
HOPS Short Course: Stability of Traveling
Water Waves

Benjamin F. Akers

Abstract In this contribution we present Higher Order Perturbation of Surfaces
(HOPS) methods as applied to the spectral stability problem for traveling water
waves. The Transformed Field Expansion method (TFE) is used for both the trav-
eling wave and its spectral data. The Lyapunov-Schmidt reductions for simple and
repeated eigenvalues are compared. The asymptotics of modulational instabilities
are discussed.

1 Introduction

The water wave stability problem has a rich history, with great strides made in the
late sixties in the work of Benjamin and Feir [1] and in the ensuing development of
Resonant Interaction Theory (RIT) [2, 3, 4, 5]. The predictions of RIT have since
been leveraged heavily by numerical methods; the influential works of MacKay and
Saffman [6] and McLean [7] led to a taxonomy of water wave instabilities based on
RIT (Class I and Class II instabilities). The most recent review article is that of Dias
& Kharif [8]; since the publication of this review a number of modern numerical
stability studies have been conducted [9, 10, 11, 12, 13].

In these lecture notes, we explain how the spectral data of traveling water waves
may be computed using a High Order Perturbation of Surfaces (HOPS) approach,
which numerically computes the coefficients in amplitude-based series expansions
[14]. For the water wave problem, a crucial aspect of any numerical approach is the
method used to handle the unknown fluid domain. Just as in the traveling waves lec-
ture of this short course, numerical results will be presented from the Transformed
Field Expansion (TFE) method, whose development for the spectral stability prob-
lem appears in [13, 15, 16, 17].
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The TFE method computes the spectral data as a series in wave slope/amplitude,
and thus relies on analyticity of the spectral data in amplitude. A large number of
studies of the spectrum have been made which do not make such an assumption
[9, 18, 19, 10]. On the other hand, it is known that the spectrum is analytic for
all Bloch parameters at which eigenvalues are simple in the zero amplitude limit
[20]. Numerically it has been observed that the spectrum is analytic in amplitude
at Bloch parameters for which there are eigenvalue collisions, but that the disc of
analyticity is discontinuous in Bloch parameter. This discontinuity in radius is due
to modulational instabilities, as explained in [21].

These notes begin by introducing the spectral stability problem for traveling
water waves. Next, the TFE formulation is described, followed by leading-order
asymptotics of the spectral data. In section 4, the perturbation series approach is
discussed, followed by the Lyapunov-Schmidt reduction for triad collisions in sec-
tion 5. Finally, we present instabilities due to the modulation of triad collisions in
section 6.

2 Spectral Stability of Water Waves

The widely–accepted model for the motion of waves on the surface of a large body
of water with constant surface tension, and in the absence viscosity, are the Euler
equations

φxx +φzz = 0, z < εη , (1a)
φz = 0, z =−H (1b)

ηt + εηxφx = φz, z = εη , (1c)

φt +
ε

2
(
φ

2
x +φ

2
z
)
+η−σ

(
ηxx

(1+ ε2η2
x )

3/2

)
= 0, z = εη , (1d)

where η is the free–surface displacement and φ is the velocity potential. These equa-
tions describe the motion of an inviscid, incompressible fluid undergoing an irrota-
tional motion. System (1) has been nondimensionalized as in [22, 15]. We assume
that the wave slope, ε = A/L is small (A is a typical amplitude and L, the charac-
teristic horizontal length, is chosen in the non–dimensionalization so that the waves
have spatial period 2π). Also, the vertical dimension has been non-dimensionalized
using the wavelength, so the quantity H is non-dimensional (H = h/L). For simplic-
ity sake, in these notes we will consider the deep water limit H → ∞. To compute
traveling waves, the time dependence of (1) is prescribed, using the ansatz

η(x, t) = η(x+ ct) and φ(x,z, t) = φ(x+ ct,z).

In the spectral stability problem, solutions to the traveling waves problem, η̄ , φ̄ ,c,
are assumed to be known. These waves are then perturbed a small amount, δ , and
linearized by substituting
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η(x, t) = η̄(x− ct)+δζ (x− ct)eλ t , φ(x,z, t) = φ̄(x− ct,z)+δv(x− ct,z)eλ t ,

and neglecting quadratic powers of δ . The resulting problem will be a non-constant
coefficient, generalized spectral problem, still on an unknown domain. For ampli-
tude expansion based methods, an effective way to handle the domain is with the
Transformed Field Expansion [23]. The TFE method is both spectrally accurate and
numerically stable; see the the previous lecture in this short course or [24] for a
comparison of other methods in the traveling wave problem.

2.1 Transformed Field Expansions

The Transformed Field Expansion method (TFE) solves for the field (perturbations
of the velocity potential and free surface) via an amplitude expansion of the Euler
equations (1) after two transformations. First, Laplace’s equation is solved exactly
below a prescribed depth, z =−a (via the same operator presented in part II of this
short course). Second, the domain above this depth is transformed to a strip by the
simple change of variables,

z→ a
(

z− εη

a+ εη

)
,

after which the stability problem becomes

vxx + vzz = F̃ , −a < z < 0, (2a)
vz−T v = J̃, z =−a, (2b)

λζ + cζx− vz = Q̃ z = 0, (2c)
λv+ cvx +(1−σ∂

2
x )ζ = R̃, z = 0. (2d)

The symbols F̃ , J̃, Q̃ and R̃ contain all the non-constant coefficient terms, depend-
ing on η̄ , φ̄ ,ζ , and u. This formulation yields stable, fast recursions in a Boundary
Perturbation method, the formulation is discussed at length in [13, 15].

To consider the broadest class of perturbations, we will append Bloch boundary
conditions to (2). If the traveling wave is of period L = 2π , the perturbations satisfy,

ζ (x+2π) = ζ (x)e2πip

with similar boundary condition for v, in which p ∈ R is the Bloch, or Floquet, pa-
rameter. This decomposes the continuous spectrum of the original problem (which
has periodic coefficients) to a sets of discrete eigenvalues for each value of the Bloch
parameter. After this decomposition, it makes sense to construct a perturbation ex-
pansion about the flat-state eigenvalues.

To compute the spectrum at fixed Bloch parameter, all variables are expanded as
a series in amplitude, both the traveling wave data (as in the traveling wave lecture
of this short course) and the spectral data,
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v =
∞

∑
n=0

vnε
n, ζ =

∞

∑
n=0

ζnε
n, and λ =

∞

∑
n=0

λnε
n. (3)

In the TFE formulation, this results in a sequence of linear problems

vn,xx + vn,zz = F̃n(x,z), −a < z < 0, (4a)
vn,z−T vn = J̃n(x), z =−a, (4b)

λ0ζn + c0ζn,x− vn,z = Q̃n(x)−λnζ0, z = 0, (4c)

λ0vn + c0vn,x +(1−σ∂
2
x )ζn = R̃n(x)−λnv0, z = 0. (4d)

The exact formula for the F̃n, J̃n, Q̃n and R̃n can be found in [13, 20], and we direct
the motivated reader to the (tedious) details provided therein. These equations can
be rapidly solved via Fourier collocation in the horizontal dimension, and an elliptic
solver in the vertical dimension, for example the Chebychev-Tau method [15]. It is
in this formulation that the spectrum has been calculated to all orders, about both
simple and repeated eigenvalues, in deep water and finite depth, with and without
surface tension [15, 16, 17].

3 Leading Order Behavior

In the flat water configuration, when n = 0, the right hand side of (4) vanishes,
F̃0 = J̃0 = Q̃0 = R̃0 = 0. The resulting problem is exactly solvable, with eigenvalues

λ0 =±iω(k j)+ ic0 · k j, (5)

where k j are the wave numbers of the perturbation (including the Bloch parameter)
and ω(k) =

√
|k|(1+σ |k|2) is the dispersion relation of the potential flow equations

(1). The leading order solution for the eigenfunctions depends on the multiplicity of
the eigenvalue in question. We will discuss these solutions separately.

3.1 Simple eigenvalues

If the spectrum is simple, ignoring perturbations of the mean, so that k1 6= 0, the
leading order eigenfunctions are(

ζ0(x)
v0(x,0)

)
= β0,1

(
1

λ0+ic0·k1
|k1|

)
eik1·x = β0,1υ1 (6)

Before one can compute (ζn,vn), recall that the size of an eigenfunction is not
a meaningful quantity. We choose to define the size of the eigenfunctions by the
size of their Fourier coefficient at k1, here ζ̂ (k1) = 1. Such a choice is necessary,
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without which one cannot hope to uniquely compute an eigenfunction. This particu-
lar normalization of the eigenfunctions allows one to avoid including homogeneous
solutions at later perturbation orders, simplifying the entire procedure.

Without collisions, the equations for λn are linear, and all λn are pure imaginary;
simple eigenvalues do not lead to instability (within the radius of convergence of
their series expansions). This observation motivated in-depth study of the radius of
convergence of these expansions. Since the spectrum is simple almost everywhere
(for almost all values of the Bond number and Bloch parameters), one might expect
that the radius of convergence of these series could be used to detect instabilities,
see [13]. Eigenvalue collisions however, even those of opposite Krein signature, do
not always create instabilities. Next we consider the spectrum about resonant Bloch
parameters, where eigenvalues collide.

3.2 Eigenvalue collisions

At Bloch parameters where the flat-state (ε = 0) contains an eigenvalue collision,
λ0(k1) = λ0(k2), implying

±ω(k1)±ω(k2) = (k1− k2)c0.

Including the broadest class of perturbations, k j = n j + p with p ∈ [0,1) and n j ∈ Z,
this condition can be rewritten as

k1− k2 = mk0 and ω(k1)±ω(k2) = mω(k0), (7)

where k0 = 1 is the frequency of the Stokes’ wave, and m = k1− k2 ∈ Z. Equation
(7), states that the perturbations are waves whose temporal and spatial frequencies
resonant with m copies of the Stokes wave (for m+ 2 total waves). It is natural to
label these resonances with the naming convention of Resonant Interaction Theory
(RIT). In RIT, m = 1 is labeled a triad interaction, m = 2 is labeled a quartet, m = 3
is a quintet, etc. [3, 7, 6]. The leading order perturbations at repeated eigenvalues
are superpositions of the eigenfunctions from the simple case,(

ζ0(x)
v0(x,0)

)
=

(
1

λ0+ic0·k1
|k1|

)
eik1·x +β0,2

(
1

λ0+ic0·k2
|k2|

)
eik2·x = υ1 +β0,2υ2. (8)

Just as for simple eigenvalues, the size of the eigenfunction is chosen so that
ζ̂ (k1)= 1, later orders will not be supported at wavenumber k1. From the perspective
of the leading order problem, β0,2 is free to take any value. At later orders, solvability
conditions will allow only a discrete set of β0,2, analogous to the Wilton ripple
discussion earlier in this short course. The form of the solvability conditions, and
the solution at later orders depends on the the type of eigenvalue collision which
occurs at leading order, encoded by the value of m. All values of m are discussed in
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[15]; for brevity, we present only the triad case, m = 1. First we will introduce the
perturbation series in a simplified notation.

4 Eigenvalue perturbation

After Bloch decomposition, (2) can be thought of as a generalized eigenvalue prob-
lem,

(A−λB)v = 0.

In this notation, (4) is recast

(A0−λ0B0)vn =
n−1

∑
p=0

(
An−p−

n−p

∑
q=0

λqBn−p−q

)
vp (9)

To construct the solution (v,λ ), requires knowledge of the solutions of the adjoint
of the leading order problem,

(A0−λ0B0)
∗
ψ = 0. (10)

Simple eigenvalues have a single non-trivial solution to (10), which we label ψ1.
At a generic eigenvalue collision (of only two eigenvalues), equation (10) has two
solutions ψ1 and ψ2. For discussion purposes, we will choose to label the solutions
based on the wavenumber (so that function ψ j has spatial dependence proportionate
to eik jx). The eigenfunctions of the leading order problem

(A0−λ0B0)v0 = 0 (11)

will be similarly labeled, so that v0 = υ1, or in the case of an eigenvalue collision
v0 = υ1 + β0,2υ2. As in the previous section, the eigenfunctions υ j are labeled so
that they are supported at wavenumber k j.

At every order, n, solving equation (9) requires two steps. First, one must impose
that the right hand side is orthogonal to the solutions of (10). Afterward, the equation
is solvable, and one may invert the linear operator against its range. For simple
eigenvalues, both steps are trivial. Solvability requires enforcing

λn =
1

〈ψ1,B0v0〉

〈
ψ1,

n−1

∑
p=0

An−pvp−
n−1

∑
q=0

n−q−1

∑
p=0

λqBn−p−qvp

〉
.

Given the terms in the series expansion for the spectral data, one may ask “to
what extent is this series summable?” The answer informs on the values of ε for
which a boundary perturbation method can compute the spectrum, i.e. the radius
of the disc of analyticity of the spectrum. This radius may be computed using a
standard convergence test on the terms in the Taylor series (3), or by computing
the Padé interpolant and finding its smallest uncancelled pole. An example of the



HOPS Short Course: Stability of Traveling Water Waves 7

Fig. 1 The radius of convergence of the spectral data as a function of Bloch parameter is numer-
ically computed (circles). A triad eigenvalue collision occurs at (p,ε) ≈ (0.29,0). An asymptotic
prediction, equation (14), for the location of modulated instabilities, and thus loss of analyticity, is
marked with the solid line.

numerically computed radius of convergence of this series as a function of Bloch
parameter p is marked with circles in Figure 1.

5 Triad Instabilities

Triad instabilities arise about eigenvalue collisions λ0(k1) = λ0(k2), where

k1− k2 =±k0 and ω(k1)±ω(k2) =±ω(k0)

in which k0 is the Stokes wave, here k0 = 1. Triad resonances then, are those where
both the spatial and temporal frequencies of the perturbations differ by exactly those
of the Stokes wave.

The boundary perturbation approach expands the traveling wave as a series,
where the O(εn) term is supported at wave numbers |k| ≤ n. The traveling wave
corrections (ηn− j,φn− j) occur as coefficients of the previous eigenfunctions (ζ j,v j)
in the Nth right hand sides (F̃n, J̃n, Q̃n, R̃n) of equation (4). In order to get non-trivial
nonlinear solvability conditions, the coefficients of the wavenumber k2 must ap-
pear in the solvability condition for k1, thus there must be a wave interaction with
k1−k2 =m copies of the Stokes wave. Wavenumber k =m is first present in the trav-
eling wave at O(εm), thus for triads this first occurs at O(ε). These first solvability
conditions are(
〈ψ1,(A1−λ0B1−λ1B0)υ1〉 〈ψ1,(A1−λ0B1−λ1B0)υ2〉
〈ψ2,(A1−λ0B1−λ1B0)υ1〉 〈ψ2,(A1−λ0B1−λ1B0)υ2〉

)(
β0,1
β0,2

)
= 0. (12)
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For the water wave problem, a number of these inner products vanish. In our label-
ing, ψ j and υ j are supported at k j, and since A1 and B1 are supported at wavenumber
k =±1,

〈ψ1,(A1−λ0B1)υ1〉= 〈ψ1,λ1B0υ2〉= 〈ψ2,(A1−λ0B1)υ2〉= 〈ψ2,λ1B0υ1〉= 0.

An inner product can be non-zero only if the wave numbers of the functions in the
inner product sum to zero, hence the connection to RIT. The leading order eigen-
value correction is

λ1 =±

√
〈ψ1,(A1−λ0B1)υ2〉〈ψ2,(A1−λ0B1)υ1〉

〈ψ2,B0υ2〉〈ψ1,B0υ1〉
=±√τ1,2τ2,1.

The τi, j, defined implicitly above are

τi, j =

〈
ψi,(A1−λ0B1)υ j

〉
〈ψi,B0υi〉

.

At this order, β0, j are determined as the null vectors in (12). For deep water two-
dimensional Stokes waves, labeling k1 = k2 + k0, these inner products evaluate to

τ1,2 =
1
2

(
iω(k1)

1+σk2
1

(
(1+σ)(|k2|− k2)

ω(k2)

c0|k2|
+ω

2(k2)+ c2
0

)
− ik1

(
ω(k2)

|k2|
k2 + c0

))
,

τ2,1 =
1
2

(
iω(k2)

1+σ |k2|2

(
(1+σ)(−|k1|− k1)

ω(k1)

c0|k1|
+ω

2(k1)+ c2
0

)
− ik2

(
ω(k1)

|k1|
k1 + c0

))
.

From the above formulae, we see that the τi, j are pure imaginary, and stability is
determined by the sign of the product τ1,2τ2,1.

At all later orders, the corrections to the perturbations are decomposed into two
parts

vn = vn,p + vn,h

where the vn,p are particular solutions, chosen to be orthogonal to the null vectors υ1
and υ2. The vn,h = βn,2υ2 are the the homogeneous solutions of (9) at n = 0, whose
coefficients βn,2 are set by solvability (as are the λn). This decomposition was unnec-
essary for simple eigenvalues, as our choice of normalization of the eigenfunctions
set vn,h = 0 for n > 0. The general order, n≥ 2, corrections solve

(A0−λ0B0)vn =−
n

∑
j=1

(
A j−

j

∑
k=0

λkB j−k

)
vn− j (13)

To solve for vn in equation (13), one must first impose that the right hand side is
in the range of the linear operator, (A0 + λ0B0). At triads for n ≥ 2 the resulting
solvability conditions are linear,
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〈ψ1,(A1−λ1B0−λ0B1)υ2〉 〈ψ1,B0v0〉
〈ψ2,(A1−λ1B0−λ0B1)υ2〉 〈ψ2,B0v0〉

)(
βn−1,2

λn

)
=−

(〈
ψ1,(A1−λ1B0−λ0B1)vn−1,p

〉〈
ψ2,(A1−λ1B0−λ0B1)vn−1,p

〉)

+

〈ψ1,
(

An−∑
n−1
j=0 λ jBn− j

)
v0

〉〈
ψ2,
(

An−∑
n−1
j=0 λ jBn− j

)
v0

〉+

〈ψ1,∑
n−1
j=2

(
A j−∑

j
k=0 λkB j−k

)
vn− j

〉〈
ψ2,∑

n−1
j=2

(
A j−∑

j
k=0 λkB j−k

)
vn− j

〉 .

Thus to compute the general term, one must impose (14), then solve (13) for vn,p.
The complete correction at order O(εn), is not known until the solvability conditions
are imposed at O(εn+1), at which point we have determined vn,h.

The above series expansions, and similar expansions about quartets, quintets etc,
compute the spectrum at any fixed values of the Bloch parameter. This approach
works well both far from, and exactly at, resonant Bloch parameters. It does not
perform well in the neighborhood of resonant Bloch parameters, the radius of con-
vergence of the series shrinks as it approaches resonant configurations, see Figure
1. This is due to the change in form of the series at resonant Bloch parameters,
where flat state eigenvalues collide, and the linear operator (A0− λ0B0) has two
dimensional kernel. To study the spectrum near, but not exactly at, resonant Bloch
parameters, one must include the effect of modulation, by allowing the Bloch pa-
rameter to depend on amplitude.

6 Modulations of Triads

In this section we refer to modulational instabilities as those whose Bloch param-
eter depends on amplitude. Often the term modulational instability is used to refer
only to the long-wave, Benjamin-Feir instability. Our use of the term modulation is
consistent with its meaning in the Benjamin-Feir setting, as the expansion in Bloch
parameter can be thought of as including the effects waves modulated by their side-
bands. For brevity reasons, we will discuss only modulational instabilities of triads;
for quartets and Benjamin-Feir see [21].

To compute the modulated spectrum, first notice that the operators A and B, and
thus the eigenfunctions and eigenvalues (v,λ ), are all functions of the Bloch pa-
rameter p. To compute modulational instabilities, we couple to equation (3), an
amplitude expansion for the Bloch parameter

p = p0 + ε p1 + ε
2 p2 + ...

This expansion introduces an extra unknown at each order in ε . Since the series
was already solvable, the Bloch parameter corrections p j cannot be determined by
equation (9). What results instead is the functional dependence of the spectrum on
the Bloch parameter corrections.

Triad instabilities arise at O(ε); non-trivial modulation of these instabilities can
also be recovered at this order. The modulational contribution (the variations of the
operators A j,B j with respect to frequency) appear in the triad solvability conditions.
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These modulations occur in the form of perturbations of the phase speed and group
velocity. For a general triad, the τi, j 6= 0, and the first nonzero correction to the
flat-state spectrum is

λ1 =−i
(

c0−
cg(k1)+ cg(k2)

2

)
p1±

1
2

√
τ1,2τ2,1− ((cg(k2)− cg(k1))p1)2,

where cg(k j) = ωk(k j) is the group velocity vector at wave number k j.
Both τ j are pure imaginary, so if τ2,1τ1,2 > 0, then there is a band of p1 where

instabilities occur, which includes the non-modulated case p1 = 0. Instabilities exist
within the symmetric interval

|p1|<
√

τ1,2τ2,1

|cg(k1)− cg(k2)|
. (14)

The boundaries of this interval are marked by the solid straight lines in Figure 1. In
this figure, we see that the boundaries of the region where modulated instabilities oc-
cur predicts well the radius of convergence of a non-modulational expansion of the
spectrum. On the other hand the largest triad instabilities are the non-modulational
ones; the triads in the band of instabilities where λ1 has the largest real part are at
non-modulational, at p1 = 0.

The effect of modulation can be considered in the absence of triads. If there is no
triad interaction, then τi, j = 0, and there can be no instability at O(ε). There may be
instability at later orders, with its scaling and character depending on the degree of
the resonance. The cases of quartets and the four-eigenvalue collision Benjamin-Feir
instability are discussed in detail in [21]. The lesson to be learned here is that non-
modulational expansions of the spectra lose their analyticity at asymptotically small
locations, which can be predicted using a modulational expansion of the spectral
data.

In these notes, we focus on the leading order asymptotics of the spectrum. When
implementing such an expansion to all orders a number of details become important.
For example, one must consider convergence of the modulational expansion of the
operators (in frequency space in addition to amplitude space). The effects of floating
point cancellations become crucially important. The TFE method was derived to
elegantly deal with such cancellations, alternatively one may use extended precision
for intermediate computations - see [24]. The cost of such an expansion is also a
factor, which can be significantly reduced by solving for the corrections recursively,
see for example [22].
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