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Abstract
Background. Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises 
multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for 
targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling 
techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study 
explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic hetero-
geneity throughout MRI-enhancing and nonenhancing tumor segments.
Methods. We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhance-
ment (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed 
DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered 
biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging 
measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated 
accuracies using leave-one-out-cross-validation (LOOCV).
Results. We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) 
for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied 
by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and 
RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, 
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and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 
32).
Conclusion MRI and texture analysis can help characterize regional genetic heterogeneity, which offers 
potential diagnostic value under the paradigm of individualized oncology.
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Glioblastoma (GBM) exhibits broad genetic diversity that 
contributes to treatment resistance and poor survival. 
Recent discoveries through genetic profiling have given 
insight into new strategies for improving outcomes.1 In 
particular, the paradigm of individualized oncology selects 
treatments to match the targetable aberrations within 
each tumor. While this approach seeks to maximize drug 
response and patient survival, GBM's intratumoral hetero-
geneity creates significant challenges.2 Specifically, each 
tumor comprises multiple genetically distinct clonal popu-
lations (so called “many tumors in one”) that can express 
different therapeutic targets.3 This renders non-localizing 
biopsies prone to sampling errors, since genetic profiles 
from one location may not accurately reflect other subre-
gions. Such errors can misguide treatment, leading to poor 
or incomplete response.4 Further, contrast-enhanced MRI 
(CE-MRI) guides surgical targeting from enhancing regions 
(ENH), but neglects the clonal populations within the non-
enhancing parenchyma (so called “brain around tumor” 
[BAT]).5,6 These BAT populations remain unresected and 
poorly characterized despite representing the primary 
targets of adjuvant therapy and the main contributors to 
recurrence.5,6 These issues underscore the need to better 
characterize GBM's intratumoral genetic heterogeneity, 
particularly within the nonenhancing BAT.

As an integral part of clinical practice, MRI can character-
ize a diverse spectrum of tumoral phenotypes as potential 
biomarkers of genetic status. For instance, enhancement on 
CE-MRI correlates with blood brain barrier (BBB) disruption, 
while T2W/FLAIR abnormalities demarcate tumoral edema in 
the BAT. Advanced MRI can report other biophysical features 
such as tumor cell density on diffusion-weighted imaging 
(DWI),8 white matter infiltration on diffusion-tensor imag-
ing (DTI),6,8 and microvessel morphology on perfusion MRI 
(pMRI).9,10 In addition, MRI spatially encodes signal intensity 
values for all voxels comprising each image. The textural pat-
terns between voxel intensities and their surrounding neigh-
bors provide further insight to tissue microstructure and the 
local environment.11,12 Numerous studies have correlated 
both MRI signal and texture analysis with genetic profiles 
in GBM,5,11,13–21 yet these have been limited in resolving the 
challenge of GBM's intratumoral heterogeneity. A major rea-
son is that most groups use nonlocalizing biopsies to deter-
mine a single representative profile for an entire tumor.11,13–21 
By definition, this does not account for the genetic diversity 
throughout the various tumor subregions. Also, most biop-
sies originate from MRI enhancement per routine surgical 
practice, so tumor profiles from the nonenhancing BAT are 
typically under-represented.5 Thus, particularly for tumors 

that ultimately receive a gross total resection of MRI enhance-
ment, the molecular targets of the BAT are unknown.

In this exploratory study, we evaluated the feasibility of 
using multiparametric MRI and texture analysis to character-
ize the regional genetic heterogeneity throughout the ENH 
and BAT tumor segments of GBM. To accomplish this, we 
collected multiple image-guided biopsies throughout both 
segments in a cohort of patients with primary GBM. For 
each biopsy, we analyzed genome-wide DNA somatic copy 
number variants (CNVs) to determine the regional status 
for highly recurrent and biologically significant GBM driver 
genes, as previously determined by The Cancer Genome 
Atlas (TCGA).1,22 These include known therapeutic targets 
and core GBM pathways such as receptor tyrosine kinase 
(RTK), phosphoinositide 3-kinase (PI3K), mitogen-activated 
protein kinase (MAPK), tumor protein p53 (TP53), and retin-
oblastoma (RB1). We coregistered each biopsy location with 
preoperative multiparametric MRI, which includes CE-MRI, 
DWI, DTI, and pMRI. This allowed us to correlate regional 
genetic status with spatially matched imaging measure-
ments including raw MRI signal and MRI-based texture 
features. Finally, we used both univariate and multivariate 
analyses to determine which MRI-based features correlated 
most strongly with regional status for each driver gene. Our 
overarching goal is to develop image-based biomarkers that 
can improve diagnostic accuracy and treatment selection 
under the paradigm of individualized oncology.

Methods

Patient Recruitment

We recruited patients with clinically suspected GBM under-
going preoperative stereotactic MRI for surgical resec-
tion. We confirmed the absence of previous treatment 
(including steroid administration). We obtained approval 
from the institutional review boards and obtained writ-
ten and informed consent from each participant prior to 
enrollment.

Surgical Biopsy

Our group used preoperative conventional MRI, including 
T1-weighted contrast-enhanced (T1  + C) and T2-weighted 
sequences (T2W), to guide stereotactic biopsies as previously 
described.23 In short, each neurosurgeon collected an average 
of 5–6 tissue specimens from each tumor using stereotactic 
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localization, following the smallest possible diameter crani-
otomies to minimize brain shift. Neurosurgeons generally 
selected targets separated by ≥1 cm from both ENH (T1 + C) 
and nonenhancing BAT (T1 + C,T2W) regions within different 
poles of the tumor based on clinical feasibility (e.g. accessi-
bility of the target site, overlying vessels, eloquent brain).23 
Neurosurgeons recorded biopsy locations to allow subse-
quent coregistration with multiparametric MRI datasets. The 
neurosurgeon visually validated stereotactic imaging loca-
tions with corresponding intracranial anatomic landmarks, 
such as vascular structures and ventricle margins, before 
recording specimen locations.23

Histologic Analysis and Tissue Treatment

Tissue specimens (approximately 125 mg) were flash-
frozen in liquid nitrogen in the operating suite within 1–2 
minutes of collection and stored in −80°C freezer until 
subsequent processing. Tissue was retrieved and embed-
ded frozen in optimal cutting temperature (OCT) com-
pound. Tissue was sectioned (4  μm) in −20°C cryostat 
(Microm-HM-550) utilizing microtome blade, stained with 
hematoxylin and eosin (H&E), and reviewed by neuropa-
thology to ensure adequate tumor content (≥50%).

Genetic Profiling and Analysis

We performed DNA/RNA isolation and determined copy 
number variant (CNV) for all tissue samples using array 
comparative genomic hybridization (aCGH) and exome 
sequencing as previously published and further detailed 
in Supplemental Methods.24–26 This included application of 
previously described CNV detection to whole genome long 
insert sequencing data and exome sequencing.25

Copy Number Variant Aberrations of Interest

TCGA has previously identified a set of highly recurrent 
and biologically significant DNA gains and losses through 
copy number analysis.1,22 These CNVs comprise known 
therapeutic targets and/or core GBM pathways: RTK, PI3K, 
MAPK, TP53, and RB1.1,22 For this study, we determined 
which tumor samples demonstrated aberrations for each 
CNV. To adequately power image-genetic correlative stud-
ies, we proceeded with those CNVs altered in ≥20% of 
our tumor samples. CNVs such as c-MET amplification on 
7q31.2, observed in only one of 48 (2.1%) total samples, 
were excluded from further analyses.

MRI Protocol, Parametric Maps, and Image 
Coregistration

Conventional MRI and acquisition conditions
We acquired 3T MRI (Sigma HDx; GE-Healthcare) within 

one day prior to stereotactic surgery. Conventional MRI 
and Advanced MRI parameters have been detailed previ-
ously.23 Briefly, we acquired postcontrast T1-weighted (T1 + 
C) SPGR-IR (TI/TR/TE = 300/6.8/2.8 ms; matrix = 320 × 224; 
Field of View (FOV) 26 cm; thickness = 2 mm) and T2-weighted 
(T2W) fast-spin-echo (TR/TE = 5133/78 ms; matrix = 320 × 192; 

FOV = 26 cm; thickness = 2 mm). We acquired T1 + C images 
after completing dynamic susceptibility-weighted con-
trast-enhanced (DSC) perfusion MRI (pMRI) following total 
Gd-DTPA (gadobenate dimeglumine) dosage of 0.15 mmol/
kg as previously described.23,27Diffusion Tensor Imaging 
(DTI)We acquired DTI using spin-echo echo-planar imaging 
(EPI) (TR/TE = 10000/85.2 ms, matrix = 256 × 256; FOV = 30 cm, 
slice = 3 mm, 25 directions, B = 0,1000). We calculated the 
following parameters as previously described: isotropic (p) 
and anisotropic (q) diffusion, mean diffusivity (MD) and frac-
tional anisotrophy (FA).6,23DSC-pMRIWe acquired DSC-pMRI 
as previously detailed.23,27 Briefly, we administered preload 
dose (0.1 mmol/kg) before acquiring DSC, which consisted 
of gradient-echo (GE)-EPI (TR/TE/FA = 1500 ms/20 ms/60°, 
matrix = 128 × 128, thickness = 5 mm) for 3 minutes. DSC 
bolus injection (0.05  mmol/kg) commenced at 45 seconds 
during DSC. The initial source volume of images from the 
GE-EPI after the PLD, an image we term EPI + C, was acquired 
without dummy scans (prior to magnetization equilibrium), 
and thus is sensitive only to regional variations in proton den-
sity and postcontrast T2*W signal. Assuming similar proton 
density within tumor voxels and because the EPI + C signal 
intensities are acquired at contrast agent equilibrium, EPI + C 
reflects variations in tissue cellularity (eg, cell density, shape, 
size, and distribution) as previously described.23,28 We per-
formed leakage correction and calculated relative cerebral 
blood volume (rCBV) using IB Neuro (Imaging Biometrics) as 
previously detailed.27Image coregistrationWe coregistered all 
image datasets using ITK (www.itk.org) and IB Suite (Imaging 
Biometrics) as previously detailed.27 Briefly, we used rigid-
body techniques to coregister image datasets with varying 
matrix sizes and FOVs to a common matrix/FOV (all data 
were registered to the DTI series). We included the additional 
step of visual validation by expert neuroradiologist review to 
ensure the accuracy of image co-registration, which further 
reduced potential errors. Previous work quantifying misreg-
istration error suggests minimal impact on the accuracy of 
spatial correlations.29

Texture Analysis, Image Processing, and 
Principal Component Analysis (PCA)

Following image coregistration, all MRI data exhibited uni-
form voxel size (1.2 × 1.2 × 3 mm) across all MRI contrasts 
(x,y,z dimensions). We generated regions of interest (ROIs) 
measuring 8 × 8 × 1 voxels (9.6 × 9.6 × 3 mm) at the loca-
tions corresponding to each biopsy site. A  board-certified 
neuroradiologist (L.S.H.) visually inspected all ROIs to 
ensure accuracy. Prior to texture analysis, we acquired 
first-order statistics from raw image signals: mean (M) and 
standard deviation (SD) of gray-level intensities. Next, we 
mapped intensity values within each ROI onto the range 
0–255. This step helped standardize intensities between 
ROIs and reduced effects of intensity nonuniformity on fea-
tures extracted during subsequent texture analysis. Next, 
we performed texture analysis as previously detailed, 
incorporating 3 separate but complementary texture algo-
rithms11,12,30,31: gray level co-occurrence matrix,29 local 
binary patterns (LBP),30 and discrete orthonormal Stockwell 
transform (DOST).11,12 In total, we generated 30 texture fea-
tures for each of 8 total MRI contrasts, which yielded 240 
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MRI-texture features and 16 raw features (ie, mean and SD 
for 8 MRI contrasts) for a total of 256 image-based features 
for each ROI. We then performed PCA and determined princi-
pal components (PCs) for respective MRI-texture algorithms 
(GLCM, LBP, DOST) for each ROI.23 The PCs for respective 
MRI-texture features were numbered and correlated individ-
ually with genetic status as described below. Texture analy-
sis and PCA are further detailed in Supplemental Methods.

Statistical Analysis of Imaging-Genetic 
Correlations

To broadly survey the potential associations between imag-
ing and genetics, we first performed a univariate analysis 
comparing each imaging feature at a time against the sta-
tus of each CNV (aberrant vs diploid/normal). Specifically, 
we used a 2-sample t test to determine statistically signifi-
cant differences in image feature values between aberrant 
and diploid CNV status. Sensitivity analysis included com-
parison of imaging parameters between aberrant and dip-
loid samples using the chi-square test with adjustment for 
clustering of biopsies within patients.32 Results remained 
highly consistent with the primary results, which did not 
adjust for clustering (results not shown). We also used the 
Benjamini & Hochberg (1995) false discovery rate to adjust 
for multiple testing within each texture feature and muta-
tion.33 Furthermore, we performed multivariate analysis by 
fitting decision tree-based models on the image features to 
assess whether multiple image features could be used in 
a complementary fashion for predicting CNV status.34 We 
developed separate decision-tree models for each CNV of 
interest. When the sample size allowed (ie, ≥20% of tissue 
specimens demonstrated a particular CNV aberration), we 
separated BAT and ENH tumor samples, and developed 
one decision tree for BAT samples and another decision 
tree for ENH samples. However, if separation of BAT and 
ENH samples resulted in a small sample size (eg, <20% 
of tissue samples showed CNV aberration), we combined 
ENH and BAT samples to develop a single decision-tree. 
For each decision-tree model, we calculated area under 
the curve (AUC) on receiver operator characteristic (ROC) 
analysis to determine the accuracy of the training data. We 
subsequently validated each model's accuracy for predict-
ing/classifying the CNV status using leave-one-out cross 
validation (LOOCV). LOOCV is a well-known approach for 
evaluating the accuracy of a statistical model on unseen 
data.11,12,23

Results

Patient Recruitment and Tissue Samples

We collected a total of 81 tissue specimens from 18 GBM 
patients. Of these, 48 tissue specimens (16 BAT, 32 ENH) 
from 13 patients (median = 3 specimens/patient) contained 
adequate tumoral and/or DNA content for successful aCGH 
analysis. The majority of biopsies (93.75%) were sepa-
rated by ≥1 cm. Three biopsies (6.25%) were separated by 
6–10 mm from other biopsies in the same patient. In this 
study, we sought to evaluate the regional intratumoral 
heterogeneity of genetic profiles as documented through 

multiple stereotactic biopsies within a single tumor. Due 
to the heterogeneous nature of GBM tumors and the goals 
of our study, we considered multiple tissue specimens 
from the same tumor to be independent observations. 
This approach has been used in multiple previous studies 
that used imaging to evaluate intratumoral heterogene-
ity.5–10,22,27,35 Sensitivity analysis using chi-square testing 
further supported the minimal impact on correlations 
when adjusting for clustering of biopsies within patients.32

Copy Number Variant Aberrations of Interest

Of the core GBM pathways reported by TCGA,1,2,22 CNVs 
associated with 6 driver genes met inclusion criteria (≥20% 
prevalence) for further imaging-genetic analyses (Tables 1 
and 2). PTEN deletion on 10q23 was the most commonly 
observed genetic alteration (75% of total samples), fol-
lowed by CDKN2A deletion on 9p21.3 (64.5%), RB1 deletion 
on 13q14 (47.9%), EGFR amplification on 7p11 (43.75%), 
TP53 deletion on 17p13 (35.4%), and PDGFRA amplifi-
cation on 4q12 (22.9%). Specimens isolated from 7 of 13 
GBM tumors demonstrated heterogeneity in genetic pro-
files such that at least one of the samples showed different 
CNV aberration(s) compared with the other samples from 
the same tumor (Fig. 1). For imaging-genetic correlations, 
we defined aberrations for PTEN, CDKN2A, RB1, and TP53 
as either homozygous or heterozygous deletions.

Univariate Analyses of Imaging-Genetic 
Associations

The analysis of DTI metrics (p, q, MD, FA) showed that P 
and q values were equivalent to MD and FA, respectively. 
For all imaging-genetic correlative studies, we proceeded 
with the analysis of P and q values and also used these to 
represent MD and FA, respectively. On univariate analysis, 
CNV status correlated more strongly with MRI texture fea-
tures than with raw MRI signal intensities (ie, mean and 
standard deviation), suggesting the added value of texture 
analysis. Table  1 and Fig.  2 summarize the predominant 
imaging-genetic correlations. EGFR amplification showed 
highly significant correlations with LBP texture on rCBV 
maps as well as 3 separate features on T2W imaging: 2 tex-
ture-based features (on DOST and GLCM) and SD of raw 
T2W signal. PDGFRA amplification strongly correlated with 
DOST and GLCM texture on isotropic diffusion (p). Each of 
these imaging correlations demonstrated false discovery 
rates (FDR) <5% (Table 1, Fig. 2). PDGFRA status also cor-
related moderately with DOST texture on EPI + C. CDKN2A 
showed highly significant correlation with LBP texture on 
EPI + C, while PTEN correlated strongly with LBP texture 
on T2W imaging. RB1 deletion correlated moderately with 
several imaging features (T2W and T1 + C textures and T2W 
raw[SD]), while TP53 deletion showed the weakest imag-
ing correlations compared with all other CNVs.

Multivariate Analysis Through Decision-tree 
Models and Leave-one-out Cross Validation

Using multivariate analysis, we developed separate 
decision-tree models for ENH and BAT tumor samples, 
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respectively, for 5 of 6 CNVs of interest. For PDGFRA, sepa-
rating BAT and ENH groups resulted in low prevalence 
for BAT samples (only 18.75% of samples with amplifica-
tion). Thus, we grouped BAT and ENH samples to develop 
one decision-tree model to predict PDGFRA amplification. 
Decision-tree models for all CNVs achieved AUC (Table 2) 
on the training set, ranging from 0.89 to 1.0. The LOOCV 
accuracies showed variability depending on the CNV of 

interest and tumor segment subgroups (BAT vs ENH). 
Interestingly, 4 of the 6 predictive models showed higher 
LOOCV accuracies for BAT samples compared with ENH 
samples: EGFR (75% vs 71.9%); RB1 (87.5% vs 43.8%); 
CDKN2A (87.5% vs 59.4%); PTEN (68.8% vs 43.8%). The 
PDGFRA predictive model showed high accuracy (77.1%) 
in combined BAT/ENH samples. Low LOOCV accura-
cies were noted in both BAT and ENH samples for TP53 

Table 1. Selected associations between copy number variant and imaging on univariate analysis

CNV MRI-texture feature P value Biophysical correlate

EGFR ++ (7p11) T2W-DOST* <.005 Tissue water/edema

T2W-GLCM* <.002

T2W raw SD* <.004

rCBV-LBP* <.001 Microvessel volume; angiogenesis

PDGFRA ++ (4q12) P-DOST* <.0001 Isotropic diffusion; tumor cell density

P-GLCM* <.009

EPI+C-DOST <.014 Cellular density

PTEN – (10q23) T2W-LBP <.005 Tissue water/edema

CDKN2A – (9p21.3) EPI+C-LBP <.004 Cellular density

RB1 – (13q14) T1+C-GLCM <.01 MRI enhancement; BBB disruption

T2W-DOST <.03 Tissue water/edema

T2W raw SD <.008

TP53 – (17p13) P-LBP <.03 Isotropic diffusion; tumor cell density

T2W-DOST <.02 Tissue water/edema

Abbreviations: DOST, discrete orthonormal Stockwell transform; GLCM, gray level co-occurrence matrix; LBP, local binary product; SD, standard 
deviation of raw MRI signal
Listed are the predominant imaging features that correlated with the status of each copy number variant. Each MRI feature is listed by contrast and 
texture algorithm. For instance, T2W-DOST corresponds with DOST texture of T2W signal. P values are based on univariate analysis. Also listed are 
the biophysical features associated with corresponding MRI contrasts. ++ denotes amplification; – denotes deletion.
Asterisks (*) denote correlations that showed false discovery rate (FDR) <5% when adjusting for multiple testing.

Table 2. Decision-tree models for predicting copy number variant status

CNV Tumor segment CNV prevalence (%) Decision tree AUC LOOCV accuracy

EGFR ++ (7p11) BAT 50% (8/16) 0.94 75%

ENH 40.6% (13/32) 1.00 71.9%

PDGFRA ++ (4q12) BAT/ENH 22.9% (9/48) 0.89 77.1%

PTEN – (10q23) BAT 68.8% (11/16) 0.90 68.8%

ENH 78.1% (25/32) 1.00 43.8%

CDKN2A – (9p21.3) BAT 62.5% (10/16) 0.95 87.5%

ENH 65.6% (21/32) 0.94 59.4%

RB1 – (13q14) BAT 37.5% (6/16) 0.95 87.5%

ENH 53.1% (17/32) 1.00 43.8%

TP53 – (17p13) BAT 31.2% (5/16) 1.00 37.5%

ENH 37.5% (12/32) 1.00 37.5%

Abbreviations: AUC, area under curve; BAT, “brain around tumor”; CNV, copy number variants; ENH, enhanced; LOOCV, leave-one-out cross-validation
Separate decision-tree models were developed to predict CNV status within tumor sample subgroups (ENH vs BAT) except for PDGFRA. The lower 
prevalence of PDGFRA alterations required grouping of ENH and BAT samples to develop a single decision-tree model for CNV status. The preva-
lence of each CNV is listed as a percentage as well as the number of tissue samples with CNV alteration relative to total samples within each group/
subgroup. Decision-tree area under curve (AUC) was determined on receiver operating characteristic (ROC) analysis of the training set. We also 
report cross validation accuracy for each decision-tree model as determined by LOOCV.
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Fig  2. Heat map showing P values for significant 
imaging correlations with copy number variant (CNV) 
status. Univariate analysis compared CNV status 
(aberrant vs diploid/wild-type) with MRI-texture fea-
tures. CNVs are listed as columns (top). Image fea-
tures are listed as rows by MRI contrast (left axis) (eg, 
EPI + C, P, etc) and corresponding texture algorithm 
(right axis) (ie, DOST, GLCM, LBP). The principal com-
ponents (PC) that demonstrated statistically signifi-
cant or trending correlations are listed and labeled 
numerically (ie, 1,2,3 etc.). Mean (M) and standard 
deviation (SD) are also listed. Color map shows the P 
values by a 2-sample t test. Yellow-to-red colors indi-
cate P values ≤.05, while blue signifies Pvalues >.05. 
DOST = discrete-orthonormal-Stockwell-transform; 
GLCM = gray-level-co-occurrence matrix; LBP = local-
binary-product. Asterisks (*) denote correlations with 
false discovery rate (FDR) <5%.

Fig  1. Copy number variant (CNV) profiles for 48 glioblastoma 
(GBM) tumor samples from 13 patients. Listed are the tissue samples 
by patient (eg, A,B,C … ) and sample number (eg, 1,2,3 … ). Samples 
are also demarcated by tumor segment of origin (ENH vs BAT). Red 
boxes denote amplification, dark blue boxes denote homozygous 
deletions, light blue boxes denote heterozygous deletions, and yel-
low boxes denote wild-type status (ie, diploid genome) for respec-
tive CNV gene aberrations (listed at the bottom of the x-axis).
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(37.5% and 37.5%). These LOOCV accuracies are also sum-
marized in Table 2. Tree models are also detailed in Fig. 3 
and Supplementary Figs 1–5. A  total of 11 tree models 
were produced. All together these included 25 decision 
nodes. DOST-based texture features were selected most 
frequently for tree-model construction (10 of 25 decision 
nodes), followed by LBP features (7 of 25), GLCM features 
(7 of 25), and raw features (1 of 25). Supplementary Figs 6 
and 7 also show which patient samples contributed to the 
decision nodes for the EGFR (Supplementary Fig. 6) and 
PDGFRA (Supplementary Fig. 7) decision-tree models.

Discussion

Previous studies have documented GBM's intratumoral 
genetic heterogeneity by karyotype,36 DNA aneuploidy,37 
gene expression profiling5,35 and, more recently, copy 
number analysis1,22,38 and next generation sequencing.1 
This heterogeneity, which is thought to arise from clonal 
expansion of multiple genetically divergent tumor popula-
tions, has implications for targeted therapy and tumoral 
resistance. Each clonal population can express different 
drug targets and sensitivities, which promotes the likeli-
hood that pre-existing resistant clones will fail a given 
therapy and subsequently recur. Neighboring clonal popu-
lations can further modulate therapeutic response through 

biological interactions.2–4 These issues have motivated 
recent efforts to develop combinatorial strategies that can 
overcome and even exploit genetic heterogeneity for ther-
apeutic benefit.2–4 Also, as genetically informed paradigms 
become more realistic and feasible, the characterization 
of intratumoral heterogeneity will play an ever-increasing 
role in the design of new and effective targeted therapies.

Tissue sampling remains a significant barrier to accu-
rately characterizing intratumoral heterogeneity.4 While 
CE-MRI guides surgical biopsies from the enhancing tumor 
segment (ENH), MRI enhancement alone lacks the speci-
ficity to resolve the regional and genetically distinct clonal 
populations throughout each tumor. Numerous correlative 
studies have evaluated other imaging features as potential 
biomarkers of genetic status.5,11,13–21 Yet, most have used 
nonlocalizing biopsies (typically from a small representative 
subregion) to determine a single genetic profile for an entire 
tumor. Unfortunately, this technique fails to inform of intra-
tumoral heterogeneity as a whole since the genetic profiles 
from one biopsy location may not accurately reflect those 
from other tumor subregions. In fact, sampling errors can 
potentially degrade imaging-tissue correlations. Gutman13 
et  al. and Jain14 et  al. separately reported the absence of 
imaging correlations with common putative GBM drivers 
(eg, EGFR, PDGFRA, PTEN, and CDKN2A), which typically 
show regional heterogeneity throughout each tumor.22,35 
Other studies have reported mixed correlations between 
whole-tumor imaging and GBM subtypes,14,16 although 

Fig 3. Decision-tree model for PDGFRA copy number variant (CNV) status. (A) Tree model classification for PDGFRA 
amplification was developed through multivariate analysis of CNV status, multiparametric MRI, and texture analy-
sis. The combination of P-DOST and EPI + C-DOST MRI-texture features classifies PDGFRA amplified (Amp) and wild-
type (WT) specimens, with parentheses denoting (total # classified/# incorrectly classified) specimens at each branch 
point. Leave-one-out-cross-validation (LOOCV) confirmed 77.1% model accuracy. P = isotropic diffusion; EPI + C = 
T2*W signal loss; DOST = discrete orthonormal Stockwell transform; PC3, PC2 derived from principal component 
analysis (PCA). (B, C) Shown are the locations of 2 stereotactic biopsies (Bx#1,Bx#2) on CE-MRI. DNA CNVs dem-
onstrated amplification (Amp,Bx#1) and diploid/wild-type status (WT,Bx#2). (C) Color map overlay shows regions 
(ROIs) of predicted PDGFRA amplification (red voxels) using tree model classification. AUC, area under curve.
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these have not accounted for the fact that multiple subtypes 
can co-exist within a single tumor.22 Meanwhile, different 
groups using nonlocalizing biopsies have shown conflict-
ing results on whether EGFR correlates with perfusion MRI 
metrics.14,18–21

In this study, we collected multiple image-guided biopsies 
from both ENH and BAT tumor segments to demonstrate 
intratumoral heterogeneity for core GBM pathways and com-
mon therapeutic targets. Although previous studies have 
shown how tumor samples from nonenhancing BAT can 
genetically differ from ENH samples,5,35 our data illustrate that 
regional genetic diversity can also exist within each tumor 
segment. This underscores the need to improve the image-
based characterization of genetic heterogeneity beyond the 
use of CE-MRI enhancement alone. While other studies have 
also used image-guided biopsies,5,35 our study has taken sev-
eral unique approaches to facilitate the image-based charac-
terization of regional genetic status including (i) integration of 
multiple, complementary MRI contrasts, (ii) use of multiple, 
complementary texture algorithms to probe tissue micro-
structure and heterogeneity, and (iii) development of predic-
tive models for specific GBM driver genes. These aspects have 
enabled the identification of multiple, statistically significant 
associations between localized imaging features and regional 
CNV status (summarized in Table 1 and Fig. 2).

On univariate analysis, we observed strong correlation 
between regional EGFR status and LBP texture on rCBV. 
While mean rCBV quantifies the overall average microves-
sel volume within a ROI, rCBV texture captures the contri-
butions and signal patterns of the individual voxels within 
that ROI, giving insight to microvascular distribution and 
heterogeneity.5,9,10 Previous studies have investigated the 
link between EGFR and mean rCBV, albeit without localiz-
ing biopsies or texture analysis that may explain conflicting 
results.14,18–21 Tykocinski18 et al. and Gupta19 et al. both found 
correlations between EGFR and raw mean rCBV, while 
Ryoo20 et  al. and Jain14 et  al. did not. Although sampling 
error could have contributed to discordance between stud-
ies, we used stereotactic biopsies to address this confound 
and identified no significant correlation between EGFR and 
raw mean rCBV. However, the finding that texture of rCBV 
correlates with EGFR status suggests the benefit of char-
acterizing the regional and intervoxel signal patterns for a 
particular MRI contrast. EGFR also correlated strongly with 
T2W texture (on DOST and GLCM) as well as T2W intervoxel 
heterogeneity, as measured by SD of raw signal. The link 
between EGFR and T2W signal patterns of tumoral/vaso-
genic edema has been suggested previously.21 The other 
CNVs also demonstrated strong correlations with image 
texture and MRI-based biophysical correlates. PDGFRA 
associated strongly with textures (but not raw mean values) 
on isotropic diffusion (P-DOST, P-GLCM) and EPI + C meas-
ures of cellular density (EPI + C-DOST). Both MRI contrasts 
have been linked to tumor cell density and proliferation in 
previous studies.6–8,23,28 Similarly, PTEN and CDKN2A cor-
related highly with textures on T2W (T2W-LBP) and EPI + C 
(EPI + C-LBP), respectively.

We used multivariate analysis through decision-tree 
modeling to determine whether MRI-based features, either 
alone or in combination, could predict CNV status for a given 
biopsy sample. While all training models achieved high AUC 
on ROC analysis, cross validation showed that only some 

models retained high accuracy on LOOCV. For example, the 
model for PDGFRA status (Fig. 3) demonstrated high LOOCV 
accuracy (77.1%), while model accuracies for TP53 were 
low for both BAT and ENH samples. Interestingly, 4 of the 6 
models showed noticeably higher LOOCV accuracy for BAT 
samples compared with ENH samples: EGFR (75% vs 71.9%), 
RB1 (87.5% vs 43.8%), CDKN2A (87.5% vs 59.4%), and PTEN 
(68.8% vs 43.8%). These discrepancies likely relate to multi-
ple underlying factors that warrant further investigation in 
larger GBM cohorts. One possibility is the influence of driver 
gene co-expression (eg, EGFR and PTEN) on image-based 
phenotypes. Ryoo20 et al. found that tumors co-expressing 
EGFR amplification and PTEN deletion had significantly 
lower rCBV values compared with tumors having EGFR 
amplification alone (and normal PTEN status). Presumably, 
co-expression of other driver gene combinations could 
impact a diversity of imaging phenotypes. Future analysis 
of molecular markers other than DNA gains/losses (eg, epi-
genetic modulation, mRNA, and proteomic expression) may 
also help validate or enhance the correlations in this study.1,2 
Finally, further work is needed to evaluate how the image-
based characterization of intratumoral heterogeneity might 
impact clinical decisions about GBM therapy and correla-
tive studies by cooperative initiatives such as TCGA and The 
Cancer Imaging Atlas (TCIA).1–5 For instance, quantifying the 
fraction of tumor populations harboring specific gene altera-
tions could be useful for serially tracking treatment efficacy 
over time to evaluate how specific tumor regions respond to 
targeted therapies. This could prove beneficial for proposed 
strategies such as adaptive therapy,39 which modulates the 
selective advantage of the different clonal populations within 
each tumor to maximize therapeutic benefit. Also, the use of 
imaging to quantify genetic heterogeneity should enable 
future comparisons between genetically heterogeneous and 
homogeneous tumors in regard to differential responses to 
standard therapy, clinical outcomes, and development of 
optimal drug regimens to extend survival.

We recognize several limitations to this study. First, given 
the small sample size of this exploratory study, the tree-model 
accuracies and univariate analyses need to be prospectively 
validated in a larger GBM cohort. This should also increase 
the likelihood of capturing a more diverse set of GBM driver 
gene alterations (eg, c-MET, CDK4, etc.), which were oth-
erwise too infrequent in our study to adequately character-
ize by imaging. Prospective validation will also provide the 
opportunity to integrate these predictive models with surgi-
cal neuronavigation, which will facilitate biopsy targeting of 
genetically diverse regions within each tumor. Second, image 
distortions and brain shift following craniotomy could lead to 
misregistration errors. To compensate, neurosurgeons used 
small craniotomy sizes to minimize brain shift and also visu-
ally validated stereotactic image location with intracranial 
neuroanatomic landmarks to help correct for random brain 
shifts. Rigid-body coregistration of stereotactic and advanced 
MR-imaging also helped reduce possible geometric distor-
tions.5,9,10,23,27 Overall, our experience suggests combined 
misregistration at approximately 1–2  mm from both brain 
shift and registration technique, which is similar to that from 
previous studies using stereotactic needle biopsy.8 Also, for 
each patient, we collected multiple tissue samples from spa-
tially distinct subregions within the same tumor. The vast 
majority of biopsy targets were separated by >1 cm. While 

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/19/1/128/2661721 by guest on 14 April 2023



 136 Hu et al. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma

approximately 6%–7% of samples (3 out of 48) were sepa-
rated by 6–10 mm, we used small ROI sizes to minimize the 
effects of potential sample overlap. We estimate negligible 
impact from this minority of samples.

Conclusion

This exploratory study uses image-guided biopsies, mul-
tiparametric MRI, and texture analysis to establish spatially 
accurate correlations with regional genetic status for a 
focused set of common GBM drivers. The results here offer 
proof of concept that image-based biomarkers can facili-
tate the characterization of intratumoral genetic heteroge-
neity. This also provides a framework for future studies to 
validate these correlations and identify image-based sig-
natures for a broader array of biologically and therapeuti-
cally significant genetic alterations in GBM.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Journal online (http://neuro-oncology.oxfordjournals.org/).
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