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Abstract In this contribution we discuss Higher Order Perturbation of Surfaces
(HOPS) methods with particular application to traveling water waves. The Trans-
formed Field Expansion method (TFE) is discussed as a method for handling the
unknown fluid domain. The procedures for computing Stokes waves and Wilton
Ripples are compared. The Lyapunov-Schmidt procedure for the Wilton Ripple is
presented explicitly in a simple, weakly nonlinear model equation.

1 Introduction

Traveling water waves have been studied for over a century, most famously by
Stokes, for whom weakly-nonlinear periodic waves are now named [1, 2, 3]. In
his 1847 paper, Stokes expanded the wave profile as a power series in a small pa-
rameter, the wave slope, a technique which has since become commonplace. This
classic perturbation expansion, which we will refer to as the Stokes’ expansion, has
been applied to the water wave problem numerous times [4, 5, 6, 7, 8, 9]. When the
effect of surface tension is included, the expansion may be singular. This singularity,
due to a resonance between a long and a short wave, was noted first by Wilton [10]
and has been studied more recently in [11, 12, 13, 14, 15].

In these lecture notes, we explain how traveling water waves may be computed
using a High Order Perturbation of Surfaces (HOPS) approach, which numerically
computes the coefficients in an amplitude-based series expansion of the free sur-
face. For the water wave problem, a crucial aspect of any numerical approach is
the method used to handle the unknown fluid domain. Popular examples include
Boundary Integral Methods [16, 17], conformal mappings [18, 19], and series com-
putations of the Dirichelet-to-Neumann operator [20, 21]. Here we discuss an al-
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ternative approach, in which the solution is expanded using the Transformed Field
Expansion (TFE) method, developed in [22, 23].

The TFE method has been used to compute traveling waves on both two-
dimensional (one horizontal and one vertical dimension) and three-dimensional flu-
ids, both for planar and short-crested waves [23]. Short-crested wave solutions to the
potential flow equations have been computed without surface tension [22, 24, 25]
and with surface tension [26]. They have also been studied experimentally [27, 28].

The TFE method computes a Stokes expansion of the water wave to all orders.
There is a long history of numerical implementation of the Stokes expansion to
simulate water waves [29], with the approaches of [30, 31] and [22] of greatest
relevance in the present context. However, only the TFE methods can be rigorously
shown to converge (proof in [32]; see Figure 1 in [22] for an explicit demonstration
of the ill-conditioning present in the algorithm of [30]), and thus be completely
reliable for numerical simulation. In a recent paper, Wilkening and Vasan discuss
this type of numerical ill-conditioning, which is due to floating-point cancellation,
and show how the use of multi-precision arithmetic allows one to use the Craig-
Sulem expansion to compute traveling waves (this expansion would otherwise be
victim to the same ill-conditioning of Roberts et. al.) [33].

The implicit assumption of the Stokes’ expansion, that solutions are analytic in
the wave slope parameter ε , can also be exploited to derive weakly nonlinear model
equations. In the case of shallow water waves with surface tension, well-known
weakly-nonlinear models include the 5th order KdV equation [34] and the KP equa-
tion [35]. Without surface tension, Boussinesq type models have been used to study
weakly nonlinear short-crested waves, for example in [36]. Recently, analogues of
both the 5th order KdV [37] and KP equations [38] have been derived for deep wa-
ter gravity-capillary waves. In this work a weakly nonlinear model will be used to
present the details required to compute a high order Stokes expansion, as in [15].
This model allows one to avoid some of the technical details of the full Euler equa-
tions, but still captures the essence of the methods required to compute Stokes waves
and Wilton ripples.

In these notes, we study High Order Perturbation of Surfaces (HOPS) methods
for computing water waves. We begin by discussing methods for dealing with the
unknown fluid domain in the water wave problem - Taylor Series, Operator Ex-
pansions, and the Transformed Field Expansion. Next, we discuss the Lyapanov-
Schmidt reduction used to compute the series to all orders - first for Stokes waves
in the TFE expansion, second for Wilton ripples in a weakly nonlinear model.

2 Water Waves

The widely accepted model for the motion of waves on the surface of a large body
of water with constant surface tension, and in the absence viscosity, are the Euler
equations
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φxx +φzz = 0, z < εη , (1a)
φz = 0, z =−H, (1b)

ηt + εηxφx = φz, z = εη , (1c)

φt +
ε

2
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φ

2
x +φ

2
z
)
+η−σ

(
ηxx

(1+ ε2η2
x )

3/2

)
= 0, z = εη , (1d)

where η is the free–surface displacement and φ is the velocity potential. These equa-
tions describe the motion of an inviscid incompressible fluid undergoing an irrota-
tional motion. System (1) has been nondimensionalized as in [23, 39]. For HOPS
methods, the wave slope ε = A/L is assumed to be small (A is a typical amplitude
and L, the characteristic horizontal length, is chosen in the non–dimensionalization
so that the waves have spatial period 2π). Also, the vertical dimension has been
non-dimensionalized using the wavelength, so the quantity H is non-dimensional
(H = h/L). For simplicity’s sake, in these notes we will consider the deep water
limit H→∞. To compute traveling waves, the time dependence of (1) is prescribed,
using the ansatz

η(x, t) = η(x+ ct) and φ(x,z, t) = φ(x+ ct,z).

To proceed further, one must choose a method to handle the fundamental difficulty
of the water wave problem: that the problem domain is unknown.

3 The Fluid Domain

In this section, approaches for dealing with the vertical dependence of the water
wave problem are discussed. Of course there are many other methods (for exam-
ple conformal mapping or boundary integral methods). Here the aim is to discuss
boundary perturbation methods and so we will restrict our attention to three meth-
ods based on series expansions: Taylor series, Operator Expansions, and the Trans-
formed Field Expansion method.

3.1 Taylor Series

The most classic approach for the fluid domain is the one used originally by Stokes,
and later by Wilton, and much later numerically by for example Roberts et. al.
[1, 10, 30, 24]. The idea is simple, presume that the potential is analytic in the
vertical dimension near z = 0, and Taylor expand the potential, and thus the bound-
ary conditions, about this flat boundary. The resulting problem will have an infinite
degree nonlinearity, but be posed on a half plane (or strip in finite depth). The new
boundary conditions are
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cηx−φz + ε∂x
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= 0, at z = 0. (2b)

Laplace’s equation is exactly solvable for the potential in the lower half plane, given
its trace at z = 0, denoted here as Φ(x) = φ(x,0):

φ(x,z) = F−1
{

F {Φ(x)}e|k|z
}
.

Thus we can write equations (2) in terms of Φ , and replacing φz(x,0) = T Φ(x),
effectively eliminating the vertical dependence. The operator T is then defined by
setting z = 0 above, or in terms of the Fourier transformed variables,

φ̂(k,0) = |k|Φ̂(k) = T̂ Φ(k).

Unfortunately, this type of expansion, although effective for weakly nonlinear mod-
els (where the series are truncated at small order), are ill-conditioned when large
numbers of terms are kept in the nonlinearity. Many terms in the series almost can-
cel, meaning that precision is lost in the result of combining these sums. To fix such
numerical instability, in fixed precision storage types, one desires to avoid large-
degree nonlinearities, which can be done using the TFE approach.

3.2 Operator Expansions

A popular alternative to the Taylor series approach of the previous section is to
map the problem to the free surface, via the Dirichlet-to-Neumann operator (DNO).
For example, one can write the water wave problem using Zakharov’s canonical
variables [40] η(x, t) and

ξ (x, t) := φ(x,η(x, t), t)

(the displacement and the surface velocity potential). This formulation was made
explicit by Craig & Sulem [41], with the introduction of the Dirichlet–Neumann
operator (DNO),

G(η)ξ := (∂zφ − (∂xη)∂xφ)z=η
,

which maps Dirichlet data, ξ , to Neumann data at the interface η . In terms of this
operator the evolution equations (1) can be equivalently stated as
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∂tη = G(η)ξ , (3a)
∂tξ =−η +σηxx−A(η)B(η ,ξ ), (3b)

where

A(η) =
1

2(1+(∂xη)2)
(3c)

B(η ,ξ ) = (∂xξ )2− (G(η)ξ )2−2(∂xη)(∂xξ )G(η)ξ

+σ∂x

(
∂xη

(1+ ε2(∂xη)2)1/2 −∂xη

)
. (3d)

An amplitude expansion in this setting asks one to expand the operator G(η), and
thus it is natural to refer to such a HOPS method as an operator expansion; it fun-
damentally relies on expansion of the DNO [42]. We refer the interested reader to
[42] for the full details, including the fundamental difficulty of computing the first
variation of the DNO (see also [43, 44]). Such methods can be numerically imple-
mented, provided that one is very careful with floating-point cancellation, see [33]
for discussion of a multi-precision implementation using the operator expansion of
Craig & Sulem.

3.3 Transformed Field Expansion

The TFE method begins with a very similar idea to the Taylor series approach,
solving for the potential below a fixed depth. The change is that instead of the depth
being z = 0, we choose some depth below the minimum of the fluid interface, z =
−a. As before, Laplace’s equation can be solved below this interface, yielding a new
boundary condition at z =−a instead of z =−∞:

φz = T φ ,

with T defined as in the previous section, simply evaluating the solution of
Laplace’s equation at z = −a instead of z = 0. Although the domain for Laplace’s
equation is still unknown, it is now bounded and small (−a < z < εη). The next
step is to change variables, mapping the domain to a strip. Rather than conformal
mapping, which would leave Laplace’s equation unchanged, the TFE approach uses
the transformation

z̃ = a
(

z− εη

a+ εη

)
,

which naturally generalizes to three dimensional fluids. In this setting, we can write
Euler’s equations for the transformed field u(x̃, z̃), using

u(x̃, z̃) = φ

(
x̃,
(

a+ εη

a

)
z̃+ εη

)
.
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Because this transformed field u mixes x and z dependence, derivatives transform
nonlinearly

uz̃ = φz

(
a+ εη

a

)
ux̃ = φx +

((
a+ εηx

a

)
z̃+ εηx

)
φz

This transformation increases the degree of the nonlinear terms in the boundary
conditions, but only to cubics. The cost of this lower degree nonlinearity is that
Laplace’s equation becomes inhomogeneous, and the new system is of the form

uxx +uzz = F, −a < z < 0, (4a)
uz−T u = J, z =−a, (4b)
cηx−φz = Q, z = 0, (4c)

cφx +η−σηxx = R, z = 0, (4d)

where all the nonlinear terms are included in F,J,Q, and R, whose degree is at most
cubic, and are reported in [22, 23]. Solving such an inhomogeneous equation in
the vertical direction is more difficult than a homogeneous one and is typically done
numerically. However the result can be shown to be numerically stable for boundary
perturbation methods, due to the finite-degree nonlinearity (a stark contrast from the
previous section) [32]. It is also not so expensive, since a can be chosen to be small,
thus one needs only a few points when solving for the the vertical dependence.

4 Boundary Perturbation

In the following sections we describe how one might compute traveling solutions to
(4), using a perturbation expansion, about the flat state. The overall method will be
described for the water wave problem, in which we will discuss the computation of
Stokes waves. The extra Lyapunov-Schmidt reduction required to compute Wilton
Ripples will be presented in the case of a simpler, weakly nonlinear family of model
equations, as in [15].

4.1 Stokes Waves

The boundary perturbation method discussed here is based on an amplitude expan-
sion about the linear solution of the water wave problem:
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uxx +uzz = 0, −a < z < 0, (5a)
uz−T u = 0 z =−a, (5b)
cηx−φz = 0, z = 0, (5c)

cφx +η−σηxx = 0, z = 0. (5d)

The linear problem (5), can be solved exactly, and has dispersion relation

ω(k)2 = c2k2 = |k|(1+σk2).

Thus for each wavenumber k ∈ R there are two speeds c = ±cp(k), where cp(k) =
ω(k)/k is the phase speed. Similarly at each speed, there are two possible wave
numbers, see figure 1. If we restrict to a periodic domain, k ∈ Z, most of the time
there is only one wavenumber which travels at a given speed, or equivalently the
two wave numbers which travel at a given speed do not share a period. When only
one wavenumber both fits in a prescribed period and travels at a given speed, the
leading order solution is

η0(x) = eix +∗, (6a)
u0(x,0) = ic0eix +∗, (6b)

c0 =
√
(1+σ), (6c)

in which ∗ corresponds to the complex conjugate of the preceding terms. We call
the nonlinear solution for which (6) is the leading order term a Stokes’ wave. The
goal of boundary perturbation is now to construct a series

u =
∞

∑
n=1

ε
nun, η =

∞

∑
n=1

ε
n
ηn, and c =

∞

∑
n=0

ε
ncn,

with u0,η0,c0 given by (6). To compute the terms in this series η j,u j and c j, which
we call corrections, we first substitute the above ansatz into (4), and then collect
consecutive powers of ε . At each perturbation order, one must then solve

∆un = Fn, −a < z < 0, (7a)
∂zun−Tun = Jn, z =−a, (7b)

c0∂xηn−∂zun = Qn− cn∂xη0, z = 0, (7c)
c0∂xun +(1−σ∆x)ηn = Rn− cn∂xu0, z = 0, (7d)

where the formula for Fn,Jn,Qn, and Rn appear in [22, 23], and are known functions
of η j,u j,c j for j < n. To compute un,ηn from (7), one must first ensure that the
right hand side is in the range of the linear operator (on the left). The linear problem
has non-trivial solution, thus one must impose a solvability condition for each inde-
pendent solution of the adjoint problem, which we call ψ . Stokes waves correspond
to the case where the adjoint problem has a one-dimensional solution space.
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Fig. 1 LEFT: The phase speed cp for σ = 1/2, for which there is a Wilton ripple, between k = 1
and k = 2. The wave at k = 1 travels at the same speed as one of its harmonics (at k = m) only if
σ = 1/m. For all other Bond numbers the solution is a Stokes’ wave. RIGHT: An example of two
periods a ripple for σ = 1/2, computed in equation (10).

The Lyapunov-Schmidt reduction for Stokes waves is quite simple. Defining vn =
(0,0,un,ηn)

T and Gn = (Fn,Jn,Qn,Rn)
T , the Fredholm alternative theorem says that

there are solutions of (7) if and only if

〈ψ,Gn− cn∂xv0〉= 0. (8)

This equation is linear in cn. After calculating cn from (8), one can then invert the
linear operator upon its range, calculating un and ηn, and proceed to the next order.
This procedure is done numerically in [22, 23, 32].

4.2 Wilton Ripples

When the adjoint problem has more than one independent solution, the Lyapunov-
Schmidt reduction required to compute solutions is more complicated. For deep
water waves on a two-dimensional fluid this occurs when the Bond number σ =
1
m , with m ∈ N. For this countable set of Bond numbers, there are two nontrivial
solutions to the linear problem, which one might express as

η0 = eix +β0eimx +∗, and u0(x,0) = ic0eix +β0ic0eimx +∗, (9)

both of which move at speed c0 =
√

1+σ . From a linear perspective, arbitrary
values of β0 are allowed. Only particular values of β0 correspond to nonlinear so-
lutions however. Rather than present the perturbation expansion for the full water
wave problem, where the bookkeeping becomes quite arduous, we will present the
expansion in a simpler model,

cηx−L ηx + ε(η2)x = 0, (10)
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where L is a pseudo-differential operator, whose Fourier symbol is

L̂ (k) = cp(k) =

√
1
|k|

+σ |k|,

to mimic the water wave problem (we are presenting here the results of [15], for a
particular choice of L ). The leading order solution will be identical to the η portion
of (9). A nonlinear solution is then sought in the form

η =
∞

∑
n=0

ε
n
ηn, and c =

∞

∑
n=0

ε
ncn.

This ansatz results in a series of linear equations for ηn,

(c0−L )∂xηn =−∂x

(
n−1

∑
j=0

η jηn−1− j

)
−

n−1

∑
j=0

cn− j∂xη j. (11)

Just as with Stokes waves, we seek to compute the corrections (η j,c j) at each or-
der, by first enforcing that the right hand side of (11) is in the range of the linear
operator (on the left). In the ripple case there are two solutions to the adjoint linear
problem, and we will need to enforce two solvability conditions. The speed correc-
tions cn are still available for one unknown at each order, but since there are now
two conditions, we need a second unknown. The second unknown is a coefficient of
the homogeneous solutions to (11). We choose to add these in the following way:

ηn = η
⊥
n +βneimx,

where η⊥n is not supported at k = 1 or k = m, and is a particular solution of (11).
The total correction ηn is a sum of this particular solution and a homogeneous con-
tribution at frequency k = m.

The nth correction includes no contribution from the other homogeneous solution
(at k = 1). This choice defines the total of the Fourier transform of the solution at
k = 1 to be 1, and thus ∑

∞
j=0 ε jβ j is defined to be the Fourier transform of the

solution at k = m. With these definitions, the solution is unique.
The series can be computed for all m, but for simplicity of presentation, we will

only present the case considered by Wilton himself, m = 2. Larger values of m
require similar manipulations; see a complete treatment of m = 3 in [15]. For m = 2,
the character of the entire perturbation series can be determined by considering only
the first three orders. The O(ε0) solution is identical to the leading order free surface
of the Euler equations, here in (9), as is the leading order speed c0. At the next order,
one must impose that equation (11) is solvable, that the right hand side of (11) is
orthogonal to both ψ j = eik jx:〈

eix,(η2
0 )x + c1∂xη0

〉
= 0,〈

e2ix,(η2
0 )x + c1∂xη0

〉
= 0.
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This can be written simply in terms of β0 and c1:

c1 +2β0 = 0,
c1β0 +1 = 0.

Thus c1 =±
√

2 and β0 =∓
√

2/2. These numbers depend only on the nonlinearity,
not the linear operator; they will be different for the full water wave problem. At
later orders, the solvability conditions are〈

eix,2(η0ηn−1)x + cn∂xη0 + c1∂xηn−1 +∂x

(
n−2

∑
j=1

η jηn−1− j

)
+

n−2

∑
j=1

cn− j∂xη j

〉
= 0,〈

e2ix,2(η0ηn−1)x + cn∂xη0 + c1∂xηn−1 +∂x

(
n−2

∑
j=1

η jηn−1− j

)
+

n−2

∑
j=1

cn− j∂xη j

〉
= 0.

In the above solvability conditions, the unknowns cn and βn−1 appear linearly, and
only in the first three terms in the second argument of the inner product. The result-
ing solvability conditions can be written as(

1 2
β0 c1

)(
cn

βn−1

)
= Dn, (12)

where Dn are known functions of the previous corrections.

Dn =

 〈
eix,∂x

(
∑

n−2
j=1 η jηn−1− j

)
+∑

n−2
j=1 cn− j∂xη j

〉〈
e2ix,∂x

(
∑

n−2
j=1 η jηn−1− j

)
+∑

n−2
j=1 cn− j∂xη j

〉
Since the matrix on the left-hand side of (12) is invertible, this equation is solvable
at all orders, and we can formally construct the solutions. To use such an approach,
of course one must also consider convergence of the series, see [15] for discussion
of the convergence of the above series. An example of a Wilton ripple solution for
m = 1 is in the right panel of Figure 1.

Wilton ripples can be thought of a special case of a resonant interaction, where
both the spatial and temporal frequencies of a set of waves sum to zero:

k1 + k2 + · · ·+ km = 0, ω1 +ω2 + · · ·+ωm = 0.

Such nonlinear interactions are commonly referred to as triads when they contain
three waves, quartets with four waves, etc. [45, 46]. Wilton ripples have wave num-
bers and dispersion relations satisfying such a resonant interaction, where

k1 = k2 = · · ·= km−1 and km = mk1,

along with
ω1 = ω2 = · · ·= ωm−1 and ωm = mω1.
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Although these notes present only the triad ripple, m = 1, where the solvability
conditions are quadratic, the other resonances are similar, with the exception that
the solvability condition include a cubic nonlinearity at O(ε2).
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