, in which the fused fea-
tures are extracted in a supervised fashion to best explain
the output (Zhao et al., 2012). Another example of inter-
mediate fusion can be found in tensor regression, which can
extract features from tensors that contain multiple sources
to estimate the output (Gahrooei et al., 2020). Deep learning
architectures can also be designed to perform intermediate
fusion (Karpathy et al., 2014).

To better understand the intuition behind early, late, and
intermediate fusion, let us consider an example in prognos-
tics where the remaining useful lifetime (or Time To Failure
(TTF)) of an asset is predicted based on the available sen-
sors data (Song and Liu, 2018; Song et al., 2019; Li et al.,
2021). Consider a rotary machine whose condition is moni-
tored by three different sensors that produce vibration sig-
nals (A), noise signals (B), and infrared thermal images (C).
Early fusion (see Figure 1(a)) focuses on generating latent
variables by combining these signals and then using the
latent variables for model training and prediction. For
example, early fusion first performs PCA on the merged
dataset and then uses the PC scores to create a model that
predicts TTF. In this scenario, f and g are trained separately.
Late fusion (see Figure 1(b)) focuses on developing models
fA, fB, and fC separately from sensor types A, B, and C to
estimate separate TTF values, yA, yB, and yC, then fuses the
separate predictions into one overall prediction, for example
by taking the average or median of the TTFs. Intermediate
fusion (see Figure 1(c)) performs fusion during the model
training process and simultaneously finds latent information
shared between the different sensor modalities, while also
determining the best settings to accurately predict the TTF.

Let us also consider another data fusion example in
healthcare. In a research hospital, there is a cohort of
patients with a brain disease along with healthy controls for
which three different types of neuroimaging were collected:
(i) structural magnetic resonance images (sMRI), (ii) func-
tional magnetic resonance images (fMRI), and (iii) magneto-
encephalography (MEG). sMRI conveys brain structure and
provides the highest spatial resolution, but has no temporal
resolution. fMRI indicates blood oxygen level and provides
an acceptable spatial resolution along with a lower temporal
resolution. MEG records magnetic fields generated by brain
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electrical activity, and provides a higher temporal resolution
at the cost of a lower spatial resolution. The task is to build
a statistical model capable of optimally combining the infor-
mation available in images A, B, and C to accurately quan-
tify patient disease severity and highlight particular brain
locations or functions that may be causing impairment.
Early fusion (see Figure 1(a)) can use an algorithm, such as
Independent Component Analysis (ICA), to identify spatially
independent signals that convey underlying brain networks/
structures (f), from which features can be extracted and
used to predict disease severity (g). Late fusion (see Figure
1(b)) can develop separate machine learning models trained
on each image type, fA, fB, and fC, to make predictions of
disease severity, yA, yB, and yC, that can then be fused into
an overall prediction score by g (ex., through averaging the
scores). Intermediate fusion (see Figure 1(c)) performs neu-
roimaging fusion during the model training process (e.g., via
fused group lasso) and can simultaneously fuse information
from images A, B, and C while building an accurate model
that can predict the patient disease severity.

1.1. Contribution and article organization

This article reviews data fusion algorithms as categorized ear-
lier into the decomposition-based algorithms and neural

network-based algorithms. Within each category, this article
covers a broad range of algorithms in multimodality fusion
that are mainly developed in recent years with the focus on
the Industrial Engineering (IE) applications, such as health-
care and prognostics. Other review papers are available in the
area of multimodality data analysis (Atrey et al., 2010;
Khaleghi et al., 2013; Lahat et al., 2015) with different points
of focus. Atrey et al. (2010) concentrates on multimodal
fusion techniques for multimedia analysis. They group the
available techniques into rule-based, classification-based, and
estimation-based algorithms and provide several traditional
techniques such as linear modeling, Support Vector Machines
(SVMs), entropy maximization, and Kalman and particle fil-
tering. This review article is distinct from the one by Atrey
et al. (2010), both in terms of domain application and the
algorithms covered. Khaleghi et al. (2013) provides a review
of multi-sensor fusion with information theoretic perspective.
The main focus of that review is on low-level fusion and dis-
cusses available frameworks in addressing multi-sensor fusion
challenges such as imperfections, correlation, inconsistency,
and disparateness. The frameworks introduced in that paper
are related to probability theory, fuzzy set theory, possibility
theory, rough set theory, and Dempster–Shafer evidence the-
ory. Although, that paper is a great source for understanding
formal definitions of data fusion challenges, it does not pro-
vide practical understanding of data fusion and available algo-
rithms, particularly to the IE audience.

One of the more recent review papers on multimodal data
analysis is authored by Lahat et al. (2015). The main focus of
that paper is on early fusion using decomposition-based techni-
ques such as ICA, canonical analysis, and tensor analysis. Our
manuscript extends Lahat et al. (2015) in several ways. First, we
will introduce methods beyond matrix/tensor decomposition
and canonical analysis, as well as discuss techniques that per-
form intermediate fusion. Second, we introduce recent devel-
opments that were published after 2015. For example, tensor
and factor analysis gained a significant attention in the IE com-
munity in the past few years, and are covered in this article.
Finally, we tailor the methods to IE applications through exam-
ples as our main audience is this community.

Section 2 discusses recent developments in decomposition-
based algorithms with a specific focus on IE applications;
Section 3 presents neural network-based fusion; Section 4
covers a brief discussion on data and domain knowledge inte-
gration; Section 5 discusses current challenges and future
research directions; and Section 6 concludes the article.

2. Decomposition-based fusion algorithms

In this article, we define decomposition-based fusion as
fusion techniques that decompose data matrices or tensors
to extract patterns and features. These methods do not
employ neural networks. Factor analysis, tensor analysis,
and dimensionality reduction methods, are examples of
decomposition-based fusion that are covered in the follow-
ing discussion. The focus of this section is not particularly on
supervised or unsupervised methods, and we assume that a
knowledgeable reader can distinguish them from the provided

Figure 1. Illustration of different levels of fusion.
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context. This section does not also explicitly mention whether
a technique is suitable for early, late, or intermediate fusion as
it should be clear from the context. As an example, tensor
regression techniques are supervised and intermediate fusion
methods, whereas coupled tensor decomposition are unsuper-
vised methods that can be employed in both early or late
fusion. Among the described methods, tensor analysis mainly
focuses on the fusion of heterogeneous datasets that are differ-
ent in their form (e.g., images and profiles). The other
approaches mainly take each observation as a vector. Several
regularization techniques are also discussed in this section.
These techniques are complementary to decompostion-based
fusion and are often used to improve the data fusion by pin-
pointing and eliminating noninformative modes or features.
Therefore, regularization methods are subtractive. That is,
while most of the methods combine different modes to obtain
a feature, regularization techniques omit the uninformative
modes/features. Table 1 reports a brief summary of decom-
position-based fusion literature.

2.1. Factor and canonical analysis

Factor Analysis (FA) is a method that describes covariance among
observed variables in terms of a potentially smaller set of latent
variables (called factors). FA takes the following basic form:

X ¼ ZWT þ E

where X is an n� p matrix, where n represents the number
of instances and p represents the number of observed varia-
bles; Z, the latent factor matrix, is an n� p0 matrix, where
p0 � p; W, the factor loading matrix, is an p� p0 matrix and
performs the transformation between latent and observed
variables; and E is an error matrix. FA can be solved by
traditional Maximum Likelihood Estimation (MLE) (Gaskin
and Happell, 2014).

One of the first known instances of using FA in the con-
text of multimodality fusion is CANDECOMP/PARAFAC
(CP) decomposition (Bro et al., 1997; Li, Choi, Perros, Sun,
and Vudue, 2017). CP decomposition is often used for three
datasets, but has the capability to be expanded to more. For
simplicity, this article will describe the three-way formula-
tion, which is summarized as follows:

xijk ¼
XR
r¼1

airbjrckr þ �ikj; i ¼ 1, :::I; j ¼ 1, :::, J, k ¼ 1, :::,K

With associated sum of squares loss:

min
ijk

X
ijk

����xijk �
XR
r¼1

airbjrckr

����
2

,

Table 1. Summary of the decomposition-based methods and their corresponding capabilities (C) and limitations (L).

Framework Descriptions Capabilities (C) and Limitations (L)

Tensor Analysis (Bro,1996; Zhao et al., 2012; Zhou
et al., 2013; Acar et al., 2014; Lock,2018; Mou
et al., 2019; Fang et al., 2019; Yan et al., 2019;
Yue et al., 2020; Gahrooei et al., 2020)

Extract common and uncommon structures among
modalities via tensor decomposition and
tensor calculus

(C1) Suitable for heterogeneous datasets with
different dimensions

(C2) Suitable for extracting interpretable patterns
between and within the modes

(L1) Lack of identifiability and uniqueness
(L2) Tensor rank selection.

Factor Analysis (Bro et al., 1997; Li et al., 2003;
Wang et al., 2012; Virtanen et al., 2012; Klami
et al., 2013; Acar et al., 2015; Argelaguet et al.,
2018; Li and Li, 2019)

Describes covariance among observed modes and
variables in terms of a potentially smaller set of
latent variables (factors)

(C1) Interpretable model for understanding the
underlying between-mode relationships

(C2) Generates a lower-dimension representation
of the original data

(L1) Limited inference approaches are available
(L2) Most estimation algorithms are based on

Expectation-Maximization (EM) algorithms that
are computationally expensive

(L3) Unknown number of latent variables
(L4) Models need to be better understood for

particular applications for accurate factor
recovery (Acar et al., 2015).

Generalized PCA and beyond (Maaten and Hinton,
2008; Lampertand and Kr€omer, 2010; Cand�es et al.,
2011; Zhang et al., 2011; White et al., 2012; White
and Schuurmans, 2012; Li et al., 2017; Xiao
et al., 2018)

Finds a low-dimensional representation
across modalities

(C1) Suitable for visualization
(C2) Dimension reduction of both paired and

unpaired modalities (Lampertand and Kr€omer,
2010)

(C3) Linear and nonlinear dimensionality reduction
(Maatenand and Hinton, 2008)

(L1) Lack of scalability to incorporate into parallel
and distributed computing structures (Cand�es
et al., 2011)

(L2) Incorporation of decision-level fusion is lacking
(Xiao et al., 2018)

(L3) t-SNE not guaranteed to converge to the
global optimum of its cost function (Maatenand
Hinton, 2008)

(L4) t-SNE cannot differentiate modalities.
Regularization (Xiang et al., 2014; Paynabar et al.,
2015; Zhang et al., 2018a; Si et al., 2020)

Selects informative modes and informative
features within a mode

(C1) Suitable for automatic extraction of relevant
modes and features

(C2) Outputs interpretable, parsimonious models
(L1) Increases parameters estimation complexity
(L2) Highly-correlated modes and features may

cause unstable estimations
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where A ¼ ða1, :::, aRÞ, B ¼ ðb1, :::, bRÞ, and C ¼ ðc1, :::, cRÞ
denote the I � R, J�R, and K�R matrices containing the
R different factor loadings in the three datasets. The model
may also be written as

XR
r¼1

ar � br � cr,

where ar, br, and cr are the rth columns of A, B, and C,
respectively. Under assumptions of Gaussian noise, CP
decomposition can be solved via MLE. CP decomposition
has previously been applied to raw, high-dimensional elec-
tronic health records to identify useful phenotypes or med-
ical concepts that can be utilized for patient diagnosis,
prognosis and treatment (Ho et al., 2014; Wang et al., 2015;
Li, Cerise, Yang and Han, 2017). CP has also been used for
change detection and monitoring systems with image or
multichannel data (Yan et al., 2014; Li et al., 2015)

Bayesian Group FA (Virtanen et al., 2012) is a method
that is capable of finding factors of different types–namely,
those specific to all sources, a combination of some data
sources, a single data source, or “noise” factors. The main
task of Bayesian Group FA is to find a set of factors that
explains dependencies between all possible subsets of the
data sources. Bayesian Group FA takes the following form:

X1jX2j:::jXM½ � � ZWT ,

where Xm, m ¼ 1, :::,M, are n� pm matrices represent the
different set of possible data sources; pm is the number of
features in modality m; Z is a n� p0 matrix that represents
the latent components; W, the factor loading matrix, is an
p� p0 matrix that is group-wise sparse (i.e., a sparsity con-
straint is applied with respect to the variables in each
modality), so each factor is active only in some subset of
data sources, all of them, or only one. If the factor is active
in only one modality, it is associated with noise or inde-
pendent variation of that particular modality. W is made
sparse by a group-wise Automatic Relevance Determination
(ARD) prior. Figure 2 demonstrates an illustration of this
method. Bayesian Group FA has been applied in the area of
drug discovery by identifying systems-level drug-response
phenotypes from genome-wide transcriptomic profiles
(Khan et al., 2014; Yadav et al., 2015; Kibble et al., 2016).

Bayesian Interbattery FA (BIBFA) is a method motivated
by Canonical Correlation Analysis (CCA) (Klami et al.,
2013; Acar et al., 2015). However, instead of merely extract-
ing correlated components between datasets like CCA,
BIBFA takes into consideration both shared and unshared
components (originally based on the non-probabilistic form,

InterBattery FA (IBFA) (Tucker, 1958). Given two data
sources, X1 and X2, BIBFA relies on the following probabil-
istic form of IBFA:

Z0 � Nð0, IÞ; Zm � Nð0, IÞ;Xm � NðAmZ0 þ BmZm,RmÞ,
where Nðl,RÞ is the normal distribution with mean l and
covariance matrix R; Rm is a diagonal matrix that describes
the covariance of modality m; l and 0 are the identity and
zero matrices; Z0 denotes the factors shared between the
data sources; Zm denotes the unshared factors in each data
source Xm, m ¼ 1, 2.

To derive an effective method to solve the model, it can
be reformulated as follows:

Z � Nð0, IÞ;X � NðWZ,RÞ
where

W ¼ A1 B1 0
A2 0 B2

� �
,Z ¼

Z0

Z1

Z2

0
@

1
A,R ¼ R1 0

0 R2

� �
:

An appropriate structure in W is accomplished by imposing
group-wise sparsity via an ARD prior. For inference, variational
approximation is used (based on priors that assume maximally
orthogonal latent factors). See Klami et al. (2013) for more
information on solving BIBFA. BIBFA has been applied to can-
cer gene prioritization via DNA copy number data and integra-
tive analysis of mRNA expression (Lahti et al., 2013).

Cross-modal Factor Analysis (CFA) combines two data
sources, X1 and X2 by finding two linear transformations,
W1 and W2 for each data source (Li et al., 2003). Xm is a
n� pm matrix, whereas Wm is a pm � p0m matrix, where
p0m � pm and m ¼ 1, 2. CFA is formulated as follows:

min
W1,W2

kX1W
T
1 � X2W

T
2 k2F

s:t: WT
mWm ¼ I,m ¼ 1, 2,

where k 	 k2F is the Frobenius norm and I is an identity
matrix of appropriate dimensions. Li et al. (2003) showed
that the formulation can be reduced to

max
W1,W2

TrX1W1W
T
2X

T
2

s:t: WT
mWm ¼ I,m ¼ 1, 2,

which can be solved via Singular Value Decomposition
(SVD) to obtain the final transformed latent factors, Zm as,

Ẑm ¼XmW
T
m,m ¼ 1, 2

Unlike CCA, CFA does not need to calculate the inverse
of the covariance matrices, provides orthogonal

Figure 2. Group factor analysis (adapted from Virtanen et al. (2012)).
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transformations, and does not require independence of vec-
tors, Xm: However, CFA cannot provide correct information
associations if the modalities are not linearly related. An
extension of CFA, called Kernel CFA (KCFA) handles this
issue by mapping the Xm vectors in the original space to a
high-dimensional space via the kernel trick (Wang et al.,
2012). One application for CFA is in integration of multi-
media sources (i.e., audio and video); CFA can compensate
for missing or noisy media sources and effectively integrate
multiple streams of information together (Li et al., 2003).

Multi-Omics Factor Analysis (MOFA) (Argelaguet et al.,
2018) is a recently developed method made specifically for
integrating multiple omics data modalities, but capable to be
applied to other applications as well. MOFA builds upon
Bayesian Group FA (Virtanen et al., 2012), by (i) enabling
fast inference via variational approximation, (ii) inducing
sparse solutions to help interpretation, (iii) handling missing
values in an efficient manner, and (iv) allowing for flexibility
in combining different likelihood models for each data
modality. MOFA takes on the following form:

Xm ¼ ZWT
m þ Em,m ¼ 1, :::,M

where Xm denotes the original feature matrix for modality
m, Z is the factor matrix (common for all data modalities),
Wm is the weight matrix corresponding to modality m, and
Em is the error term for the particular modality m. The
MOFA model is formulated in a probabilistic Bayesian
framework, in which a prior distribution is applied on all
unobserved variables. MOFA utilizes two levels of regular-
ization: (i) view- and factor-wise sparsity via an ARD prior,
which helps identify which factor is active in which view,
and (ii) feature-wise sparsity via a spike-and-slab prior that
usually results in a smaller number of features with
active weights.

Statistical inference for FA of multimodal data has mainly
remained unexplored; however, one recent work examines
(i) how to infer the significance of one data source given
other sources in the model, (ii) how to infer the significance
of a combination of variables across different modalities, or
from a single modality, and (iii) how to quantify the contri-
bution of one data source given the other data sources,
using a goodness-of-fit measure (Li and Li, 2019).

Multimodal datasets have also been employed for more
effective clustering of the data. One key challenge in design-
ing clustering algorithms is to identify which modes and
which features within each mode are informative for distin-
guishing clusters. Regularization techniques combined with
factor analysis have been introduced for this purpose. For
example, Si et al. (2020) introduced a hierarchical clustering
approach that uses an L12 penalty to effectively identify
informative modes and features. Specifically, let xm, i denote
the vector of features of mth mode in the ith sample. Then,
the following factor analysis is considered,

xm, i ¼ Hmfm, i þ Bmzi þ em,i,

where fm, i is a latent factor, zi is a vector of known covari-
ates, Hm and Bm are the loading matrices, and em, i repre-
sents the model errors that follow a multivariate normal

distribution with mean zero and covariance matrix Rm:The
latent factors are then linked to clusters si :

fm,i ¼ Amsi þ mm,i,

where Am is a loading matrix and mm, i is an error term that
follows a multivariate normal distribution with mean zero
and covariance matrix Wm: The goal is to estimate the
model parameters, H ¼ fHm,Bm,Am,Rm,Wm} while impos-
ing sparsity on loading matrices Hm and Am: Imposing
sparsity facilities the selection of informative modes and fea-
tures. The following objective function has been minimized
through Expectation-Maximization (EM) technique to
achieve this goal:

�lðHÞ þ
X
j

X
m

ðjjhjmjj2Þ þ
X
m

ðjjAmjj2Þ,

where hjm denotes the jth column of Hm and jj:jj2 represents
the L21 norm. The model was applied to a multimodal MRI
dataset of brain cortical area, thickness and volume to iden-
tify subgroups of migraine patients.

2.2. Tensor and functional data analysis

One of the main challenges in integrating multimodal
datasets is identifying a unified and flexible representation
of each mode of a dataset without losing information.
Defining such representation allows the use of mathematical
tools that apply to all modes of data. A straightforward
approach is to model all the data as vectors. However, this
approach breaks down and loses the structural information
of data instances such as images. Recent advances in multi-
linear algebra (Kolda, 2006) create an unprecedented oppor-
tunity for the use of tensors (i.e., higher-order arrays) and
tensor calculus for multimodal data fusion. In this section,
we describe different existing approaches used for integrat-
ing data using tensor analysis.

2.2.1. Tensor regression approaches
Tensor regression is an early or intermediate data fusion
approach that uses tensor decomposition techniques, includ-
ing CP and Tucker decomposition (Kolda, 2006), to extract
features out of an input tensor that contains data from mul-
tiple sources to estimate the output. Most approaches focus
on single tensor input (Bro, 1996; Zhao et al., 2012; Zhou
et al., 2013; Lock, 2018; Fang et al., 2019; Yan et al., 2019;
Yue et al., 2020) but multiple tensor-input regression frame-
works are also available (Gahrooei et al., 2020). Scalar-on-
tensor, tensor-on-scalar, and tensor-on-tensor models are
different forms of tensor regression modeling that have been
introduced in the literature. Let us denote a tensor by callig-
raphy font. For example, A 2 R

I1�I2�			�Id is a tensor with d
modes, whose kth mode is of size Ik. A linear scalar-on-ten-
sor model (Yan et al., 2019) is usually formulated as

Y ¼ B�dþ1Xþ E,
where Y 2 R

I1�			�Id ; X 2 R
I1�p; B 2 R

I1�			�Id�p; E is the
tensor of errors; and �i denotes the ith-mode multiplication
of a tensor and a matrix. The linear tensor-on-scalar (Zhou
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et al., 2013; Fang et al., 2019) models are those with scalar
output and tensor inputs as follows:

y ¼< B,X > þe,

where y is a scalar; X 2 R
Q1�			�Ql ; B 2 R

Q1�			Ql ; e is the
error term; and < :, : > denotes the tensor inner product,
which is equivalent to the inner product of the vectorized
version of the tensors. Finally the tensor-on-tensor regres-
sion model (Lock, 2018; Gahrooei et al., 2020) is defined as

Y ¼< B,X>l þ E,
where Y 2 R

I1�			�Id ; X 2 R
Q1�			�Ql ; B 2 R

Q1�			�Ql�I1�			�Id ;
and E is the tensor of errors. The operation < :, :>l is called
the tensor contraction operation over l modes. In all the cases,
the tensor of parameters B is assumed to be low-rank and has a
decomposition form that results in a lower number of parame-
ters to be estimated. Depending on the learning algorithm,
these models can be viewed as either early or intermediate
fusion. In particular, if the decomposition of the parameter ten-
sor is learned during the training, the model is of intermediate
fusion type. Tensor regression models are suitable for the
fusion of heterogeneous sources of data when multi-channel
and multi-dimensional data sets are available (Gahrooei et al.,
2020). Tensor regression models have been applied in modeling
and optimization of lathe-turning process (Yan et al., 2019), in
semiconductor manufacturing to predict overlay error of the
lithographic process based on wafer shape (Gahrooei et al.,
2020) as well as prediction of the aged state of Ni-based super-
alloys (Gorgannejad et al., 2019). It has also been applied in
prognostics applications for prediction of useful remaining life-
time based on thermal images (Fang et al., 2019)

2.2.2. Coupled decomposition
Modes of the multimodality data may contain common and
uncommon features to be discovered. The coupled decom-
position technique decomposes the tensors assuming they
share a common subspace spanned by a set of bases.
Simultaneous matrix and tensor factorization is an approach
for discovering the common bases. Let X 2 R

P�Q and Y 2
R

P�I1�I2 : By minimizing the following objective function,
Acar et al. (2013) identify the common space, spanned by
basis matrix U, between the tensor and matrix modes:

L ¼ jjY � k;U,V1,V2½ �½ �jj2 þ jjX� UWTjj2,
where ½½k;U,V1,V2�� denotes CP decomposition of the tensor
with basis matrices U, V1, and V2:

Zhao et al. (2012) proposed Higher-order PLS (HOPLS)
as an approach for identifying the common features between
two tensors that represent different modalities. Let X 2
R

P�Q2			�Ql and Y 2 R
P�I2			�Id : Then, the coupled Tucker

decomposition of these two tensors are written as:

X ¼ C1�1U�2U2 	 	 	 �lUl

and

Y ¼ C2�1U�2V2 	 	 	 �dVd:

Here, C1 and C2 are decomposition core tensors and
U2, :::,Ul,V2, :::,Vd are bases that do not coincide between the

two tensors. The matrix U denotes the common basis that spans
the common subspace between the two modes. Zhao et al.
(2012) proposed an approach based on the Singular Value
Decomposition of the covariance matrices to estimate the basis
matrices. The approach was applied to decoding electrocorticog-
raphy (ECoG) signals in relation to 3D hand trajectories of
monkeys performing movement tasks. Potentially, this approach
can be applied to before and after medical intervention data,
including the MRI and Electroencephalography (EEG) signals of
patients before and after an intervention.

2.2.3. Structural revealing decomposition
The main limitation of coupled decomposition is that it
only finds the common bases for the shared mode.
However, the shared mode may contain common and
uncommon bases. The structural revealing technique is
designed to resolve this issue. Nevertheless, it is only
designed for situations where the data modes are a 3-D ten-
sor and a matrix. More specifically, let X 2 R

P�Q and Y 2
R

P�I2�I3 : Then the structural revealing technique will iden-
tify the common and uncommon features related to the
shared dimension of the tensor and matrix by minimizing
the following objective function:

L ¼ jjY � k;U,V1,V2½ �½ �jj2 þ jjX� URWjj2 þ jjkjj1 þ jjrjj1,

where ½½k;U,V1,V2�� denotes CP decomposition of the tensor
with basis matrices U, V1, and V2; URW denotes the SVD
decomposition of the matrix with singular values r ¼ diagðRÞ: In
this formulation U contains common and uncommon bases,
which are identified by the lasso penalization over k and r: The
utility of this method was tested on a dataset of mixtures with
known chemical composition (inferred from nuclear magnetic
resonance and mass spectrometry) and it was found that the
method can successfully determine the chemicals in the mixtures,
as well as their relative concentrations. For more details, please
refer to Acar et al. (2014).

2.2.4. Self-expressive models
Subspace clustering has been used in many applications,
including systems monitoring and diagnosis based on profile
data (Zhang et al., 2020). One main approach for subspace
clustering is the self-expressive model, which clusters a set
of signals into subspaces (Elhamifar, 2016). Let Y ¼
½y1, y2, :::, yn� to be a matrix containing n signals of length
D. Then, the self expressive model assumes that each signal
can be explained by other signals within the matrix:

Y ¼ YC þ E,

where diag(C) ¼ 0 and E is a matrix of errors. To find clusters of
signals, i.e., a set of similar signals, one may impose sparsity or
low-rankness on C. Therefore computing the set of model param-
eters C requires solving the following optimization algorithm:

1
2
jjY� YCjj22 þ kjjCjj1 þ jjCjj
,

where jj:jj1 and jj:jj
 refer to L1 and nuclear norms, respect-
ively. The nuclear norm of a matrix is the sum of its singu-
lar values and is used for imposing low-rankness.
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The extension of self-expressive models has been intro-
duced for Multimodal datasets (Abavisani and Patel, 2018).
Let fY1, :::,Ymg be an m-mode dataset where each mode
contains a set of signals similar to the case of uni-mode
self-expressive model. Then the goal of Multimodal self-
expressive models is to simultaneously cluster the signals in
distinct modalities according to their subspaces. For this
purpose, one can minimize the following objective function:

1
2

Xm
i¼1

jjYi � YiCjj22 þ kjjCjj1 þ jjCjj


The model has been applied to cluster face images using
various facial components (i.e., eyes, nose and mouth)
(Elhamifar, 2016).

2.2.5. Regularization for functional and multimodal data
Regularization techniques have been used for identification
of the informative modes of data, as well as informative fea-
tures within each mode. The most common regularization
techniques used for this purpose are based on non-negative
Garrote and L21 norm. Paynabar et al. (2015) integrated
profiles data to predict a scalar output. The informative pro-
files and features within the selected profiles were identified
using a hierarchical non-negative Garrote technique. Let y 2
R

n denote the vector of outputs, Ck be the design matrix of
the kthðk ¼ 1, 2, :::,KÞ group (profile), and bolsk be the ordin-
ary least square parameter. Then by minimizing

L ¼ jjy �
X

Ckb
ols
k dkjj22 þ k

XK
k

dk,

the shrinkage term dk � 0 is estimated. If dk ¼ 0, then the
group is considered as uninformative. By only considering
selected groups (profiles) and imposing a lasso penalty on
the feature shrinkage terms, the informative features can be
identified. This model was applied to develop a predictive
model that can estimate vehicle design comfort from three-
dimensional motion signals of test drivers.

Zhang et al., (2018b) employed sparsity penalty to moni-
tor a weakly correlated set of profiles (multi-channel data).
Specifically, they expanded the multivariate functional eigen-
decomposition technique to the situation where not all
eigen-functions are informative for spanning a given profile.
Let Yi 2 R

n�p denote the ith (i ¼ 1, :::,N) sample that con-
tains p profiles (channels), each observed at n points; V ¼
½v1, v2, :::, vK � be a matrix whose columns are of eigen-func-
tions; and Wi ¼ ½wi1, :::,wiK � be the spanning coefficients.
Then by minimizing

XN
i¼1

jjYi � VWijj22 þ
X
i

XK
j¼1

j wijjj,
���

subject to

VTV ¼ I,

the sparse multi-channel decomposition is achieved. This
technique is used for monitoring semiconductor manufac-
turing, where a large number of weekly correlated sensors

are available. Gahrooei, Payanbar, Pacella and Shi (2019)
also combined a large number of profile inputs to estimate a
profile output using a functional group lasso penalty, and
applied the model to retrieve joint motion trajectory based
on other joint trajectories from sensors located on the the
human body (e.g., hip, neck, elbows, knees, etc.).

A generalized sparse model for multimodality data
(assuming every instance has all modalities) was formulated
by Xiang et al. (2014) using a multi-task framework. The
two stages of this model are (i) to learn different models for
each data-modality, and (ii) combine the learned models
appropriately. The formulation is summarized below:

min
a, c

1
2
ky �

XM
m¼1

cm 	 Xmamk22 þ
XM
m¼1

km
p
kamkpp þ

XM
m¼1

gm
q
jcmjq,

where y is the response variable; Xm are the features for
modality m; am are the weights of the linear model learned
for the mth modality; c are the weights that combine the
learned models together; p and q are adjustable integers that
can induce the desired sparsity on the feature (p) and
instance level (q); and finally, km and gm are tuning param-
eters. This model can be reduce to common regularization
methods and solved by standard multi-task learn-
ing algorithms.

A more realistic (and challenging) scenario occurs when
not every modality is available for every instance. Xiang
et al. (2014) developed a bi-level multi-source learning algo-
rithm for heterogeneous block-wise missing data to handle
missing medical modalities in an Alzheimer’s Disease data-
set. That paper developed methods of handling situations in
multimodality datasets when not all instances have all data
sources. First, the instances are divided into different groups
according to which data modalities are available. Then,
using a similar strategy as the generalized sparse model for
multimodality data (the model presented previously) the two
stages of this model were (i) to learn different models for
each data-group, and (ii) combine the learned models
appropriately. The formulation is as follows:

min
a, b

1
jpf j

X
m2pf

1
n
L
�XM

m¼1

amXmb, ym

�
þ kRbðbÞ

s:t: RaðamÞ � 1,8m 2 pf

where b corresponds to the coefficients of features across all
modalities; a is the weighted combination across the differ-
ent modalities; pf is an n-dimensional vector that encodes
binary indicators for which modalities are present for each
of the n instances; Xm are the features for modality m
(m ¼ 1, :::,M); ym is the response; L is any convex loss
function (e.g., least squares, logistic loss, etc.); and Ra, Rb

are regularizations on a and b, respectively. The solution to
this model can be approximated via alternating optimization
between a and b: The benefit of this method is that out-of-
sample test instances with different modality combinations
can still be predicted, as the model is designed to have a
generalized b across all modality combinations.
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2.3. Generalized PCA and beyond

The goal of dimension reduction methods such as PCA is to
find a low-dimensional representation across multiple het-
erogeneous data modalities that can be utilized for a variety
of tasks (e.g., data compression, clustering, and model train-
ing). Dimension reduction falls under one of two categories
(Lampert and Kr€omer, 2010): (i) inductive and (ii) non-
inductive. Inductive methods inherently include a function
that can be used for future data. Non-inductive methods do
not include such a function, and must be re-applied any
time new data is obtained. There is not much work per-
formed in non-inductive multimodality dimension reduction
(Fernandez-Beltran et al., 2018a, 2018b), so the focus of the
discussion will be on inductive methods.

One of the first known examples of multimodality reduc-
tion is Maximum Covariance Analysis (MCA), a generaliza-
tion of PCA (Tucker, 1958). Given two centered data
sources, X1 and X2, with dimensions n� pm (m ¼ 1, 2),
MCA performs multimodal dimension reduction by solving
for W1 and W2 in the objective function below:

max
W1,W2

TrWT
1X

T
1X2W2:

where W1 and W2 are orthogonal matrices with dimensions
pm � p0m, where p0m < pm, m ¼ 1, 2. One of the main disad-
vantages of MCA is that it requires instances to be com-
pletely paired, i.e., both data sources have identicial
instances. This scenario is often unrealistic in
larger datasets.

Weakly Paired MCA (WMCA) allows for data sources to
have differing instances, which provides greater flexibility
with using all the available data (Lampert and Kr€omer,
2010). Given two centered data sources, X1 and X2, with
dimensions nm � pm (m ¼ 1, 2), MCA performs multimodal
dimension reduction by solving for W1 and W2 in the
objective function below:

max
W1,W2

TrWT
1X

T
1PX2W2:

where W1 and W2 are orthogonal matrices with dimensions
pm � p0m, where p0m < pm, m ¼ 1, 2; P is an n1 � n2 binary
matrix that encodes the different grouping structure to take
into account the weakly paired data. There is no closed
form solution for this objective function, but it can be esti-
mated via an alternating maximization of W1, W2, and P:
WMCA has been used to discriminate between different tex-
tures of materials (e.g., styrofoam, bricks, wallpaper, etc.)
based on images and audio signals recorded over the surfa-
ces (Lampert and Kr€omer, 2010). Additional description for
the mechanics of P, an extension to the kernelized space,
and expansion to handling more than two modalities can be
found in Lampert and Kr€omer (2010).

Comparing traditional CCA (from Section 2.1) to these
dimension reduction methods, CCA is limited in that it is
restricted to a square loss under a particular normalization.
In the single data modality case, there have been several
papers that have been able to relax these constraints and
allow for more generalizable cases that can incorporate sev-
eral convex losses while maintaining a reasonable

computational complexity (Cand�es et al., 2011; Zhang et al.,
2011). One proposal for the Multimodality setting is convex
multi-view subspace learning (White et al., 2012). Assuming
that two data sources, X1 ðn� p1Þ and X2 ðn� p2Þ are con-
ditionally independent given their shared latent representa-
tion H ðn� p0Þ, where n is the number of instances and
p0 < p1 þ p2 is the reduced dimension, an optimal data
reconstruction can be found via utilizing an implicit convex
regularizer that recovers H jointly. One formulation of this
method is summarized below:

min
W1,W2,H

LðHW;XÞ þ akHTk2, 1
s:t: W1ð:, iÞ W2ð:, iÞ

� � 2 C, 8i
where C :¼ fkw1k2 � b1, kw2k2 � b2g,W ¼ W1 W2

� �
,X ¼ X1 X2

� �

where L is the convex loss function between HW and Z
(some examples can be found in White and Schuurmans
(2012)); Wm represent the loading matrices such that
HWm � Xm, m ¼ 1, 2; a, b1 and b2 are tuning parameters
of the objective function. This method was applied to clas-
sify a face image dataset consisting of various poses and
lighting conditions (Georghiades et al., 2001).t-distributed
Stochastic Neighborhood Embedding (t-SNE) is a relatively
recent dimension reduction and visualization technique that
can be used to combine data features from single or mul-
tiple modalities and reduce to a two- or three-dimensional
dataset (Maaten and Hinton, 2008; Li, Cerise, Yang and
Han, 2017; Xiao et al., 2018). Using conditional probability
theory, t-SNE assumes that coordinates in the low dimen-
sion follow a t-distribution, which has the effect of increas-
ing the distance between formed clusters allowing for
greater distinction between different instances. One instance
of t-SNE for Multimodalities performs misalignment fault
diagnosis of wind turbines by fusing time and frequency fea-
tures from the vibration, temperature, and stator current sig-
nals, and generates two information-dense features (Xiao
et al., 2018). The two features were then used as input for a
least square SVM that was optimized by the artificial bee
colony algorithm. This application of t-SNE to multiple
modalities does not take into account differences between
modalities (i.e., covariance), but rather inputs all features
from the modalities as a single unit. More work will need to
be performed in this area to better incorporate individual
modality differences.

3. Neural network-based fusion

Neural networks, in particular deep learning models, have
demonstrated great promise within several applications
including medical, manufacturing, internet of things, remote
sensing, and urban big data. There have also been several
recent implementations proposed for multimodality fusion
in each of these application areas (Calhoun and Sui, 2016;
Schmitt and Zhu, 2016; Li et al., 2018; Wang et al., 2018;
Liu, Li, Xie, Du, Teng and Yang, 2020; Qi et al., 2020). A
handful of review papers have also been written on this
topic (Ramachandram and Taylor, 2017; Gao et al., 2020).
Multimodal neural network approaches have the goal of
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training an end-to-end architecture that achieves both high
accuracy and informative modality fusion.

There are several advantages that multimodal neural net-
works have over conventional multimodal learning
(Ramachandram and Taylor, 2017). Neural networks can
learn both inter- and intra-modality representations with
minimal preprocessing of input data, whereas decompos-
ition-based methods often require manual design and are
more sensitive to preprocessed data. Neural networks also
provide implicit dimensionality reduction within the archi-
tecture, whereas with other techniques conventional feature
selection methods (i.e., filter, wrapper, or embedded) must
be incorporated. Additionally neural networks allow for the
inter-modality fusion architecture to be learned during
training, whereas other approaches usually must resort to
hand-crafted fusion methods. Some challenges involved with
using neural network methods include handling the high
number of hyperparameters that must be tuned, which can
require high computation and need powerful computer
processing units (CPUs) or graphics processing units
(GPUs) to train the model in a reasonable amount of time
(this problem is especially found in deep learning models).
On the other hand, other learning models typically do not
suffer from as many hyperparameters and having a CPU or
GPU cluster is typically not necessary.

Multimodal neural network-based fusion can be divided
into early, late, and intermediate fusion. Table 2 summarizes
the capabilities and limitations of the different deep
fusion methods.

3.1. Early fusion

Oftentimes it can be difficult to fuse multiple modalities,
due to disparities between the modalities. For instance, two
sensors being fused for a prediction model may be in differ-
ent forms (e.g., have different sampling rates, one is analog
and another is digital, etc.). To ameliorate some of these dis-
parities, early fusion can be used to extract information
from each modality and fuse before model training.

One of the common forms of early fusion comes in the
form of autoencoders. An autoencoder is an unsupervised
neural network that sets the target values to be equal to the
input values (Ng, 2011). One of the hidden layers in the
neural network (which has less elements than the input/
output) serves as an information bottleneck, from which a
compressed representation of the input features can be
derived. This concept can easily be implemented to find
underlying shared representations in a multimodality set-
ting. Zhang et al., (2018a) obtained eigenvectors from video
and audio sources, which were then transformed via
autoencoding into reconstructed eigenvectors that have a
shared representation. Srivastava and Salakhutdinov (2012)
developed two Boltzmann machines to combine text and
image feature vectors in to a new feature vector that was
used as input for a SVM classifier. Liu et al. (2017) inte-
grated eigenvectors from different views of a face to
improve face recognition by unifying the eigenvectors of
the different views into a more descriptive and integra-
tive eigenspace.

Table 2. Summary of the neural network-based fusion methods and their corresponding capabilities (C) and limitations (L).

Framework Descriptions Capabilities (C) and Limitations (L)

Early Fusion (Ng, 2011; Srivastava and
Salakhutdinov, 2012; Liu et al., 2017; Zhang
et al., 2018a)

Extracts and fuses information from each modality
before model training (commonly through the use
of autoencoders)

(C1) Generates a lower-dimensional representation
of the original data

(C2) Flexibility to use generated features for any
statistical learning algorithm

(L1) Incorporation of decision-level fusion is lacking
(L2) Interpretability of generated features is not

straightforward
(L3) Most models assume conditional

independence between modalities; but in
practice, modalities tend to be highly
correlated, e.g., multimodal medical images,
video/audio, etc. (Ramachandran and
Taylor, 2017).

Late Fusion (Simonyan and Zisserman, 2014; Kahou
et al., 2016; Wu et al., 2016)

Fuses predictions between multiple neural
networks trained on different modalities using
averaging, maximum value, Bayes decision rule,
metaclassifiers, etc.

(C1) Easy to implement since fusion is performed
at a high-level

(C2) Errors from multiple neural networks tend to
be uncorrelated, making the late fusion feature
independent

(L1) Less flexibility in regards to when multimodal
representations are learned and where
multimodality fusion occurs

(L2) No conclusive evidence that late fusion is
better than early fusion (Ramachandran and
Taylor, 2017).

Intermediate Fusion (Karpathy et al., 2014;
Neverova et al., 2015; Gao et al., 2018)

Fuses different modalities at various levels of the
neural network during a model training task

(C1) Offers additional flexibility beyond early or
late fusion as to where multimodality fusion
occurs in the network

(C2) Allows for fusion of modalities at different
levels and can generate many multimodal
representations that can be used at the
decision level

(L1) Requires careful design for when and where
to apply modality fusion in the network
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3.2. Late fusion

Late fusion involves the integration of predictions from mul-
tiple neural networks trained separately on different modal-
ities. This method is attractive to many practitioners, as the
combination of predictions from different modalities is
more straightforward, especially when there are very differ-
ent dimensionalities or sampling rates between the modal-
ities (Ramachandram and Taylor, 2017). Various fusion
rules are available in neural networks including averaging,
maximum value, Bayes decision rule, and metaclassifiers
(Ramachandram and Taylor, 2017). Simonyan and
Zisserman (2014) fuse Convolutional Neural Networks
(CNNs) trained on image and optic flow data for the pur-
pose of action recognition. Kahou et al. (2016) combine
audio and video data using CNNs, recursive neural net-
works, SVM and autoencoders. Wu et al. (2016) fuse output
from a deep belief network and CNN trained on skeletal
and image features to provide a posterior estimate of gesture
recognition.

3.3. Intermediate fusion

Due to their hierarchical nature, neural networks allow for
the fusion of features at all intermediate levels and offer
flexibility beyond early or late fusion. For example in
Vielzeuf et al. (2018), uni-modal features, as well as a central
joint representation at every layer, are trained toward a
multi-task objective. In Joze et al. (2020), multi-modal
Squeeze-and-Excitation (SE) modules are used to perform
fusion at any intermediate level. Guided by the end learning
objective, the SE modules adaptively adjust the contribution
of the features of each modality, explicitly encouraging
modalities to collaborate.

Deciding which features of each modality to fuse in
neural networks can be a combinatoric search problem.
P�erez-R�ua et al. (2019) propose a sequential, model-based
architecture search approach to find the optimal fusion
architecture, instead of empirically deciding what layer to
fuse intermediate features. A recurrent surrogate model
takes candidate model descriptions as input and predicts
their performance on the end task, guiding the sampling
process from the architecture search space. Ramachandram
et al. (2018) employ Bayesian optimization using a graph-
induced kernel for the same purpose.

The goal of intermediate fusion is to combine early and
late fusion into a single framework. The typical workflow of
an intermediate fusion network involves (i) transforming
features from modalities into latent representations, (ii) fus-
ing the representations from each modality into a single hid-
den layer, and (iii) learning a joint representation across the
modalities to make a single prediction. Additionally, there is
great flexibility with this framework since one can develop a
neural network architecture that fuses various representa-
tions of the multimodal data at varying depths. Neverova
et al. (2015) implemented a progressive fusion approach
with visual, audio and motion capture data by fusing highly
correlated modalities, then moving to fusion of less corre-
lated modalities later in the architecture. Gao et al. (2018)

used a combination of shallow and deep CNN architectures
to perform image reconstruction of different views of breast
cancer images and generate two different types of feature
representation sets that were combined for classification
using a gradient boosting tree. Karpathy et al. (2014) intro-
duced a model that fuses video stream representations in a
gradual manner, using multiple fusion layers, and were able
to show the superiority of intermediate fusion to early and
late fusion approaches.

4. Discussion on domain knowledge and
data fusion

One increasingly popular multimodal fusion research area
we would like to highlight is data and domain knowledge
integration. These hybrid models combine both objective
information collected from a real application as well as the-
oretical knowledge of the underlying process via a mathem-
atical/physical model. This process known as hybridization
can occur in a variety of manners including arithmetic com-
bination, mathematical model parameter estimation,
Bayesian estimation, and feature input. These areas are sum-
marized in Table 3 and briefly described below:

� Arithmetic combination: Arithmetic combination refers to
the fusion of mathematical and machine learning model
outputs in an arithmetic fashion. There is no change to
the inner workings of either model, but instead both are
treated as black boxes and their output is combined in a
posthoc fashion. Brentan et al. (2017) added the outputs
of Support Vector Regression (SVR) and a Fourier time
series model for foreasting urban water demand. Chen
and Irwin (2017) multiplied the outputs of a machine
learning and physical model to improve solar forecasting.

� Mathematical model parameter estimation: Another class
of hybridization methods uses machine learning to pro-
vide an estimate of some parameters for a mathematical/
physical model to better inform the prediction capabil-
ities. To make the model more patient-specific, Clifton
et al. (2017) used statistical linear estimation to fine-tune
parameters for a mechanistic model of mobile health
intervention in chronic pain. Meng et al. (2019) used
machine learning to estimate parameters of a mechanistic
model of cane sugar crystallization. Dong et al. (2016)
utilized a statistical model to estimate parameters for a
mechanistic model to improve forecasting of residential
electricity. Mak et al. (2018) utilized Gaussian processes
to estimate parameters in a mechanistic model to quan-
tify turbulent flows in swirl injectors with vary-
ing geometries.

� Bayesian framework: A Bayesian framework can also be
used to incorporate prior information from the mathem-
atical model to the machine learning model and vice
versa. Mascheroni et al. (2020) used a mechanistic model
of tumor growth to inform the prior of a Bayesian model
that incorporates additional empirical information to bet-
ter inform the prediction. Albers et al. (2018) leveraged a
Bayesian methodology to integrate physiologic knowledge
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to phenotype. Li and Shi (2007) used Bayesian networks
along with manufacturing domain knowledge to discover
the causal relationships between the process quality and
process variables.

� Feature input: Another way to implement a hybrid model
is to include output from the mathematical model as
input to the training of a machine learning model. Liu,
Clemente, Poirier, Ding, Chinazzi, Davis, Vespignani and
Santillana (2020) utilized a mechanistic model to inform
a machine learning model’s prediction of future Covid-
19 cases in China. Gaw et al. (2019) used the output of a
mechanistic model of brain tumor growth and integrated
it with a machine learning model as an input feature.
They also encoded differences in the mechanistic model
in the form of a graph to regularize tumor cell density
predictions. Liu and Guo (2018) utilized output from a
mechanistic model as a feature in a tree-based gradient
boosting method (along with process conditions, such as
cutting speed, feed per tooth, etc.) to predict the specific
cutting energy of steel.

5. Challenges and future research directions

There are several challenges associated with multimodality
fusion. Atrey et al. (2010), Khaleghi et al. (2013), Lahat
et al. (2014) and Ramachandram and Taylor (2017) have
performed comprehensive reviews of these challenges and
we provide these as additional references for the reader.
Below, we highlight the main multimodality data fusion
challenges that demand further research to be
fully addressed:

� Missing modalities: In many instances, data from all
modalities are not available across all instances or phases
of model training (i.e., training, validation, and test sets).
For example, in prognostics missing sensor data is preva-
lent (Fang et al., 2015). There have been a handful of
methods developed in recent years to address these issues
(Xiang et al., 2014; Liu et al., 2016; Gal�an et al., 2017; He
et al., 2017; Adhikari et al., 2019; Liu, Chen, Wu,
Weidman, Lure, Li and Alzheimer’s Disease
Neuroimaging Initative, 2020), but methodological pro-
gress is limited. Gal�an et al. (2017) and He et al. (2017)
handle incomplete modality datasets via imputation algo-
rithms. There are also deep learning analogues to imput-
ation, for example, in the medical field, to transform
images from one modality to another (ex., transforming
MRI to Positron Emission Tomography (PET) images (Li
et al., 2014). However, the current imputation
approaches are limited when there are too many missing
values to impute. Separate modeling is another solution,
in which different models are trained for different
cohorts (determined by the available data modalities).
Nevertheless, this approach is also limited because the
sample size in each cohort may be small and prevent
construction of a generalizable model. One may improve
this problem by including data modalities from some
cohorts to append the instances in other cohorts (i.e., if

one cohort has data modalities 1 and 2, and another
cohort only has data modality 2, the instances in the first
cohort for modality 2 can be appended to the instances
in the second cohort). However, these methodologies still
do not use all available information for model training.
Another method addresses this issue by developing a
transfer learning model that has flexibility to train on
instances with differing missing modalities and predict
out-of-sample instances with a different combination of
modalities (Liu, Chen, Wu, Weidman, Lure, Li and
Alzheimer’s Disease Neuroimaging Initative, 2020). The
model accomplishes this task via EM using the assump-
tion that input features follow a normal distribution.
More work needs to be performed to consider features
and response variables that follow different distributions.

� Noncommensurability: Additionally, modalities may be
difficult to combine when they are at different resolu-
tions or aggregation levels (i.e., not commensurate with
each other). However, there can be a large advantage to
combining multiple modalities to make use of their
strengths. For example, in medical imaging, functional
imaging techniques (e.g., fMRI, EEG) are capable of col-
lecting information about a patient’s brain function over
time, which allows an additional dimension of temporal
resolution (Lahat et al., 2015). Unfortunately, having
temporal resolution comes at the cost of a reduced spa-
tial resolution. However, information from these images
can be complemented by higher resolution medical
images that do not have a time component, such as
structural MRI and diffusion tensor imaging (Lahat
et al., 2015). Gaw et al. (2018) created a machine learn-
ing framework that can combine features from structural
and functional imaging at different aggregation levels.
Additionally, in the area of meteorology, radar and satel-
lite images provide large spatial coverage, but at the cost
of not being able to measure precipitation at the ground
level (Seyyedi, 2010). However, this can be overcome by
utilizing information from rain gauges and microwave
links to enhance resolution of actual amount of ground
precipitation (Seyyedi, 2010; Liberman et al., 2014).
Many of the challenges found in noncommensurability
problems lie in the specific applications themselves. More
work will need to be performed by practitioners to best
understand ways to overcome specific issues that arise
in practice.

� Noise: There may also be issues with different sources of
noise across data modes. Each mode often has a different
type of measurement tool or device, which can subse-
quently produce different magnitudes and kinds of error
(Van Mechelen and Smilde, 2010; Lahat et al., 2014).
There has been some work performed to address discrep-
ancies between noise in these different modes and how
to properly weigh them (Khaleghi et al., 2013; Şimşekli
et al., 2013). One work developed a wavelet transform-
based fusion method that can combine multiple medical
images (i.e., computed tomography, MRI, and PET) that
is resilient to Gaussian or speckle noise (Prakash et al.,
2019). Additional work also needs to be performed in
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examining the correlation between the noise of different
modalities to improve predictive performance (Chlaily
et al., 2016).

� Discordance: It is possible that there is conflicting infor-
mation in the modalities that are being fused, due to dif-
ferent views conveyed by the data in each modality. This
may cause discrepancy in modality fusion, resulting in
less confident fusion and/or prediction. Methods need to
be developed that can be robust to such a phenomenon,
and focus on features in each modality that are comple-
mentary to each other. In early or intermediate fusion,
this may result from inconsistency in multimodal sensors
in regards to their mutual information (Tmazirte et al.,
2013) or random events that may be a result of the
nature of data collection or type of the sensor (Kumar
et al., 2007). In late fusion, this situation can be
improved by a voting rule (Van Mechelen and
Smilde, 2010).

� Correlation considerations: Correlation between modal-
ities can be seen between different individual features
and also between modalities as a whole. Constructing a
model to take advantage of these connections still
remains a challenging task. Highly correlated modalities
may lead to models with high collinearity, requiring add-
itional consideration with how to handle high correlation

(Gaw et al., 2018). Additionally, some sensors in multi-
modal problems may also be subject to the same external
noise, causing bias in their measurements that may lead
to over or under confident predictions (Khaleghi et al.,
2013). In contrast, independent modalities (correlation ¼
0) may also present challenges with modality fusion. In
these cases, one cannot rely on correlation between
modalities to help with fusion, and must rely on other
ways (e.g., confidence of individual modalities
(Castellano et al., 2008), etc.).

� Intermodality correlation: Often the incorporation of fea-
tures from multiple modalities only indirectly considers
intermodality correlation to inform model-building.
There is a greater need to build models that consider
intermodality correlation explicitly and incorporate it dir-
ectly into the model building process. The authors have
only found a limited number of works that harness inter-
modality correlation. In early fusion, Guo et al. (2018)
proposes a canonical correlation analysis algorithm that
performs joint intermodal and intramodal fusion for
semi-paired scenarios. The advantage of this method is
that it considers scenarios for which not all modalities
have a strong pairing with each other (“semi-paired”
scenarios), while also performing fusion that considers
intermodality correlations that preserve intramodal

Table 3. Summary of the data and domain knowledge integration as well as their corresponding capabilities (C) and limitations (L).

Framework Descriptions Capabilities (C) and Limitations (L)

Arithmetic Combination (Brentan et al., 2017; Chen
and Irwin, 2017)

Fuses mathematical and machine learning model
outputs in an arithmetic fashion (e.g., addition,
subtraction, multiplication, division, etc.)

(C1) Easy to implement since fusion is performed
at a high-level

(L1) Fusion is performed superficially and does not
fully consider the intricacies of either model

(L2) Less flexibility in regards to what aspects of
each model to fuse and where multimodality
fusion occurs

Mathematical Model Parameter Estimation (Dong
et al., 2016; Clifton et al., 2017; Mak et al., 2018;
Meng et al., 2019)

Uses machine learning to provide an estimate of
some parameters for a mathematical/
physical model

(C1) Can make mathematical model estimation
more efficient (Mak et al., 2018)

(C2) Can introduce direct influence from empirical
data directly into the estimation of the
mathematical model

(L1) Can introduce unnecessary noise in
mathematical model estimation (if empirical
data is not relevant to the prediction/
classification task) and make mathematical
model estimation more imprecise

(L2) Methods are generally limited to specific
mathematical models and cannot be easily
translated to other problems

Bayesian Framework (Li and Shi, 2007; Albers et al.,
2018; Mascheroni et al., 2020)

Incorporates prior information from the
mathematical model to the machine learning
model and vice versa

(C1) Allows more flexibility as to where fusion
occurs between the models

(C2) Enables fusion of modalities in multiple ways
(ex., hierarchical, graphical, etc.)

(L1) Most estimation algorithms are based on
Markov Chain Monte Carlo methods that are
computationally expensive

(L2) Requires careful design for when and where
to apply modality fusion in the network

Feature Input (Liu and Guo, 2018; Gaw et al., 2019;
Liu, Clemente, Poirier, Ding, Chinazzi, Davis,
Vespignani and Santillana, 2020)

Includes output from the mathematical model as
input to training of a machine learning model

(C1) Can significantly improve machine learning
model accuracy (Gaw et al., 2019)

(C2) Flexibility to use features for any statistical
learning algorithm of interest

(L1) Model fusion is indirect/imprecise because it
does not fully utilize the inner-mechanics of the
mathematical model

(L2) Communication is only one-way from the
mathematical model to the machine learning
algorithm (no influence of machine learning on
mathematical model estimation)
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correlations. Additionally, there are a couple methods
that develop neural network architectures that more
explicitly consider intermodality correlations (Peng et al.,
2017; Said et al., 2017). Said et al. (2017) demonstrated a
deep learning approach that utilizes intermodality correl-
ation to improve classification of EEG and EMG signals.
Peng et al. (2017) utilized both intramodality and inter-
modality correlation in a hierarchical classification net-
work that takes as input texts and images to inform
image and text retrieval tasks.

� Varying confidence levels: Each modality will often have a
different level of confidence (Siegel and Wu, 2004), e.g.,
due to noise level, nature of the data collection task, cor-
relation with response variable, etc. As an example, if
given an audio and video data of a person crying, one
may have higher confidence in predicting this event
using audio instead of video (Atrey et al., 2010). In
another example, Rankawat and Dubey (2017) fuse noisy
ECG and atrial blood pressure signals by defining a beat
Signal Quality Index (SQI) that indicates the level of
noise in each modality, and incorporating the SQI into a
majority voting scheme. A model that can take these
aforementioned factors into account will be able to
emphasize the “higher confidence” modalities, while still
utilizing useful information from the less confident
modalities that can improve the fusion quality. There is a
need to more optimally quantify confidence in specific
modalities for a particular task (e.g., in regards to meas-
ure of information content, relevance to prediction task,
etc.) for the purpose of improving flexibility and adaptiv-
ity in modality fusion. Having this information would
enhance capability to choose the degree of fusion and
which modalities to fuse for each instance in the dataset
(e.g., whether to place a higher emphasis on some
modalities over others, not select particular modal-
ities entirely).

� Negative transfer reduction: There is limited work in
reducing negative transfer between different modalities.
Developing models that can successfully integrate modal-
ity covariances (i.e., positive transfer), while also prevent-
ing fusion of conflicting information or correlations that
are irrelevant model training (i.e., negative transfer), will
provide valuable insights into how to best integrate inter-
actions between modalities while also producing more
accurate models. In one example, Yoon and Li (2018)
develop a Positive Transfer Learning (PTL) model on tel-
emonitoring data of Parkinson’s Disease patients that is
robust to negative transfer between patients’ individual
sub-models. The PTL model is built on the premise that
not all information from patient data is useful for build-
ing accurate models of other patients, and it is necessary
to identify the conditions for which negative transfer can
happen and negatively affect the model. However this
work does not handle multiple modalities, highlighting a
need for more methods such as this one to be incorpo-
rated into multimodal fusion.

� Computation: Because of the complexity of some multi-
modality fusion algorithms, they often cannot be solved

analytically and approximation algorithms are needed.
There have been studies that have successfully made
approximation techniques that will eventually converge
(Virtanen et al., 2012; Xiang et al., 2014; Zhang et al.,
2018b). However, there is still need to make more effi-
cient approximation methods and improve efficiency to
bring convergence rate to a more acceptable level.

� Theoretical criteria and verification: Even though extra
modes of data provide additional information in most
circumstances, integration of modes is not always benefi-
cial and may cause deterioration in the performance of a
model. For example, when integrating multi-accuracy
data in applications such as geometric inspection and
metrology (Gahrooei, Payanbar, Pacela and Colosimo,
2019) or building simulation (Safarzadegan Gilan et al.,
2016), a data mode with high non-stationary bias or vari-
ance may harm the development of a surrogate model.
Establishing a set of criteria for identifying suitable
modes is a challenging task and requires theoretical ana-
lysis. Other theoretical questions includes: what is the
best quantitative measure of success? What is the meas-
ure that quantifies the gain of integrating several modal-
ities? Can we obtain a theoretical lower-bound of gain?
What is the best error that is achievable by fusion
of data?

� Multimodal data collection: Although several techniques
are available for integration of multimodal data, the lit-
erature is very limited in how to design the collection of
multimodal data to minimize the data collection cost
while obtaining the adequate level of information. In
telemedicine applications, for example, a visit from a
doctor (accurate mode of health data) is an expensive
means of data collection in comparison with wearable
devices (low accuracy mode). How often a patient should
visit a doctor given the low-accuracy data is the question
to be addressed by the multimodal data collection poli-
cies. How to select the right modes, collect data, and
integrate the modes is a major challenge. Gahrooei,
Payanbar, Pacella and Colosimo (2019) proposed an
adaptive sampling of high-accuracy data when low-accur-
acy data is available, and applied it to vehicle engine cali-
bration application. However, this approach is limited to
a static case and assumes the high-accuracy mode is
already known.

� Dynamic data fusion: Limited work is available for
dynamic data fusion of multimodal data. Such techniques
can be applied in smart cities and telemedicine applica-
tions, where several multi-accuracy sensors are collecting
information over time. Appropriate synchronization (i.e.,
when and how much data should be processed from
each modality) should also be taken into consideration
(Atrey et al., 2010).

� High-dimensional data: Due to the nature of multimodal
data, there is often a high number of features from which
to choose for fusion. Sparse methods (Xiang et al., 2014;
Argelaguet et al., 2018) can be used to select individual
features or latent components can also be derived to
infer the underlying patterns expressed in the data
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(Kibble et al., 2016; Li Choi, Perres, Sun and Vudue,
2017). Additional consideration should be made for
determining when to reduce the dimension of the data
(whether it should be as a preprocessing step within indi-
vidual modalities before fusion, as a part of the fusion
process across all modalities, or a combination of
the two).

� Deep learning: The literature in IE-related applications
has been limited in regards to incorporating deep learn-
ing models (Said et al., 2017; Peng et al., 2017; Gao
et al., 2018; Ramachandram et al., 2018; P�erez-R�ua et al.,
2019; Joze et al., 2020). The applications of deep learning
are limited in this area due to lack of instances available
for model training. However, there is possibility to use
pre-trained neural networks that have reasonable degree
of discriminative ability which can be transferred to new
datasets (DenseNet121, 2018; InceptionV3, 2019).
Additionally, generative shallow learning models that
have the capability to produce new artificial instances
can augment the training set and overcome the issues of
small sample size.

� Privacy: Due to regulatory constraints from a particu-
lar application (e.g., medical, military, industry etc.),
one may be limited in ability to fuse different modal-
ities because of concerns of compromising confidenti-
ality. There are only a limited number of works in
this area (Kefayati et al., 2007a, 2007b; Gao, 2020;
Kumar and Diwakar, 2021). One such work utilizes
the nonsubsampled shearlet transform combined with
noise reduction to transform, share, and fuse imaging
data through a secure environment (Kumar and
Diwakar, 2021). Another work focuses on the privacy
and preservation of information fused between multi-
agent systems in regards to synchronization, informa-
tion fusion, decentralized control and load balancing
(Gao, 2020).

� Objective measures of modality fusion: More work should
be performed in finding objective metrics that evaluate
the degree to which information from modalities are
fused (Zhu et al., 2018), along with measures of positive
or negative transfer (for example, Yoon and Li (2018)).
This will better assist researchers in this area to compare
methods they are developing by providing objective
benchmarks of “fusion performance”.

7. Conclusion

As systems have become more advanced, there has been an
increasing abundance of available data from different
modality types. To advance the performance of statistical
learning algorithms, it is crucial to understand how to best
incorporate the relationships of these different modalities,
while also avoiding a negative transfer of knowledge (i.e.,
transfer of discordant information between modalities). The
key understanding that is necessary to implement and
advance such algorithms is discerning the connections
between the different data modes and how to best exploit
them. Because multimodal datasets can be incredibly

diverse, there is no one-size-fits-all model, which requires
the practitioner to understand the particular application
while developing a multimodal approach. As this work has
demonstrated, there is potential for huge performance
improvement from training a model on a single data mode
if relationships between different available data modes are
appropriately considered. It will be important to focus
efforts in both decomposition-based models and neural net-
works, as some applications will require decomposition-
based models when fewer training instances are at hand,
while others with be able to employ the advantages of
neural networks (especially deep learning) when many
training instances are available. Progress in this area will
span a broad number of applications, including systems
monitoring/prognostics, healthcare, renewable energy, and
many others since multimodal measurement technologies
are emerging everywhere.
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