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This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven con-
vection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model
introduced here solves for the fluid dynamics along the propagation path using a Boussinesq approximation to the
incompressible Navier–Stokes equations. The resultant temperature fluctuations were coupled to refractive index
fluctuations, and the beam propagation was modeled using the paraxial wave equation. Fixed-point methods were
used to solve the fluid equations as well as to couple the beam propagation to the steady-state flow. The simulated
results are discussed relative to recent experimental thermal blooming results [Opt. Laser Technol. 146, 107568
(2022) ], with half-moon irradiance patterns matching for a laser wavelength at moderate absorption. Higher
energy lasers were simulated within an atmospheric transmission window, with the laser irradiance exhibiting
crescent profiles. ©2023Optica PublishingGroup

https://doi.org/10.1364/AO.484224

1. INTRODUCTION

This paper considers the steady-state propagation of a CW laser
in the presence of thermal blooming. Historically, simulations
of thermal blooming have relied on prescriptions of the fluid
velocity through scaling laws or statistical measures [1–3].
While useful in capturing the magnitude of velocity, especially
in the presence of significant wind, these simulations fail to
capture the nonlinear fluid dynamics associated with buoyancy-
driven convection caused by energy absorption from the laser
[4–6]. In an effort to account for the nonlinearity in the flow, we
solve for the flow velocity directly through a buoyancy-driven
approximation to the Navier–Stokes equations.

The phenomenon of thermal blooming is a physical proc-
ess that is often detrimental to the performance of laser beam
propagation. The present literature reflects an increasing inter-
est in understanding this effect, with recent efforts devoted to
numerical simulations with more comprehensive physical proc-
esses [4,7–9]. Specifically, much of the contemporary research
has focused on the mechanics of laser-induced convection, high-
energy laser propagation, and propagation through atmospheric
aerosols [2,10,11]. This knowledge can then be applied in laser
holography [12] and in the development of adaptive optics
systems [13–15].

The research of atmospheric laser propagation has been devel-
oped alongside laser technology since applications involving
lasers were first introduced in the 1960s [16]. With improving
technology, the breadth of applications for laser propagation has
especially expanded since the turn of the century [17,18]. CW

lasers can now output power in the kilowatt regime, a threshold
sure to increase with time. The present use of high energy lasers
is diverse, with applications in both the civil and defense spheres.
Applications include climate prediction and weather control
[19], measurement and wave mixing in nanofluids [20,21],
microparticle manipulation [22,23], ground vehicle-deployable
weapons systems [24], material testing of hypersonic flight
conditions [25], and rapid charging of in-flight unmanned
aerial vehicles [26]. As part of a comprehensive model for laser
beam propagation through a medium with an inhomogeneous
index of refraction, it is necessary to consider the cumulative
effects of molecular and aerosol absorption of beam energy
[11,27,28]. In the Boussinesq approximation, this absorption
creates temperature fluctuations in the fluid, which drives the
buoyancy-driven fluid dynamics through natural convection.
As the laser propagates through the fluid, the energy loss due
to absorption combines with the beam intensity losses due to
scattering, the sum of which is the attenuation (extinction)
coefficient in the beam evolution equation. The absorption
and attenuation coefficients can vary significantly depending
on factors such as atmospheric aerosol content or whether the
laser wavelength lies within a water absorption band [28,29].
To see fully formed crescent or half-moon shapes in irradiance
that are characteristic of strong thermal blooming, there must
be a high degree of laser energy absorbed into the propagating
medium. In Section 2, we discuss how this manifests through
the nondimensional Stanton (St) number with commentary on
specific regimes where strong thermal blooming may be seen.
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A majority of the efforts to simulate thermal blooming
have been devoted to the time-dependent regime, where the
steady-state flow may be reached after a sufficient time has
passed. In applications involving time scales that exceed the
time-dependent dynamics of thermal blooming, however, it is
advantageous to solve for steady-state solutions directly if they
are accessible. In a previous work, the authors [30] developed a
numerical method to solve for the 2D steady-state in fluid flows,
with a proof of existence and uniqueness for a small enough laser
absorption factor. The method uses fast Poisson equation solvers
on a finite difference grid, allowing for fast performance in com-
puting the fluid steady state. The fluid dynamics are coupled to
the beam using a steady version of the Akers and Reeger model
[4].

This work focuses exclusively on the effect of thermal bloom-
ing in the natural convection regime, so no scintillation or
background wind is simulated. Aerosol effects are assumed to
be captured entirely within the absorption and scattering coeffi-
cients. Sprangle et al. [11,28] provides an analysis of laser beam
degradation due to different molecular and aerosol absorption
and scattering coefficients. The results of the simulation are
discussed as it compares to recent experimental work [31].

This article has four sections. Section 2 describes in detail
the assumptions and methods used in the steady-state simula-
tions, along with the methodology applied in choosing specific
simulation parameters. Section 3 follows with the results of the
simulations and offers a discussion on the takeaways from the
results. Section 4 summarizes the article and presents future
research areas to build off of the contributions contained here.

2. FORMULATION

This section describes the mathematical models and tools
used to simulate steady-state thermal blooming. The equa-
tions include the paraxial equation for beam evolution and the
Navier–Stokes equations for fluid velocity and temperature.
The numerical methods are developed for the computation of
2D steady states in the fluid and the calculation of the coupled
laser intensity with the fluid dynamics.

A. Physical Models

We seek to model the propagation of a CW laser with known
properties and a prescribed irradiance profile at the aperture.
The laser propagates a specified distance through a 3D, steady
atmosphere. The variables of interest are the beam intensity
along the propagation path as well as the fluid temperature and
velocity. There are two distinct distance scales that dictate the
behavior of the coupled laser and fluid. The first scale exists
in the transverse (x , y ) plane and is associated with the size in
which the beam spreads, often on the order of single centime-
ters. The second scale is defined by the distance in which the
laser propagates in the z direction, which for atmospheric appli-
cations is on the order of meters to kilometers. This separation
of scales forms the basis for the use of the paraxial approximation
for laser evolution. Within this paraxial scaling, the fluid flow is
2D to the same order of accuracy as the laser evolution, as argued
in Akers and Reeger [4].

From this separation of scales, we seek the steady-state fluid
properties within a 2D domain that represents a rectangular
cross section along the z path of the laser beam. The atmosphere
is assumed to be an incompressible, Newtonian fluid that is
governed by the Boussinesq approximation for buoyancy-
driven flows. The Boussinesq model is accurate for flows in
which temperature differences exclusively drive motion under
the influence of gravity [32]. The variations in fluid density
are related to variations in temperature through the ideal gas
relation

ρ1

ρ0
=
τ1

τ0
, (1)

whereρ1 is a fluctuation about a mean densityρ0 and τ1 is a fluc-
tuation about a reference temperature τ0. The nondimensional
steady-state Navier–Stokes equations in the Boussinesq approxi-
mation are given by

(u · ∇)u=−∇ p +
1

Re
∇

2u+ RiTe2, (2a)

∇ · u= 0, (2b)

(u · ∇)T =
1

Pe
∇

2T + St|V |2. (2c)

Here, the velocity u= (u, v, 0) is 2D and the temperature
T = τ1

τ0
is the normalized temperature fluctuation. The term

|V |2 again represents the laser forcing term, e2 = (0, 1) is the
unit vector in the vertical (y ) direction, and p is the nondimen-
sional pressure scaled by p0 = ρ0U2. The parameters in the
nondimensionalization in Eq. (2) are the Reynolds (Re), Peclet
(Pe), Richardson (Ri), and St numbers, which are defined as

Re=
U L x

ν
, Pe=

U L x

µ
, Ri=

g L x

U2
, St=

βV 2
0 L x

Uτ0
.

(3)
These definitions contain a length scale L x , a characteris-
tic velocity scale U , acceleration due to gravity g , kinematic
viscosity ν, thermal diffusivity µ, temperature scale τ0, laser
absorption coefficient β, and peak laser intensity V 2

0 . This
method of nondimensionalization differs from other common
approaches for natural convection problems [33]; however, it
is useful in that it facilitates direct comparison to other convec-
tion studies with a prescribed characteristic velocity. Since the
degree of convection in this problem depends on the energy
injection from the laser, there is no immediate choice for U .
The appropriate velocity scale is thus determined a posteriori
based on the peak vertical velocity in the steady solution. The
steady flow solutions are invariant to this velocity scale, so the
choice for U is arbitrary. For all simulations, we initially choose
U = 1 cm/s and report the updated parameters based on the
computed velocity scale. The Ri number represents the contri-
bution of gravity to the flow through the buoyancy mechanism.
The St number measures the interaction between the laser with
the fluid as a ratio of heat taken in by the fluid through absorp-
tion and convective heat transfer throughout the rest of the
domain. Greater peak intensity and stronger fluid absorption
thus correspond to higher Stanton numbers.
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In 2D, it is useful to solve the fluid equations in Eq. (2) in the
streamfunction-vorticity form [34]

(u · ∇)T =
1

Pe
∇

2T + St|V |2, (4a)

(u · ∇)ω=
1

Re
∇

2ω+ Ri∂x T, (4b)

∇
2ψ =−ω, (4c)

u = ∂yψ, (4d)

v =−∂xψ, (4e)

where ω= ∂xv − ∂y u is the vorticity and ψ is the streamfunc-
tion of the fluid. The system enforces incompressibility by
definition. This ameliorates difficulties in applying a pressure
correction scheme to ensure divergence-free flow in steady
solutions while using primitive variables [35].

The paraxial equation for the complex beam amplitude V in
dimensionless units [11] is

∂V
∂z
=

(
i

2n0 F
∇

2
⊥
− i L zn1k − L z(α f + αa )

)
V , (5)

where

F =
L2

x k
L z

(6)

is the Fresnel number [1,2], L z is the propagation distance, L x

is the beam radius and the length scale of the flow, ∇2
⊥

is the
Laplacian in the transverse (x , y ) plane, k is the laser wavenum-
ber, n0 is the ambient refractive index, n1 is a fluctuation in the
refractive index, α f is the extinction coefficient due to the fluid,
and αa is the extinction coefficient due to aerosols. Each sim-
ulated propagation distance is such that the Fresnel number F
is of order unity. Each extinction coefficient is the sum of beam
energy loss due to absorption and scattering. The refractive
index fluctuation is linearly coupled to density fluctuations
through the Gladstone–Dale relationship [36]

n1 = (n0 − 1)
ρ1

ρ0
, (7)

from which the ideal gas relation in Eq. (1) results in the follow-
ing relationship between temperature fluctuations and refractive
index fluctuations:

n1 = (n0 − 1)
τ1

τ0
. (8)

The solution to the paraxial equation describes the propagation
of the laser beam in space as a function of the variation in the
index of refraction, the extinction from aerosols, and the extinc-
tion from the surrounding fluid. This formulation introduces
the nonlinear coupling between the equations governing the
behavior of the laser and the fluid. We emphasize here that this
study focuses strictly on the steady-state flow. The following
subsection discusses the fixed-point approach used to arrive

at the steady-state flow solution; however, there may be other
steady states in the flow that the method fails to compute. The
fixed-point method discussed here guarantees the existence and
uniqueness of steady solutions for a sufficiently small St number
[30], but gives no insight into other steady-state flow solutions
for larger St numbers or those that deviate significantly from a
quiescent fluid. Generally, the observed steady state depends on
the precise initial conditions of the physical scenario. Thus, in
a lab setting, the experimental flow may reach a different steady
state to the one predicted in the simulations. Further work in
simulating large St number steady blooming must consider
multiple steady states and their stability.

B. Simulation Methods

1. FluidSolver

The approach to solving for the fluid steady-state is as follows.
Given a normalized laser irradiance profile |V (x , y , z j )|

2, we
solve the steady-state Boussinesq equations in Eqs. (4a)–(4e) in
streamfunction-vorticity form over a rectangular domain corre-
sponding to a transverse slice at the longitudinal distance z j . We
consider a slip boundary condition on a finite box correspond-
ing to zero shear stress along the boundary where the normal
component of velocity at the boundary vanishes but the tan-
gential component is unrestricted. The temperature fluctuation
is assumed to be zero along the boundary. We employed the
fixed-point method introduced in [30] that uses discrete Poisson
equation solvers to converge to the steady-state solution. The
iteration for n ≥ 1 is

∇
2Tn = Pe

(
∂ψn−1

∂ y
∂Tn−1

∂x
−
∂ψn−1

∂x
∂Tn−1

∂ y
− St|V |2

)
,

(9a)

∇
2ωn = Re

(
∂ψn−1

∂ y
∂ωn−1

∂x
−
∂ψn−1

∂x
∂ωn−1

∂ y
− Ri

∂Tn

∂x

)
,

(9b)

∇
2ψn =−ωn, (9c)

where the algorithm is initialized by the linearization

∇
2T0 =−Pe

(
St|V |2

)
, (10a)

∇
2ω0 =−RiRe

∂T0

∂x
, (10b)

∇
2ψ0 =−ω0. (10c)

Each of the derivatives are discretized by a second-order cen-
tered difference scheme and each of the (Tn, ωn, ψn) terms are
computed by solving a discrete Poisson equation with Dirichlet
boundary conditions. Due to the sparsity of the resultant matri-
ces, the method was implemented in O(N log N) operations
where N is the total number of points in the discretization.
A key result of this iteration is that it only converges within a
parameter regime that corresponds to a small St number. In
practice, this implies that the solver above is ineffective for large
laser irradiance and absorption values; the exact threshold for
convergence depends on the other flow parameters and domain
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size. Figure 1(a) demonstrates the relationship between the
numerical domain size (D) and the threshold for convergence
manifested through the St number. We observe that the largest
convergent St number decreases with third-order depend-
ence on the domain size. In Section 3 we provide examples
of parameter regimes in which the method fails to converge,
with implications for the performance of the simulation as a

Fig. 1. (a) The largest St number within the convergence region
of the fluid solver is presented as a function of the scaled domain
length (D) as the dotted blue line. All other parameters are fixed. The
convergent St numbers tend toward third-order scaling as a function
of increased computational domain size, depicted with the solid red
line. (b) The Cauchy error for temperature (blue) and vorticity (red) is
depicted in the fixed-point fluid solver. For a total number of domain
points N, the iteration converges linearly and has a computational
cost of O(N log(N)). This iteration thus offers a faster alternative to
Newton’s method for large problems, which converges quadratically
but has a higher cost per iteration. (c) The Cauchy error for tempera-
ture (blue) and laser amplitude (red) is depicted in the iteration for laser
evolution. The error exhibits a linear convergence rate until reaching
machine precision, at which point the algorithm terminates.

whole. Figure 1(b) depicts the linear convergence rate of the
temperature and vorticity in the fixed-point algorithm.

2. Laser Evolution

The paraxial equation Eq. (5) was used as the model for the
beam propagation. We used the method of Akers and Reeger
[4], which approximates the volumetric fluid via linear inter-
polation between 2D slices. We placed these slices at discrete
locations along the propagation path, with a constant distance
between slices of 1z that results in O(1z2) accuracy from the
paraxial scaling. The Fourier collocation method and sixth-
order Runge–Kutta method were used to discretize derivatives
and evolve the paraxial equation in z.

Since the fluid solver in Eqs. (9) and (12) requires a known
laser irradiance profile, however, we could not directly solve for
the steady state on consecutive fluid slices. Instead, we applied
an iteration that proceeds by successively firing the laser until the
fluid response between consecutive slices is unchanged. Here are
the basic steps of this procedure:

Let Tk and V k be the temperature and laser amplitude at the
kth fluid slice, noting that the k index is a superscript and not an
exponent. Next, introduce a sequence of guesses for the temper-
ature {Tn} and the amplitude {Vn} at the next slice, initialized by

T0 = Tk, V0 = V k . (11)

These iterative variables are then evolved by implementing the
paraxial and fluid solvers, where T∗(V) is the temperature fixed-
point solution to the fluid equations for an amplitude V and
V ∗(Ti , T j ) is the numerical solution to the paraxial equation
between two slices with temperatures Ti and T j , respectively.
The iteration proceeds as

Vn+1 = V ∗(Tk, Tn), (12a)

Tn+1 = T∗(Vn+1). (12b)

Convergence is achieved when the fluid response and laser
amplitude stop changing within the iteration. Therefore, when
the Cauchy error in temperature drops below the numerical
threshold for convergence δT after some step numberN , then

‖ TN − TN−1‖2 < δT , (13)

and the iteration terminates. The fluid temperature and laser
amplitude at the (k + 1)th slice are then updated as

Tk+1
= TN , V k+1

= VN . (14)

All simulations in the following section are performed with
δT= 10−15 and 1z= 10 cm. Figure 1(c) depicts the conver-
gence of fluid temperature and laser amplitude between the
aperture and the first slice of the laser evolution iteration.

3. SIMULATION RESULTS

This section provides several realizations of the coupled
Boussinesq-paraxial solver to showcase thermal blooming as
a function of different laser-fluid parameters. The parameters
of interest are the laser absorption coefficient β, the extinction
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coefficientα, the propagation distance L z, the length of one side
of the square computational domain D, the wavenumber k, and
the peak aperture irradiance V 2

0 . Each of the other parameters
in the simulation were taken to be constant and corresponded
to the standard laboratory conditions from the experiment in
steady-state thermal blooming from Cook et al . [31]. These
values are: τ0 = 300 K, ν = 0.15 cm2/s, µ= 0.2 cm2/s,
L x = 0.5 cm, n0 = 1.0003, and g = 981 cm/s2. The length
scale L x corresponds to the Gaussian beam radius, and the
velocity scale U is reported a posteriori as the convective velocity
at the center of the domain. Since the degree of convection (and
thus U ) depends on parameters such as laser absorption and
peak irradiance, we reported the value of each of the nondimen-
sional parameters based on the simulation results. By taking
this approach, we ensured each parameter retained its physical
meaning so the flow characteristics can be interpreted from these
parameters. Note in this analysis that the steady-state solution
is very sensitive to the global boundary conditions and domain
size—simulation parameters whose impact is often neglected in
time-dependent simulations. Therefore, it is important to think
carefully about what the domain should look like in a steady
problem; especially when attempting to simulate atmospheric
propagation with no obvious boundaries. The no-friction slip
condition used in this simulation effectively imposed a finite
box as the boundary, meaning that these simulation results
should be understood in this context. In the steady problem,
locally heated flow convected from the center approached the
boundary and recirculated in the domain until a steady-state
was reached. Thus, the localized heating effect results in global
changes to the steady-state flow as a function of the boundary
conditions and domain size. This differs from time-dependent
thermal blooming since the boundary of a sufficiently large
domain has no localized effect on the flow for the short time
scales used in [4]. Lane and Akers are currently investigating
how the steady-state precisely depends on the domain, and we
seek to develop open boundary conditions for the steady-state
problem based on insights from time-dependent simulations.

As a basis for comparison to the aforementioned thermal
blooming experiment [31], the first simulation we con-
sidered had a small domain with length D= 2.5 cm such
that �= [−1.25, 1.25] × [−1.25, 1.25] cm and the laser
propagated a distance of L z = 5.3 m. The experimental laser
wavelength was tuned to align with the peak water absorption
bands, so the extinction and absorption parameters were large
due primarily to the water absorption within the fluid. The
numerical domain size must be large enough to contain the fully
bloomed irradiance profile, but it also must be small enough
to allow for fluid equation convergence at high absorption
values. The laser wavelength was 1944.907 nm, which cor-
responds to a wavenumber of 3.2306× 104 cm−1, and the
Gaussian beam had a power of 5 W, which corresponds to a peak
aperture irradiance of V 2

0 = 12.7 W/cm2. The extinction was
α = 5.25× 10−4 cm−1, and the laser absorption coefficient
was β = 4.26× 10−5 m2 K/J, where we assumed no aerosol
presence to contribute to scattering losses. Figure 2 depicts the
simulated temperature fluctuation and laser irradiance along the
propagation path.

Along the longitudinal path in Fig. 2, we observed that the
steady temperature fluctuation bloomed out from the center

Fig. 2. Left column gives the simulated temperature fluctuations in
degrees K for z= 0 (top), z= 3 m (middle), and z= 5.3 m (bottom).
The domain size is D= 2.5 cm and the peak aperture irradiance
is 12.7 W/cm2. The right column gives the simulated laser irradi-
ance in W/cm2 for z= 0 (top), z= 3 m (middle), and z= 5.3 m
(bottom). The laser wavenumber is 3.2306× 104 cm−1 and the
convective velocity scale is U = 0.56 cm/s. The nondimensional
fluid parameters are Re= 1.9, Pe= 1.4, Ri= 1564, and St= 1/125.
(a) Temperature fluctuation (left) and laser irradiance (right) at
the aperture. (b) Propagation after z= 3 m. (c) Propagation after
z= 5.3 m.

and became more radially symmetric. The irradiance profile
spreads out from the original spot size and exhibited a standard
half-moon shape seen in other steady thermal blooming studies
[5,37]. The formation of a half-moon shape toward the bot-
tom of the domain was indicative of strong thermal blooming,
wherein the beam experiences beam spreading and beam wan-
der. The shift in index of refraction induced by the temperature
fluctuations led to the shift downward and into the half-moon
pattern observed in the simulation at the target location of

Fig. 3. Left image gives the experimental thermal blooming profile
and the right image gives the simulated thermal blooming profile for a
laser wavenumber of 3.2306× 104 cm−1. The domains are scaled to
the same size of 5.6× 5.8 cm and the beam propagates over a distance
of 5.3 m. The nondimensional parameters are the same as in Fig. 2;
namely, Re= 1.9, Pe= 1.4, Ri= 1564, and St= 1/125.
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z= 5.3m. The beam blooms outwards to approximately 1 cm
in width, doubling its original spot size. This blooming profile
was achieved without the imposition of any crosswind, which
showcased the sufficiency of natural convection to induce tem-
perature fluctuations at the degree needed for strong thermal
blooming.

Figure 3 provides a comparison of the simulation to the
experiment at an equivalent wavelength of 1944.907 nm. The
experimental blooming profile was captured as part of the same
experiments contained in Cook et al . [31]. The experiment was
performed within a 5.3 m long climate-controlled chamber
at standard temperature and pressure. The air was quiescent
at the time of firing and the images were captured after the
time-dependent beam dynamics settled into an observed steady
state. A wavemeter was used to measure and validate the laser
wavelength and a FLIR camera was positioned to image the
beam irradiance at the end of the propagation chamber.

For applications related to atmospheric laser propagation, the
laser wavelength is often chosen to fall within an atmospheric
transmission window with very low molecular absorption val-
ues. In these transmission windows, the extinction coefficient
is composed almost entirely from scattering due to aerosol pres-
ence [11,29]. At a wavelength of 1.045 µm, for example, the
laser absorption coefficient can be as low as β= 10−9 m2 K/J

Fig. 4. Left column gives the simulated temperature fluctua-
tions in degrees K for z= 0 (top), z= 10 m (middle), and z= 20 m
(bottom). The domain size is D= 4 cm and the peak aperture irra-
diance is 43.2 kW/cm2. The right column gives the simulated laser
irradiance in kW/cm2 at the same distances. The laser wavenum-
ber is k = 6.0126× 104 cm−1 and the convective velocity scale
is U = 0.3 cm/s. The nondimensional parameters are Re= 1.0,
Pe= 0.75, Ri= 5450, and St= 1/419. (a) Temperature fluctuation
(left) and laser irradiance (right) at the aperture. (b) Propagation after
z= 10 m. (c) Propagation after z= 20 m.

with an extinction coefficient of α f= 10−3 km−1 without
aerosols and αa = 0.32 km−1 with aerosol scattering. Since
the laser absorption coefficient is significantly reduced relative
to the values in the experiment, the St number is equivalently
reduced for the same laser irradiance value. Therefore, within
this transmission window, the simulation can account for much
higher laser powers. Since many studies in thermal blooming are
devoted to high energy lasers, this parameter regime provides
the best basis of comparison for atmospheric propagation. We
note that the simulation is not suitable to simulate propagation
over distances that are on the order of kilometers or longer; the
required domain size becomes too large to permit convergence
in the fixed-point fluid solver. We are actively researching the
extension of the fluid solver to larger domains through analytic
continuation and functional approximation methods.

Figure 4 depicts the simulated temperature fluctuation and
laser irradiance for a 43.2 kW/cm2 laser with a wavelength of
1.045 µm. The absorption and extinction coefficients coin-
cide with the transmission window above and include aerosol
scattering effects. The domain is�= [−2, 2] × [−2, 2] cm to
demonstrate blooming at a target distance of L z = 20 m.

In this regime, we observed the formation of a pronounced
crescent shape at the target. Along the propagation path, the

Fig. 5. Left column gives the simulated temperature fluctua-
tions in degrees K for z= 0 (top), z= 25 m (middle), and z= 50 m
(bottom). The domain size is D= 6 cm and the peak aperture irra-
diance is 12 kW/cm2. The right column gives the simulated laser
irradiance in kW/cm2 at the same distances. The laser wavenum-
ber is k = 6.0126× 104 cm−1 and the convective velocity scale is
U = 0.225 cm/s. The nondimensional parameters are Re= 0.75,
Pe= 0.56, Ri= 9689, and St= 1/1125. (a) Temperature fluctuation
(left) and laser irradiance (right) at the aperture. (b) Propagation after
z= 25 m. (c) Propagation after z= 50 m.
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laser wavefront progressively bloomed outward from a half-
moon to a strong crescent shape while exhibiting beam bending
toward the bottom of the domain. As the beam spot under-
went thermal blooming, the points on the crescent became
sharper before approaching the edge of the numerical domain.
To simulate blooming at longer propagation distances, the
numerical domain size must increase. In doing so, however, the
range of St numbers for which the fixed-point solver converges
decreases. Thus, there is a trade-off between the laser energy
and the propagation distance in the simulation since a smaller
power laser permits a larger numerical domain. Again, we are
pursuing efforts to improve the fluid solver to account for larger
St numbers given a specific domain size. As an example of ther-
mal blooming at a longer propagation distance, Fig. 5 provides
the simulated temperature fluctuation and laser irradiance for a
12 kW/cm2 laser at a propagation distance of L z = 50 m with
the same wavelength, absorption, and extinction parameters
in the previous simulation. The domain was increased in size
to �= [−3, 3] × [−3, 3] cm to allow for an increased beam
spread at the longer distance, which required a smaller laser
power than was simulated in Fig. 4. The beam irradiance profiles
without thermal blooming are given as a reference in Fig. 6 for
5.3, 20, and 50 m propagation distances.

Fig. 6. (a) Laser irradiance after 5.3 m propagation with no fluid
interaction. The domain size and laser power are the same as in Fig. 2.
(b) Laser irradiance after 20 m propagation with no fluid interaction.
The domain size and laser power are the same as in Fig. 4. (c) Laser irra-
diance after 50 m propagation with no fluid interaction. The domain
size and laser power are the same as in Fig. 5.

4. CONCLUSIONS

This work investigated steady-state laser propagation through
the direct numerical simulation of laser-induced natural
convection. The numerical simulation solves the steady, 2D
Navier–Stokes equations in a buoyancy-driven flow regime
coupled to the paraxial equation for laser propagation. The
simulation is fast through the use of sparse finite difference
solvers with computational costO(N log(N)), and the numeri-
cal method to couple the flow to the beam evolution is, to the
best of our knowledge, novel. Steady-state convective thermal
blooming studies were conducted in three parameter regimes.
While the numerical method was fast, it was limited to a small
St number. Simulating thermal blooming over longer propa-
gation distances requires a larger numerical domain, which
reduces the range of St numbers that can be simulated. Within
this parameter range, however, the presented method is able to
simulate fully resolved crescent patterns in the laser irradiance.
Future research efforts are underway that seek to improve the
performance of the steady fluid solver with respect to conver-
gent parameter regimes using mathematical methods such as
numerical and analytic continuation. A related research prob-
lem currently in progress is to determine the optimal boundary
conditions and domain size for an atmospheric propagation
simulation with no obvious physical boundaries.
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