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The thermal blooming of a thulium laser near 2 µm in an enclosed chamber is considered, as in Cook et al. [Opt.
Laser Technol. 146, 107568 (2022)]. The problem is modeled using the paraxial equation for the laser and the
Navier–Stokes equations with a Boussinesq approximation for buoyancy-driven effects. These equations are solved
numerically in the steady experimental configuration. The numerical procedure uses radial basis functions (RBFs)
to approximate spatial derivatives and the hybrid Padé–Newton approach by Lane and Akers [Stud. Appl. Math.
10, e12740 (2024)] to solve the resulting system of nonlinear equations. Numerical simulations are compared to
experimental results. The simulations explain the asymmetry of laser spots as the result of the influence of the tank’s
boundary on the global convective flow. © 2025 Optica Publishing Group. All rights, including for text and data mining

(TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

In this work, the steady thermal blooming of a laser beam propa-
gating through a closed laboratory chamber is discussed. This
study is a continuation of the work performed in Chapter 5
of the first author’s Ph.D. thesis [1]. Thermal blooming is the
process, wherein a laser heats the propagation medium, causing
temperature-based changes in the refractive index in the beam
path [2,3]. This thermal lensing reduces the beam performance.
Adaptive optics countermeasures can result in phase compensa-
tion instability (PCI) [4–6], where adaptive phase corrections
at the aperture can reinforce intensity aberrations in the target
plane.

Numerical simulation of thermal blooming requires knowl-
edge of the light field, the temperature distribution, and the
fluid velocity. Historical studies prescribe the fluid velocity
(either as a fixed wind or a statistical description) [7–12].
Recently, the time-dependent nonlinear velocity field has been
simulated directly including natural convection, from quiescent
initial data [13,14]. Steady thermal blooming with natural con-
vection has also been simulated [15,16]. Experimental studies
in thermal blooming have considered beam propagation across
a wide range of laser–fluid parameters such as beam power,
beam wavelength, fluid medium, degree of turbulence, degree
of crosswind, and propagation distance [17–20]. While many
of these studies are oriented toward understanding beam propa-
gation through the atmosphere, there is a scant discussion of the
possible impact that the finite experimental domain may have
on the beam wavefront via the laser–fluid interaction, especially
in the steady-state regime. In this work, the steady-state thermal

blooming of a Gaussian laser with wavelength near λ≈ 2 µm
within a climate controlled, 5.3 m long chamber is simulated
and compared to the experiment. The simulations result in
asymmetric crescent-shaped beam spots, providing an expla-
nation for the observed asymmetries in the experiment. The
influence of the experimental domain on the fluid dynamics of
beam propagation is novel to the thermal blooming literature,
with natural implications on experimental design for thermal
blooming studies.

Both simulation and experimentation come with unique
challenges when attempting to account for the fully coupled
physical processes involved in laser propagation through an
absorbing fluid. The steady fluid dynamics in response to the
absorption of the beam are often dominated by natural con-
vection, yet historical simulations for laser propagation have
relied on a prescription of the fluid velocity via scaling laws or
enforced crosswind [2,3,21]. To fully model the convective flow
dynamics within a prescribed domain, it is beneficial to directly
simulate the flow response to the laser in a buoyancy-driven
framework. A difficult limitation presented in the steady-state
simulation [15,16] is the reduction of computable laser-forcing
amplitudes of the fixed-point fluid solver as a function of
increased domain size. Recent work by the authors, however,
offers a composite Padé–Newton method to compute steady-
flow solutions for arbitrarily large laser forcing and domain
size [22].

The goal of this article is two-pronged with contributions
in the simulation of the steady-state thermal blooming and the
presentation of experimental results that describe new physical
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phenomena. We investigate the steady-state thermal blooming
of a Gaussian laser tuned to a water absorption wavelength
within a climate controlled 5.3 m long chamber. The specific
tuning of the laser wavelength allows for significant absorption
of the laser into the surrounding fluid [23–25], a strategy which
can be used to represent high-power lasers through an atmos-
pheric transmission window. We present evidence to suggest
that if the beam propagates horizontally off-center within the
fluid domain, then the bloomed irradiance in the target plane
will be skewed in the direction of the nearest wall. In an effort
to simulate this phenomenon, we introduce a fully coupled
steady-state simulation for thermal blooming that builds off of
recent work by the authors to permit simulation for significant
laser absorption over the full size of the experimental propaga-
tion chamber. We show that, due to the horizontally transverse
displacement of the beam center along the propagation path, the
temperature fluctuations in the chamber will induce asymmetric
blooming in the horizontal direction.

The rest of the article is organized as follows. Section 2 details
the experimental setup and Section 3 details the formulation
of the steady-state simulations. Section 4 is dedicated to the
comparison of simulated and experimental results. We observe
asymmetries in the bloomed irradiance profiles and present the
fluid response to the tilted beam propagation. Section 5 summa-
rizes the article and offers key takeaways for future experimental
work in laser propagation.

2. EXPERIMENTAL SETUP

The experimental setup depicting the propagation chamber
is provided in Fig. 1. The fiber laser architecture leading to the
aperture is the same as used in the experiments in Ref. [23]. The
laser wavelength λ is tunable between 1.92 and 2.01 µm with a
maximum average power of 80 W in continuous-wave opera-
tion. In the following experiments, the variable power laser is a
Gaussian beam with a radius of 2.25 mm and a fixed wavelength
of 1944.867 nm to correspond to a water absorption band. After

passing through the aperture, the beam enters the atmosphere-
controlled propagation chamber with initially quiescent flow.
The chamber is filled with air at atmospheric pressure, with the
same conditions as the thermal blooming experiments in Ref.
[23]. The relative humidity was 50% and the fluid temperature
was 296 K. The beam reflects off of a movable ceramic backstop,
and the resultant irradiance profile is imaged with an FLIR
camera through windows along the side of the chamber.

In an attempt to remove optical backscatter, the beam is
initially reflected twice such that the resulting path traveling
through the chamber is tilted in the transverse, horizontal
direction. Figure 2 shows a top-down view of the propa-
gation chamber, depicting the initial reflections and the
subsequent horizontal tilting of the beam. Figure 3 provides
a detailed description of the (not to scale) geometry of the mirror
arrangements within the chamber.

The tilting angle θ is determined a posteriori via the hori-
zontal separation of the beam spot between two propagation
distances. We observe a horizontal shift in the beam spot of 1 cm
for every 1 m of longitudinal propagation, so the effective tilting
angle is θ ≈ 0.01 rad; small enough to maintain the validity of
the paraxial model for beam evolution. The beam reflects off of
the second mirror at a location of x0 =−8.9 cm relative to the
transverse center of the domain and reflects off of the ceramic
backstop at a location of x f =−4.9 cm for 5 m of propagation.
The beam is centered vertically throughout the propagation
chamber, with vertical variations in intensity due exclusively
to thermal blooming. The FLIR camera captures the time
dynamic laser irradiance with a frequency of 100 Hz and a frame
integration time of 928µs.

3. NUMERICAL METHODS

A. Governing Models

The paraxial equation is used as a model for the laser propaga-
tion [26]. With the same order of accuracy as the paraxial scaling
for the evolution of the laser, the fluid flow is two-dimensional

Fig. 1. Side view of the propagation chamber with coordinate axes.

Fig. 2. Top-down view of the chamber.
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Fig. 3. Zoomed-in view of the chamber with the tilting angle θ . Since the initial reflections are not simulated, the first incident angle is not
specified.

in the transverse plane [13]. This simulation architecture forms
the basis of the steady-state simulation developed in Ref. [16],
where the steady-state flow is computed along two-dimensional
slices across the propagation direction, and the fluid tempera-
ture fluctuations are linearly interpolated between transverse
slices.

The fluid is assumed to be incompressible and governed by
the Boussinesq approximation for buoyancy-driven flows. Since
the simulated flow is two-dimensional, we solve the stream
function–vorticity form of the nondimensional governing
equations [27],

(u · ∇)T =
1

Pe
∇

2T + St|V |2, (1a)

(u · ∇)ω=
1

Re
∇

2ω+ Ri∂x T, (1b)

∇
2ψ =−ω, (1c)

u = ∂yψ, v =−∂xψ, (1d)

with vorticity ω= ∂xv − ∂y u, stream function ψ , temperature
fluctuation T, flow velocity u= (u, v), and normalized laser
irradiance |V |2. The nondimensional parameters are, respec-
tively, the Peclet (Pe), Reynolds (Re), Richardson (Ri), and
Stanton (St) numbers that are defined as follows:

Re=
L x

ν
, Pe=

L x

µ
, Ri= g L x , St=

βV 2
0 L x

τ0
. (2)

There is an implicit assumption of a characteristic velocity
U = 1 cm/s for each of the nondimensional parameters,
which can be set arbitrarily without impacting the flow. The
parameters to match the experiment are the length scale
L x = 0.225 cm as the beam radius, the acceleration due to grav-
ity g = 981 cm/s2, the kinematic viscosity ν = 0.15 cm2/s ,
the thermal diffusivity µ= 0.2 cm2/s , the temperature scale
τ0 = 296 K, the laser–fluid absorption constant β = 4.02 cm2K

J ,

and the peak aperture laser intensity V 2
0 , which varies between

18.9 and 68.3 W/cm2. The Re, Pe, and Ri numbers take on
the values Re= 1.5, Pe= 1.125, and Ri= 220.7. The Stanton
number can be thought of as a measure of the heat deposition
from the laser into the flow, and thus depends on the product of
the laser irradiance with the laser–fluid absorption constant β.
This parameter is related to the more common extinction coeffi-
cient α via β = α

ρc p
, where α = 0.48 m−1 is the estimate for the

extinction coefficient which is the laser wavelength within the

Table 1. Fixed Parameters

Parameter Description Value Units

λ Wavelength 1944.867 nm
k Wavenumber 3.23065 · 104 cm−1

L x Beam radius/length scale 2.25 mm
τ0 Ambient temperature 296 K
ν Kinematic viscosity 0.15 cm2/s
B5 Thermal diffusivity 0.2 cm2/s
g Gravitational acceleration 981 cm/s2

β Laser–fluid absorption constant 4.02 cm2K
J

α Extinction coefficient 0.48 m−1

n0 Ambient refractive index 1.0003 –
D Domain width 42 cm
θ Beam tilt angle 0.01 rad
x0 Initial beam location −8.9 cm
Re Reynolds number 1.5 –
Pe Peclet number 1.125 –
Ri Richardson number 220.7 –

water absorption band, obtained from the previous experiments
with the same chamber [23].

The beam amplitude V is evolved according to the paraxial
equation in nondimensional units [28],

∂V
∂z
=

(
i

2n0 F
∇

2
⊥
− i L zn1k −

L z

2
α

)
V , (3)

where F = L2
x k

Lz
is the Fresnel number [2,3], L z is the propa-

gation distance of either 3 or 5 m, ∇2
⊥

is the Laplacian in the
transverse (x,y) plane, k = 2π

λ
= 3.23065× 104 cm−1 is the

laser wavenumber, n0 = 1.0003 is the ambient refractive index
for air, and α is the same extinction coefficient defined above.
The refractive index fluctuation n1 is linearly related to the
spatially varying fluid temperature fluctuations according to
n1(x , y , z)= (1− n0)T(x , y , z) [29]. The coupling of the
beam response to the fluid is thus contained in this fluctuation.
The normalized and nondimensional beam amplitude V0 at the
beginning of propagation takes the form of a Gaussian with a
Zernike tilt aberration [30] such that

V0(x , y )= e i L x kθ x e
−

((
x− x0

Lx

)2
+y 2

)
. (4)

Tables 1 and 2 summarize each of the parameter values for the
experiments and simulation.
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Table 2. Variable Parameters

Power V 2
0 St Propagation Distance Fr

1.5 W 18.9 W/cm2 0.0541 3 m 5.45
2.5 W 31.4 W/cm2 0.0901 5 m 3.27
3.5 W 44.0 W/cm2 0.1262
4.5 W 56.6 W/cm2 0.1622
5.43 W 68.3 W/cm2 0.1958

B. Solution Methods

To solve for the steady-flow solutions to the Boussinesq equa-
tions (1), a Padé–Newton procedure is used [22]. The method
presented in Ref. [22] is extended to allow for irregular domains,
using radial basis functions to approximate differential oper-
ators [14,31,32]. The flow is assumed to be two-dimensional
along a transverse slice of the propagation chamber at the
longitudinal location z j .

Spatial derivatives in the direction transverse to the beam
propagation were approximated using radial basis function-
generated finite differences (RBF-FDs) [33–38]. RBF-FD
methods are capable of efficiently handling problems that ben-
efit from nonuniform discretizations. In particular, they are
useful when attempting to resolve rapidly changing features in
the solution to a PDE [31]. A description of their implemen-
tation is provided in Appendix A, where the RBF interpolants
used here utilize the polyharmonic spline RBF φ(r )= r 7

and supplemental bivariate polynomials up to degree m = 7.
Figure 4 illustrates the 2D computational fluid domain with
circular geometry.

The stream function and vorticity are enforced to be zero on
the boundary, corresponding to a Navier-slip boundary condi-
tion, where the normal component of velocity at the boundary
vanishes but the tangential component is not necessarily zero.
We also enforce a zero boundary condition for the temperature
fluctuation, which assumes perfect conduction of heat out of the
chamber. Along the first fluid slice at z= 0, we directly apply the
Padé–Newton method by first expanding the flow variables in a
perturbation series in the St number,

Fig. 4. Illustration of the computational fluid domain with mesh-
less nodes used in the RBF-FD method. The maximum node spacing
depicted is h = 1, but the simulations were carried out with a more
refined h = 0.125.

T =
∞∑

n=0

StnTn, ω=

∞∑
n=0

Stnωn, ψ =

∞∑
n=0

Stnψn, (5)

where each term in the series is computed via the numerical
solution to a linear Poisson equation using an RBF-FD dis-
cretization. This series representation is analytic only for small
values of the St number, so we compute a functional Padé
approximant in each flow variable of the form:

r [n/2k](x , y ; ε)=
p(x , y ; St)

q(St)
. (6)

The numerator p(x , y ; St) and denominator q(St) polyno-
mials are functions of the series terms for each respective flow
variable. The spatial dependence in (x , y ) is contained only in
the numerator polynomial, while the denominator polynomial
is strictly a scalar function of St.

In our experiments, the St number is large enough that the
functional Padé approximant on its own fails to represent the
steady flow to a sufficient degree of accuracy. We thus use the
functional Padé approximant as an initialization for a Newton
iteration of the form:

Xn+1 =Xn − J (F(Xn))
−1F(Xn), (7)

where Xn = (Tn, ωn, ψn), F(Xn) contains the roots of the
steady-flow equations (1) with the initial laser intensity, and J
denotes the Jacobian ofF at X n .

To evolve the beam amplitude V via the Paraxial equation, we
linearly interpolate the temperature fluctuations within the vol-
umetric space between the two fluid slices. A Fourier split-step
scheme is used to evolve the numerical solution between slices
in z.

Given a known steady flow and beam amplitude at the
slice z j , the computation of the fluid slice at the z j+1 position
requires an iteration in the temperature fluctuation and beam
amplitude. Letting Tk and V k be the temperature and laser
amplitude at the kth fluid slice, a sequence of guesses for the
temperature {Tn} and the amplitude {Vn} is produced at the
next (k + 1)th slice with an initialization,

T0 = Tk, V0 = V k . (8)

These iterative variables are then evolved by implementing the
paraxial and fluid solvers, where T∗(V) is the steady temperature
fluctuation obtained from the fluid equations for an irradiance
|V|2, and V ∗(Ti , T j ) is the numerical solution to the paraxial
equation between two slices with temperature fluctuations Ti

andT j , respectively. The iteration is defined by

Vn+1 = V ∗(Tk, Tn), (9a)

Tn+1 = T∗(Vn+1). (9b)

The initialization for the Newton iteration in computing the
step T∗(Vn+1) is the previous flow solution T∗(Vn). If any
fluid computational step fails to converge, we apply numeri-
cal continuation in St for the same normalized amplitude V .
Convergence is achieved when the fluid response and laser
amplitude changes are less than a prescribed threshold, i.e.,
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Fig. 5. Time evolution of the thermally bloomed beam within the experimental chamber is depicted. Top left: The beam spot at t = 0 displays
no visible blooming. Top right: the beam profile at t = 0.03 s by which time most of the dynamics have occurred. Bottom left: the beam profile at
t = 0.25 s as the beam response approaches steady state. Bottom right: the averaged beam profile at t = 18.7 s as the final imaging frame is essentially
unchanging.

‖ TN − TN−1 ‖< δT , ‖ VN − VN−1 ‖< δV (10)

for δT = δV = 10−15. After convergence, the fluid temperature
and laser amplitude at the (k + 1)th slice are then updated as

Tk+1
= TN , V k+1

= VN . (11)

4. RESULTS

We apply the simulation outlined above to compare each of the
propagation distances and beam powers performed in the exper-
iment. The experimental results are captured in a time-dynamic
image of intensity over a square window of approximately
12 cm wide. The imaging is performed over a time window of
19.6 s, with a dead time of approximately 1 s before the laser is
turned on at t= 0 s. The most significant time dynamics occur
over a short time span of approximately 0.05 s, with the beam
approaching an observable steady-state intensity profile from
near 0.25 s to the end of the imaging period at 18.7 s. Figure 5
depicts the time evolution of the experimental beam for propa-
gation over 5 m at 5.43 W. The image plane is oriented such that
the resultant crescent is biased away from the direction of the
beam tilt and in the direction of the wall closest to the beam spot,
as diagrammed in Figs. 2 and 3.

Since our simulation ignores optical aberrations such as tur-
bulence, speckle, or jitter, we average the experimental intensity
over the final 10 s of image capture. This approach provides
a better basis of comparison for the predicted mathematical
steady-state as any time dynamic fluctuations will be smoothed

out. This averaging is performed for each experimental image
depicted in Figs. 6 and 7.

In the simulation, the discretization of the fluid and the laser
is treated differently due to considerations of computational cost
and required resolution to resolve the frequency components
arising from the beam tilt. Thus, the 2D fluid equations are
solved through a discretization at one resolution, h f = 0.125,
while the beam is evolved in the solver for the paraxial equation
between slices at a finer resolution h L = 0.0039. This requires a
transverse interpolation of the temperature fluctuation over the
location of the beam wavefront on top of the volumetric inter-
polation between 2D slices, spaced according to 1z= 1 cm.
Applying this approach allows for the simultaneous compu-
tation of the steady flow over the full experimental domain
with the highly resolved beam wavefront over a much smaller
subdomain. Solutions were computed on a workstation with 12
Intel Xeon processors, each running at 3.30 GHz, and 96 GB
of memory running MATLAB R2023b. The simulations ran
for approximately four days for each beam power compared in
Figs. 6 and 7.

Figures 6 and 7 provide a direct comparison between the
steady-state experimental and simulated intensity after 3 and
5 m of propagation, respectively, for each of the average laser
powers. The irradiance spot is shown within a 6 cm× 6 cm
window for both the experiment and the simulation with the
same image orientation as Fig. 5. Figure 8 shows a plot of the
irradiance along a vertical centerline for the simulated and
experimental beams.
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Fig. 6. Comparison between the experiment (left) and the simula-
tion (right) after 3 m of propagation.

The general shape and size of the beam spots agree well
between the experiment and the simulation. The width of the
bloomed irradiance pattern increases with an increase in beam
power to approximately 3.5 cm for the 5.43 W beam. Both
display noticeable asymmetry in the intensity distribution in the
horizontal direction. This is an addition to the vertical deflec-
tion of the beam spot due to convection that is well documented
in the thermal blooming literature [20,39,40]. Since our sim-
ulations directly solve for the fluid response to the laser heating
within the full experimental chamber, this diagonal deflection
of the beam intensity is due to corresponding asymmetries in

Fig. 7. Comparison between the experiment (left) and the simula-
tion (right) after 5 m of propagation.

the temperature fluctuation about the local wavefront within
the propagation chamber. With an increasing beam power, the
crescent in the irradiance pattern becomes more pronounced,
especially for the simulations. This is explained by the coupling
between the temperature fluctuations and the beam evolution
as determined by the paraxial equation (3). The temperature
fluctuations surrounding the beam increase with an increas-
ing beam power, and therefore the fluctuations in the index of
refraction will also increase—leading to an increased deflection
of the beam intensity. Figure 9 depicts the simulated stream-
lines and temperature fluctuations at z= 0 m and z= 5 m for
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Fig. 8. Irradiance profiles of the simulated and experimental beam at P= 5.43 W along a vertical centerline. The vertical axis measures the normal-
ized irradiance, which is plotted against the vertical deviation in the y-coordinate direction. Overall, the deflection of irradiance is well captured in the
simulations, but the experimental profiles are wider and have less pronounced annular distortions within the beam.

Fig. 9. Temperature fluctuation in degrees K and the streamlines in the fluid at z= 0 m and z= 5 m are provided, respectively. The fluid experi-
ences the most heating at the beginning of the propagation before the beam loses energy due to absorption. The asymmetric distribution of the tem-
perature fluctuation about the local beam spot is the mechanism for the deflection characteristic of thermal blooming.

P= 5.43 W, and Figs. 10 and 11 plot the steady fluid velocity
and temperature fluctuation profiles along the y = 0 centerline
for the same power and distances. Figure 12 provides the peak
irradiance and total power of the simulated beam as a function
of propagation distance.

The majority of heat deposition into the fluid occurs at
the beginning of propagation within the chamber. The beam
quickly loses intensity as it propagates over the length of the

chamber, and thus the temperature fluctuation decreases as a

function of z over the transverse chamber domain. Since the

beam is transversely localized in the negative x-direction, the

temperature fluctuation induces a flow with a rightward compo-

nent. The beam intensity will then deflect in the direction of the

induced convective flow, which yields the asymmetric crescent

in the negative-x direction.



Research Article Vol. 64, No. 17 / 10 June 2025 / Applied Optics E89

-20 -10 0 10 20
x [cm]

-10

-8

-6

-4

-2

0

2

4

6
Velocity [cm/s] at z = 0 m

v
u

-20 -10 0 10 20
x [cm]

-4

-3

-2

-1

0

1

2

3
Velocity [cm/s] at z = 5 m

v
u

Fig. 10. Steady fluid velocities u and v are plotted as a function of the transverse-x coordinate along the y = 0 centerline. At z= 0 m and z= 5 m,
the beam is approximately centered at x =−8.9 cm and x =−4.9 cm, respectively. Both u and v are positive at the location of the beam spot for each
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Fig. 11. Steady temperature fluctuation T is plotted as a function of the transverse-x coordinate along the y = 0 centerline. The temperature fluc-
tuation increases sharply around the location of beam forcing, resulting in sharp refractive index changes as the beam propagates through.

The departures between the experimental and simulated
beam spots can be explained through several factors. The
reflections of the beam off of the mirrors at the beginning of the
chamber are not simulated, which is where the beam deposits
the most energy along its propagation path. There is some
uncertainty in the exact value of the absorption coefficient
within the chamber, which directly influences the amount
of energy deposition and subsequent temperature fluctua-
tions around the beam spot. Further departures can be due to
non-ideal Gaussian beam quality in the experiment and some
uncertainty in the geometry of the experimental setup. The
largest source of disagreement, however, may come from the
comparison between a time-averaged experimental beam and a
simulated beam in a theoretical steady state. Although the cham-
ber is climate controlled, there are still thermal fluctuations from
the outside environment that can result in a less coherent distri-
bution of temperature fluctuations around the beam spot. After
performing the time-averaging, many of the irradiance fluctu-
ations become smoothed out in the experimental beam, which
has the effect of smoothing out some of the thermal distortions.
This can partially explain the differences in the structure of the
distortion rings seen between the experiment and the simula-
tion, along with the other factors mentioned above. In future
experiments, it would be beneficial to explore ways to reduce
thermal fluctuations outside the chamber to achieve a more
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Fig. 12. Peak transverse irradiance (blue) and the total beam power
(red) are shown as a function of the propagation distance for the
5.43 W simulated beam. The total power decays exponentially accord-
ing to the optical extinction coefficient, while the peak irradiance is
influenced by spreading, optical losses, and phase distortion.

consistent steady fluid flow. To better match the experimental
results, the simulation can be improved by increasing spatial
resolution in the beam field and in the quasi-2D steady flow
representation, especially in the rapidly changing regions in the
temperature field.
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5. CONCLUSION

The results of this investigation demonstrate that the flow
response to a tilted beam propagating off-center within an
experimental enclosure can induce asymmetries in the thermally
bloomed beam spot about the vertical axis. These findings were
studied experimentally and via simulation with a fully coupled
model for laser–fluid interaction. The beam was tuned to a
wavelength within a water absorption band with a Stanton
number equivalent to a high-power beam through a transmis-
sion window. Five different beam powers were investigated,
with a good agreement between the experiment and the sim-
ulation with respect to the thermally bloomed beam size and
crescent shape. The methodology of simulation can be used to
predict steady-state irradiance patterns for future experiments
in thermal blooming. Future work should examine thermal
blooming through a chamber filled with aerosols and the ther-
mal blooming of multiple beams combining at a target within a
finite chamber.

APPENDIX A

The following is a description of the RBF-FD method utilized to
discretize the steady fluid equations. Consider the disk of diam-
eter D

L x
as the computational domain�⊂R2 in the transverse

direction. The components of any x in the domain are given
by x= [x y ]T . At each element, xk , of a set of discrete node
locations, SN = {xk}

N
k=1, the spatial derivatives in (3.0.1) and

(6) are approximated. This is completed by applying the action
of the linear differential operators to local interpolants of ψ , ω,
T, u, and v overNk,n = {xk, j }

n
j=1, which is the set of n points in

SN nearest to xk .
Each local interpolant is a linear combination of (condition-

ally) positive definite kernels,ϕ, evaluated at the points inNk,n ,

φk,n, j (x) := ϕ
(∥∥x− xk, j

∥∥
2

)
, j = 1, 2, . . . , n,

and bivariate polynomial terms, {πk,l (x)}
Mm
l=1 , up to total degree

m, with Mm = (m + 1)(m + 2)/2. For instance, the local
interpolant of a sufficiently smooth function f :R2

7→R is
constructed as

s k,n,m[ f ](x) :=
n∑

j=1

λk,n,m, j [ f ]φk,n, j (x)+
Mm∑
l=1

γk,n,m,l [ f ]πk,l (x).

To ensure that s k,n,m[ f ] interpolates f at the set of points in
Nk,n , the set of coefficients is chosen to satisfy the interpolation
conditions ( j = 1, 2, . . . , n),

s k,n,m[ f ](xk, j )= f (xk, j ),

and the typical constraints to ensure existence of a unique inter-
polant (l = 1, 2, . . . , Mm) (see, e.g., Ref. [41]),

n∑
j=1

λk,n,m, j [ f ]πk,l (xk, j )= 0.

The interpolant can alternatively be formulated through a
change of basis as a linear combination of cardinal functions that
span the same space. That is,

s k,n,m[ f ](x)=
n∑

i=1

ψk,n,m,i (x) f (xk,i ),

where the new set of basis functions satisfy the cardinal property,

ψk,n,m,i (xk, j )=

{
1 i = j
0 i 6= j .

The action of a linear operator L on f at xk is then
approximated by

(L f )(xk)≈ (Ls k,n,m[ f ])(xk)=

n∑
i=1

wk,i f (xk,i )

with wk,i = (Lψk,n,m,i )(xk). Detailed discussion of the accu-
racy of this approximation is given in, for instance, Ref. [31].
The action of L at all points in SN can then be computed
simultaneously through the matrix multiplication,

Df≈
[
L f (x)|x=x1

L f (x)|x=x2
· · · L f (x)|x=xN

]T
, (A1)

where the kth component of f is f (xk). In this case, D is an
N × N matrix that is sparse as long as the number of nearest
neighbors, n, is much less than the total number of points, N.
The entries of row k of the matrix operator are defined as

[D]ki =

{
wk, j if xk, j = xi for some (k, j )

0 otherwise.
.
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