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Abstract. Building on the successes of local kernel methods for approximating the solutions to4
partial differential equations (PDE) and the evaluation of definite integrals (quadrature/cubature),5
a local estimate of the error in such approximations is developed. This estimate is useful for deter-6
mining locations in the solution domain where increased node density (equivalently, reduction in the7
spacing between nodes) can decrease the error in the solution. An adaptive procedure for adding8
nodes to the domain for both the approximation of derivatives and the approximate evaluation of9
definite integrals is described. This method efficiently computes the error estimate at a set of pre-10
scribed points and adds new nodes for approximation where the error is too large. Computational11
experiments demonstrate close agreement between the error estimate and actual absolute error in the12
approximation. Such methods are necessary or desirable when approximating solutions to PDE (or13
in the case of quadrature/cubature), where the initial data and subsequent solution (or integrand)14
exhibit localized features that require significant refinement to resolve and where uniform increases15
in the density of nodes across the entire computational domain is not possible or too burdensome.16
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1. Introduction. This article concerns the development of an efficiently com-19

putable error estimate, and some basic implementations of methods based on the20

estimate, for adaptively approximating the action of linear operators on a set of suffi-21

ciently smooth functions. Kernel methods are employed, whereby a basis that includes22

shifts of a chosen conditionally-positive definite function–the kernel–and supplemen-23

tal polynomial terms is used in the approximation. The ideas behind kernel methods24

allow for efficient function approximation with high orders of accuracy even in the25

presence of variable node spacing [10]. Such methods are also easily generalized to26

high dimensions and adaptable to a wide variety of domains.27

The work here expands on the successes of kernel methods in interpolation, the28

approximation of solutions to PDEs and the approximate evaluation of definite in-29

tegrals [11, 13, 16, 20, 27, 28, 29, 30, 31, 35] to include “h-adaptivity”–increasing or30

decreasing local node density to improve accuracy or efficiency. Adaptivity is nec-31

essary or desirable when an integrand, function to be differentiated, or initial data32

and subsequent solution to a PDE exhibits localized features that require increased33

node density to resolve, and where uniform refinement across the entire domain is not34

possible or too burdensome.35

Kernel approximations are advantageous because in the settings of interpolation36

and differentiation a point cloud is all that is necessary to describe the geometry of37

the domain; that is, the approximations are truly meshless. This is in contrast to38

other classical methods that require a mesh of the domain, often with restrictions on39

the quality of the mesh. The absence of requirements to have a mesh of a certain40

quality opens up opportunities for new, more flexible node refinement strategies–a41

benefit for h-adaptivity. A recent work considered adaptive numerical differentiation42
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2 J. A. REEGER

with a basis including only multivariate polynomial terms, but was fixed to discrete43

Leja points when constructing the interpolant [6].44

Many investigations of adaptive kernel methods focus mainly on selection of the45

shape parameter in positive-definite kernels, which balances accuracy and numerical46

stability, or mesh refinement based on global Radial Basis Function (RBF) approx-47

imations (see, e.g., [12, 14, 15, 33, 38, 40]). Nearly all of these focus strictly on48

the problem of interpolation. In contrast, the estimator and methods developed in49

this work consider local approximations in an effort to reduce overall computational50

complexity and promote numerical stability. Further, the goal here is to achieve an51

accurate approximation of the action of a linear operator, which can introduce dif-52

ficulties beyond those imposed by interpolation alone. The growing body of work53

considering local h-adaptive RBF generated finite differences (RBF-FD) like methods54

for solving PDEs shares similar goals with this work. However, the indicators or es-55

timators used to provide information on locations in the solution domain that would56

benefit from a refinement of the discretization differ from what is developed herein.57

Some existing indicators rely on the size of a computed quantity or the detection of58

an interface [7, 21], or the indicator depends on differences of computed quantities or59

low order approximations of these quantities at nearby spatial locations as a measure60

of local change in a solution [5, 25, 26]. Still, others consider the local residual (how61

well the current solution satisfies the governing equations) [23, 36] or the difference62

between solutions computed in fundamentally different ways (e.g., implicit versus ex-63

plicit computation) [19]. A more generic discussion of error indicators can be found64

in [34]. This article instead develops an error indicator similar to the one used in, for65

instance, the adaptive trapezoidal rule (see, e.g., [1]) that is based on the difference66

of approximations that achieve different orders of accuracy.67

Development of error estimates and construction of basic numerical methods that68

use these estimates is made simpler in this work by considering, for now, only the69

direct application of linear operators to a known function. For instance, computational70

demonstrations are provided for the differentiation of and approximate integration of71

known functions in one and two dimensions. On the other hand, the solution of72

PDEs requires approximation of derivatives of an unknown function and subsequent73

inversion of a matrix containing the weights that implement the approximate action74

of the desired linear operation. These differences alter and complicate the analysis75

of the error estimates and require changes to algorithms that utilize the estimates.76

Initial discussions on how to extend this work to PDEs are provided in remarks 3.677

and 4.1.78

The following section 2 formulates the problem of local kernel approximations and79

introduces the interpolants that are used in approximation. Then, section 3 describes80

the error in approximation using kernel interpolants and an estimate of that error.81

This is followed by an introduction to an adaptive algorithm that successfully uses the82

error estimate to achieve a prescribed tolerance in the local approximation of linear83

operators in section 4. Finally, sections 5 and 6 provide computational experiments84

and conclusions, respectively.85

2. Local Kernel Approximations Via Interpolation. Consider the evalua-86

tion of Lf , where L is a linear operator and f : Rd 7→ R. The domain of L is C∞(Ω),87

where Ω ⊂ Rd, and the codomain of L could be, for example, C∞(Ω) or simply R.88

Suppose that S = {xi}Ni=1 is a set of N unique points in Rd. Further define a set of89

points X0 = {xk,0}Kk=1 and associate to each of these points a set Nk,n = {xk,j}nj=1 of90

the n points in S nearest to xk,0. The value of n need not be the same for each k. For91
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LOCAL ADAPTIVE KERNEL METHODS 3

instance, the computational experiments in [30] suggest that it would be worthwhile92

to increase the value of n near domain boundaries to mitigate errors reminiscent of93

those introduced by the Runge phenomenon. However, for simplicity, here the value94

of n will be the same for all k with no apparent adverse effects in the computational95

experiments.96

An important property of Nk,n is97

hk,n = max
j=1,2,...,n

∥xk,j − xk,0∥2,98

which provides a sense of the spacing between points in the set. Estimates of the99

error in the approximate local action of L will be presented in terms of this distance.100

The points in Nk,n do not necessarily need to be those nearest to xk,0; however, other101

choices may increase the value of hk,n, impacting the accuracy of the approximate102

action of L. The choice of the points to include in X0 is dependent on the action of103

L. For instance, in the case of L being a derivative it is convenient to set X0 = S.104

On the other hand, if L is a definite integral, then it is useful to construct on the105

set S a tessellation T = {tk}Kk=1 (via Delaunay tessellation or some other algorithm)106

of K simplices and to let X0 be the set of the midpoints of the simplices (for each107

simplex, the midpoint is the average of its vertices, i.e., its barycenter). For d = 1108

these simplices are intervals of the real line, and for d = 2 and d = 3 these are triangles109

and tetrahedra, respectively.110

Approximation of the action of L on f is accomplished in a manner similar to the111

concept of RBF-FD where f(x) is first approximated locally by an interpolant, and112

then L is applied to the interpolant. For instance, when considering the approximation113

of a definite integral over a domain Ω, it convenient to let114

Lf =

�

Ω

f(x)dx =

K∑
k=1

�

ωk

f(x)dx =

K∑
k=1

Lkf,115

where ωk is some portion of Ω associated with tk and Lkf is to be understood as the116

integral of f over ωk. There is an assumption here that Ω =
⋃K

k=1 ωk and that the117

intersection of ωk and ωk′ is at most a facet shared by the simplices when k ̸= k′ so118

that the integral can be decomposed as the sum above. On the other hand, when L is119

a derivative operator, Lk is considered to be the derivative at the point xk,0. In both120

cases of integration and differentiation, Lk is applied to a local interpolant of f as the121

approximation of the action of Lk on f . The following two subsections describe two122

equivalent approaches to constructing the local interpolant.123

2.1. Approximation on the Basis of Shifts of the Kernel and Polyno-124

mials. Consider a linear combination of (conditionally-) positive definite kernels, φ,125

evaluated at a set of center points,126

ϕk,n,j(x) := φ
(
∥x− xk,j∥2

)
, j = 1, 2, . . . , n127

and (supplemental) multivariate polynomial (multinomial) terms up to total degree128

m. As is demonstrated here in the definition of ϕk,n,j , and throughout the remainder129

of this work, multiple subscripting using k, n and m, in particular, explicitly indicates130

those variables that depend on each of these parameters.131

Define {πk,l(x)}
Md,m

l=1 , with132

Md,m =

(
m+ d
d

)
,133
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4 J. A. REEGER

to be the set of all of the multivariate polynomial terms up to total degree m. Using134

multi-index notation these terms have the form πk,l(x) = (x − xk,0)
αl , with αl =135

(αl,1, αl,2, . . . , αl,d) (αl,j ≥ 0, j = 1, 2, . . . , d) a multi-index and |αl| ≤ m. As a136

reminder, with multi-indices (see, e.g., [17] section 11.1)137

• xαl = x
αl,1

1 x
αl,2

2 · · ·xαl,d

d ,138

• |αl| =
∑d

j=1 αl,d,139

• ∂αl = ∂αl,1

∂x
αl,1
1

∂αl,2

∂x
αl,2
2

· · · ∂αl,d

∂x
αl,d
d

, and140

• αl! = (αl,1!)(αl,2!) · · · (αl,d!).141

As is typical when supplementing a kernel basis set with polynomials, the inter-142

polant is constructed as143

sk,n,m[f ](x) :=

n∑
j=1

λk,n,m,j [f ]ϕk,n,j (x) +

Md,m∑
l=1

γk,n,m,l[f ]πk,l(x).144

If, instead, the n × 1 vector Φk,n(x) and Md,m × 1 vector Πk,m(x) consist of all of145

the basis functions evaluated at x, i.e.,146

Φk,n(x) =
[
ϕk,n,1 (x) ϕk,n,2 (x) · · · ϕk,n,n (x)

]T
147

and148

Πk,m(x) =
[
πk,1 (x) πk,2 (x) · · · πk,Md,m

(x)
]T
,149

then the interpolant can be written150

sk,n,m[f ](x) :=

[
λk,n,m[f ]
γk,n,m[f ]

]T [
Φk,n(x)
Πk,m(x)

]
,151

with the coefficient vectors152

λk,n,m[f ] =
[
λk,n,m,1[f ] λk,n,m,2[f ] · · · λk,n,m,n[f ]

]T
153

and154

γk,n,m[f ] =
[
γk,n,m,1[f ] γk,n,m,2[f ] · · · γk,n,m,Md,m

[f ]
]T
.155

To ensure that sk,n,m[f ] interpolates f at the set of points in Nk,n, the coefficient156

vectors are chosen to satisfy the interpolation conditions (j = 1, 2, . . . , n),157

sk,n,m[f ](xk,j) = f(xk,j).158

This leads to an underdetermined system of linear equations to solve for the coefficient159

vectors, so the typical constraints applied to kernel-based interpolants (where the160

kernel is conditionally positive definite) are also enforced, i.e., (l = 1, 2, . . . ,Md,m)161

n∑
j=1

λk,n,m,j [f ]πk,l(xk,j) = 0.162

Consider the n× 1 vector163

fk,n =
[
f(xk,1) f(xk,2) · · · f(xk,n)

]T
,164

This manuscript is for review purposes only.



LOCAL ADAPTIVE KERNEL METHODS 5

consisting of the values of f at the points in Nk,n. Likewise, let the n × n matrix165

Φk,n and n×Md,m Vandermonde matrix Pk,n,m contain the values of the kernel basis166

elements and polynomial basis elements, respectively, evaluated at each point in Nk,n.167

That is, these matrices have entries168

[Φk,n]ij = ϕk,n,j (xk,i) , for i, j = 1, 2, . . . , n,169

and170

[Pk,n,m]il = πk,l(xk,i), for i = 1, 2, . . . , n and l = 1, 2, . . . ,Md,m.171

Then, satisfaction of the interpolation conditions and constraints amounts to solving172

the system of linear equations173

Sk,n,m

[
λk,n,m[f ]
γk,n,m[f ]

]
=

[
fk,n

0Md,m

]
174

with the (n+Md,m)× (n+Md,m) matrix175

Sk,n,m =

[
ΦT

k,n Pk,n,m

PT
k,n,m 0Md,m×Md,m

]
176

and 0Md,m
denoting an Md,m × 1 vector of zeros. Assuming that the kernel φ is177

conditionally positive-definite of order m and the set Nk,n is unisolvent on the space,178

Pd
m, of d-variate polynomials up to degree m, the matrix Sk,n,m is invertible and the179

interpolation problem has a unique solution [39].180

2.2. The Lagrange Form of the Interpolant. An alternative formulation of181

the interpolant, more convenient for the presentation of theoretical results, is written182

sk,n,m[f ](x) =

n∑
i=1

ψk,n,m,i(x)f(xk,i),183

where the new set of basis functions satisfy the cardinal property184

ψk,n,m,i(xk,j) =

{
1 i = j
0 i ̸= j

.185

The two sets of basis functions are related by186

Sk,n,m

[
Ψk,n,m(x)
Ξk,n,m(x)

]
=

[
Φk,n(x)
Πk,m(x)

]
(2.1)187

with only the n× 1 vector188

Ψk,n,m(x) =
[
ψk,n,m,1(x) ψk,n,m,2(x) · · · ψk,n,m,n(x)

]
.189

required to form sk,n,m[f ].190

3. Error Estimation in Local Kernel Approximations. An estimate of the191

error in the approximate application of L is necessary to determine locations in the192

domain of interest that require refinement to achieve a desired tolerance. In the fol-193

lowing subsections a convenient expression of the pointwise error and an estimate that194

closely matches that error are discussed. Further, an expression for the interpolation195

coefficients that correspond to the shifts of the kernel in the basis used for approxima-196

tion (that is, the coefficient vector λk,n,m[f ]) is given in terms of linear combinations197

of the weights of strictly polynomial based approximations of a set of (mixed partial)198

derivatives.199
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6 J. A. REEGER

3.1. Pointwise Error in the Local Kernel Based Interpolant. For reasons200

that will be made clear in the following sections let µ ∈ Z and µ ≥ 1. The Taylor201

formula of a function f(x) about the point xk,0, with f having continuous mixed202

partial derivatives up to order m + µ + 1 in a convex neighborhood of xk,0, can be203

written as (see, e.g., [4, 37])204

f(x) =

Md,m+µ∑
l=1

1

αl!
∂αlf(x)

∣∣
x=xk,0

πk,l(x) +Rm+µ[f ](x)(3.1)205

where the remainder term is expressible as206

Rm+µ[f ](x) =207

Md,m+µ+1∑
l=Md,m+µ+1

m+ µ+ 1

αl!

1�

0

∂αlf(y)|y=x+t(x−xk,0)

(m+ µ)!
(1− t)m+µdt(x− xk,0)

αl .208

When evaluated inside the convex hull ofNk,n this remainder term behaves asO(hm+µ+1
k,n )209

as hk,n → 0.210

Lemma 1. Suppose that f has continuous mixed partial derivatives up to order211

m+µ+1 in a convex neighborhood of xk,0 containing Nk,n. Further assume that the212

kernel φ is conditionally positive-definite of order m and the set Nk is unisolvent on213

the space, Pd
m, of d-variate polynomials up to degree m. The point-wise error in the214

kernel based interpolant sk,n,m[f ] is215

sk,n,m[f ](x)− f(x)216

=

Md,m+µ∑
l=Md,m

1

αl!
∂αlf(x)

∣∣
x=xk,0

Ek,n,m,l(x) + (sk,n,m[Rm+µ[f ]](x)−Rm+µ[f ](x)) .

(3.2)

217

with218

Ek,n,m,l(x) = sk,n,m[πk,m,l](x)− πk,m,l(x)219

the error in approximating the polynomial term πk,m,l with a kernel interpolant when220

including polynomials up to degree m.221

Proof. Existence of the unique interpolant sk,n,m[f ] follows from the kernel φ222

being conditionally positive-definite of order m and the set Nk,n being unisolvent on223

the space, Pd
m, of d-variate polynomials up to degree m. To develop a convenient224

expression for the error in the kernel based interpolant, it is useful to evaluate the225

Taylor formula at each point in Nk,n and write226

sk,n,m[f ] =

n∑
i=1

ψk,n,m,i(x)

Md,m∑
l=1

1

αl!
∂αlf(x)

∣∣
x=xk,0

πk,l(xk,i)

+ · · ·227

n∑
i=1

ψk,n,m,i(x)

 Md,m+µ∑
l=Md,m+1

1

αl!
∂αlf(x)

∣∣
x=xk,0

πk,l(xk,i)

+ · · ·228

n∑
i=1

ψk,n,m,i(x)Rm+µ[f ](xk,i).229
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LOCAL ADAPTIVE KERNEL METHODS 7

Swapping the orders of summation in the first two lines of the expression reveals230

sk,n,m[f ] =

Md,m∑
l=1

1

αl!
∂αlf(x)

∣∣
x=xk,0

(sk,n,m[πk,l](x)) + · · ·231

Md,m+µ∑
l=Md,m+1

1

αl!
∂αlf(x)

∣∣
x=xk,0

(sk,n,m[πk,l](x)) + · · ·232

(sk,n,m[Rm+µ[f ]](x)) .(3.3)233

Notice that sk,n,m[πk,l](x) = πk,l(x) for l ≤ Md,m so that the first sum in (3.3) is234

identical to that in (3.1). Therefore235

sk,n,m[f ](x)− f(x) =236

Md,m+µ∑
l=Md,m+1

1

αl!
∂αlf(x)

∣∣
x=xk,0

(sk,n,m[πk,m,l](x)− πk,m,l(x)) + · · ·237

(sk,n,m[Rm+µ[f ]](x)−Rm+µ[f ](x)) .238

Utilizing the definition of Ek,n,m,Md,m+l produces the desired result.239

Remark 3.1. Although in this work µ > 0, if instead µ = 0, then the first term240

in (3.2) does not appear, and this error formula is analogous to the one presented in241

[2] but in a different form. Utilizing similar arguments, the first sum in (3.2) behaves242

as O(hm+1
k,n ) as hk,n → 0, while the second term behaves as O(hm+µ+1

k,n ) as hk,n → 0.243

Therefore, the error in the interpolant is dominated by the first term.244

Remark 3.2. The choices of both m and µ impose a minimum smoothness re-245

quirement on f . In particular, f must have continuous mixed partial derivatives up246

to order m + µ + 1 in a neighborhood of xk,0 containing Nk,n. As long as this re-247

quirement is satisfied, even in the case of a function with finitely many continuous248

mixed partial derivatives, the results here still apply. However, in certain cases, espe-249

cially where solutions of limited smoothness are required, this may be too stringent250

or prohibitive a requirement. If possible, m and µ should be chosen to be as small as251

necessary in these cases.252

3.2. Finite Difference Expressions of Kernel Interpolation Coefficients.253

As long as n > Md,m, the constraints
∑n

j=1 λk,n,m,j [f ]πk,l(xk,j) = 0, l = 1, 2, . . . ,Md,m,254

form an underdetermined system of equations PT
k,n,mλk,n,m = 0Md,m

. If the set Nk,n255

is unisolvent with respect to the span of the set {πk,l(x)}
Md,m+µ

l=1 the dimension of the256

null space of PT
k,n,m is n−Md,m. Suppose that dk,n,l satisfies257 

πk,1(xk,1) πk,1(xk,2) · · · πk,1(xk,n)
πk,2(xk,1) πk,2(xk,2) · · · πk,2(xk,n)

...
...

...
πk,l−1(xk,1) πk,l−1(xk,2) · · · πk,l−1(xk,n)
πk,l(xk,1) πk,l(xk,2) · · · πk,l(xk,n)
πk,l+1(xk,1) πk,l+1(xk,2) · · · πk,l+1(xk,n)

...
...

...
πk,Md,m+µ

(xk,1) πk,Md,m+µ
(xk,2) · · · πk,Md,m+µ

(xk,n)


dk,n,l =



0
0
...
0
αl!
0
...
0


.258
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8 J. A. REEGER

The set {dk,n,l}
Md,m+µ

l=Md,m+1 is linearly independent and contained in the null space of259

PT
k,n,m. Therefore, there exists a set of weights βk,n,m,l[f ], l = Md,m + 1, . . . , n, such260

that261

λk,n,m[f ] =

Md,m+µ∑
l=Md,m+1

βk,n,m,l[f ]dk,n,l +

n∑
l=Md,m+µ+1

βk,n,m,l[f ]gk,n,l.262

where {gk,n,l}nl=Md,m+µ+1 is a linearly independent set of vectors in the null space263

PT
k,n,m+µ (and so the set is also in the null space of PT

k,n,m).264

Notice also that if f has continuous mixed partial derivatives up to orderm+µ+1265

in a convex neighborhood of xk,0 containing Nk,n, then the Taylor formula of f about266

xk,0 can be evaluated at each point in the set and267

dT
k,n,lfk,n =∂αlf(x)

∣∣
x=xk,0

+ dT
k,n,l


Rm+µ[f ](xk,1)
Rm+µ[f ](xk,2)

...
Rm+µ[f ](xk,n)

 .(3.4)268

The elements of the vectors dk,n,l are O(h
−|αl|
k,n ) as hk,n → 0. Therefore, (3.4) is an269

O(h
m+µ+1−|αl|
k,n ) approximation to ∂αlf(x)

∣∣
x=xk,0

as hk,n → 0.270

Define271

Dk,n,m+µ =
[
dk,n,Md,m+1 dk,n,Md,m+2 . . . dk,n,Md,m+µ

]
,272

273

Gk,n,m+µ =
[
gk,n,Md,m+µ+1 gk,n,Md,m+µ+2 . . . gk,n,n

]
274

and275

βk,n,m[f ] =
[
βk,n,m,Md,m+1[f ] βk,n,m,Md,m+2[f ] . . . βk,n,m,n[f ]

]T
.276

Then, in what follows it is more convenient to write277

λk,n,m[f ] =
[
Dk,n,m+µ Gk,n,m+µ

]
βk,n,m[f ].278

3.3. An Estimate of the Error in Local Kernel Based Approximations.279

To construct a method that locally adapts the spacing of the points to reduce the280

error,281

∥Lksk,n,m[f ]− Lkf∥ = ∥Lk(sk,n,m[f ]− f)∥,282

in the approximation of Lkf an estimate of the error must be utilized. Here283

∥Lksk,n,m[f ]− Lksk,n,m+µ[f ]∥ = ∥Lk(sk,n,m[f ]− sk,n,m+µ[f ])∥,284

µ ∈ Z and µ ≥ 1, is used as the estimate of the error. In the case of approximately285

evaluating a derivative of f at a point the error and estimate are taken to be evaluated286

at each point in xk,0 ∈ X0. On the other hand, when approximating definite integrals287

the error and estimate are evaluated once for each subdomain ωk (to which there is an288

associated point xk,0 ∈ X0). In either case, when the error estimate is larger than a289

prescribed tolerance new points are added to the sets S and X0. The following lemma290

and subsequent theorem demonstrate that this error estimate well approximates the291

error in the approximation for sufficiently smooth f .292
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Lemma 2. Suppose that the kernel φ is conditionally positive-definite of order293

m + µ and the set Nk,n is unisolvent on the space, Pd
m+µ, of d-variate polynomials294

up to degree m + µ. Further, let ∂αjf(x), j = 1, 2, . . . , n, be continuous in a convex295

neighborhood of xk,0 containing Nk,n. If n ≥ Md,m+µ, then for a set of scalars296

Ck,n,m,(l−Md,m)(i−Md,m+µ) independent of f , with i =Md,m+µ + 1,Md,m+µ + 2, . . . , n297

and l =Md,m + 1,Md,m + 2, . . . ,Md,m+µ,298

sk,n,m[f ](x)− sk,n,m+µ[f ](x) =299

Md,m+µ∑
l=Md,m+1

1

αl!
dT
k,n,m,lfk,nEk,n,m,l(x) + · · ·300

n∑
i=Md,m+µ+1

gT
k,n,m,ifk,n

Md,m+µ∑
l=Md,m+1

Ck,n,m,(l−Md,m)(i−Md,m+µ)
1

αl!
Ek,n,m,l(x).(3.5)301

Proof. Existence of the unique interpolants sk,n,m[f ] and sk,n,m+µ[f ] follows from302

the kernel φ being conditionally positive-definite of order m + µ and the set Nk,n303

being unisolvent on the space, Pd
m+µ, of d-variate polynomials up to degree m + µ.304

Let n ≥Md,m+µ and define305

Vk,n,m+µ =

[
P̃k,n,m+µ

0(n+Md,m)×(Md,m+µ−Md,m)

]
,306

where P̃k,n,m+µ consists of the last n−Md,m columns of Pk,n,m+µ. Notice that307

Sk,n,m+µ =

[
Sk,n,m Vk,n,m+µ

V T
k,n,m+µ 0Md,m+µ−Md,m

]
,308

so that if Sk,n,m is invertible and Pk,n,m+µ is full rank (a consequence of the unisol-309

vency of Nk,n), block matrix inversion of Sk,n,m+µ yields310

Ψk,n,m+µ(x) =Ψk,n,m(x)− · · ·311

Λk,n,m

(
P̃T
k,n,m+µΛk,n,m

)−1 (
P̃T
k,n,m+µΨk,n,m(x)− Π̃k,n,m+µ(x)

)
,312

where313

Λk,n,m =
[
λk,n,m[πk,Md,m+1] λk,n,m[πk,Md,m+2] · · · λk,n,m[πk,Md,m+µ

]
]

314

is the matrix with columns consisting of the interpolation coefficients corresponding to315

the kernel basis elements when interpolating the polynomial basis elements of degree316

m+ 1,m+ 2, . . . ,m+ µ using only the kernel basis set supplemented by polynomial317

terms up to degree m. The results of section 3.2 indicate that the matrix Λk,n,m can318

be written as319

Λk,n,m =
[
Dk,n,m+µ Gk,n,m+µ

]
Bk,n,m,320

where321

Bk,n,m =
[
βk,n,m[πk,Md,m+1] βk,n,m[πk,Md,m+2] · · · βk,n,m[πk,Md,m+µ

]
]
.322
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Further,323

P̃T
k,n,m+µΛk,n,m =P̃T

k,n,m+µ

[
Dk,n,m+µ Gk,n,m+µ

]
B̂k,n,m324

=Am+µB̂k,n,m325

with326

Am+µ =


αMd,m+1!

αMd,m+2!
. . .

αMd,m+µ
!

 .327

and B̂k,n,m the first Md,m+µ −Md,m rows of Bk,n,m. Therefore, after substitution328

Ψk,n,m+µ(x) = Ψk,n,m(x)−
([

Dk,n,m+µ Gk,n,m+µ

]
Bk,n,m

(
B̂k,n,m

)−1

329

A−1
m+µ

(
P̃T
k,n,m+µΨk,n,m(x)− Π̃k,n,m+µ(x)

))
.330

with Π̃k,n,m+µ(x) the last Md,m+µ −Md,m entries of Πk,n,m+µ(x).331

The difference of the two interpolants can be written332

sk,n,m[f ](x)− sk,n,m+µ[f ](x)333

=(Ψk,n,m(x)−Ψk,n,m+µ(x))
T fk,n334

=

([
Dk,n,m+µ Gk,n,m+µ

]
Bk,n,m

(
B̂k,n,m

)−1

335

A−1
m+µ

(
P̃T
k,n,mΨk,n,m(x)− Π̃k,n,m+µ(x)

))T

fk,n,336

so that using the definition of Ek,n,m,l337

sk,n,m[f ](x)− sk,n,m+µ[f ](x) =338

Md,m+µ∑
l=Md,m+1

1

αl!
dT
k,n,m,lfk,nEk,n,m,l(x) + · · ·339

n∑
i=Md,m+µ+1

gT
k,n,m,ifk,n

Md,m+µ∑
l=Md,m+1

Ck,n,m,(l−Md,m)(i−Md,m+µ)
1

αl!
Ek,n,m,l(x)340

with Ck,n,m = B̃k,n,m

(
B̂k,n,m

)−1

, produces the desired result.341

Lemmas 1 and 2, when taken together, reveal that the error estimate provides an342

O(hm+µ+1) approximation for the interpolation error, particularly when n =Md,m+µ.343

This is summarized in the following theorem.344

Theorem 3.3. Suppose that the kernel φ is conditionally positive-definite of order345

m and the set Nk,n is unisolvent on the space, Pd
m+µ, of d-variate polynomials up346

to degree m + µ. Further, let ∂αjf(x), j = 1, 2, . . . , n, be continuous in a convex347

neighborhood of xk,0 containing Nk,n. If n =Md,m+µ348

sk,n,m[f ](x)− sk,n,m+µ[f ](x) = sk,n,m[f ](x)− f(x) +O(hm+µ+1
k,n ).349

as hk,n → 0.350
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Proof. In the case of n =Md,m+µ the second term on the right hand side of (3.5)351

does not appear. According to section 3.2352

dT
k,n,m,lfk,n = ∂αlf(x)|x=xk,0

+ dT
k,n,l


Rm+µ[f ](xk,1)
Rm+µ[f ](xk,2)

...
Rm+µ[f ](xk,n)

 .353

Substituting this expression into (3.5) reveals that354

sk,n,m[f ](x)− sk,n,m+µ[f ](x) =355

sk,n,m[f ](x)− f(x) +

Md,m+µ∑
l=Md,m+1

1

αl!
dT
k,n,l


Rm+µ[f ](xk,1)
Rm+µ[f ](xk,2)

...
Rm+µ[f ](xk,n)

Ek,n,m,l(x)− · · ·356

(sk,n,m[Rm+µ[f ]](x)−Rm+µ[f ](x)) .357

The terms [2]358

Ek,n,m,l(x) = sk,n,m[πk,m,l](x)− πk,m,l(x)359

are at most O(h
|αl|
k,n ). Likewise, section 3.5 reveals that360

dT
k,n,l


Rm+µ[f ](xk,1)
Rm+µ[f ](xk,2)

...
Rm+µ[f ](xk,n)

 = O(h
m+µ+1−|αl|
k,n ) as hk,n → 0.361

Finally, sk,n,m[Rm+µ[f ]](x)−Rm+µ[f ](x) = O(hm+µ+1
k,n ) as hk,n → 0 [2].362

Remark 3.4. For n > Md,m+µ the second sum on the right hand side of (3.5) does363

not readily appear to be an approximation for the second term on the right hand side364

of (3.2). However, the discussion in the proof of theorem 3.3 applies similarly and365

these terms are also at least one order higher than the size of the dominant term in366

the error in the kernel interpolant. For simplicity in presenting computational results,367

unless otherwise stated the computations presented herein use n =Md,m+µ.368

Remark 3.5. The conclusion of theorem 3.3 highlights that the parameter µ im-369

pacts how closely the error estimate approximates the dominant term in (3.2). That370

is, larger values of µ ≥ 1 translate to more accurate estimates of the error. However,371

in practice there is little noticeable benefit to choosing µ much greater than 1, since372

the difference between the error and the estimate is already one or more orders of373

magnitude smaller than the actual error. Likewise, larger values of µ lead to larger374

systems of linear equations that must be solved to determine sk,n,m+µ[f ](x). This375

increase in the size of the system of equations can be drastic, particularly for dimen-376

sion d > 1. Further, for functions that exhibit even or odd symmetry about one of377

the points xk,0 ∈ X0 it is possible that sk,n,m[f ](x) and sk,n,m+1[f ](x) will account378

for exactly the same terms in the Taylor formula so that their difference may be379

small even when the actual error is large. Additional discussion and computational380

demonstrations in sections 4.2 and 5 suggest that the choice of µ = 2 is reasonable381

for balancing accuracy with the computational cost.382

This manuscript is for review purposes only.



12 J. A. REEGER

Remark 3.6. In analogy to what is presented in this work, in the case of solving,383

e.g., the linear PDE384

Lu = g385

with g a given function and u unknown and subject to certain boundary conditions,386

consider the error387

∥ûk,n,m − uk∥.(3.6)388

Here uk is the solution u evaluated at the kth node in the set S and ûk,n,m is an389

approximate solution at this point. The approximate solution could be obtained390

by constructing and differentiating a local kernel based interpolant of u, including391

polynomials up to degree m, at each point in S to determine weights for the approxi-392

mate local action of L (as in, e.g., section 4.1), assembling a matrix containing these393

weights, imposing boundary conditions, and solving a system of linear equations. An394

error estimate in this case would be of the form395

∥ûk,n,m+µ − ûk,n,m∥,(3.7)396

with ûk,n,m+µ an approximate solution constructed in a similar manner to ûk,n,m397

but including polynomial terms up to degree m + µ. The differences in estimating398

the error when solving a PDE, including the impact of inverting a system of linear399

equations, from what is presented here for the direct application of a linear operator400

to a known function are complex enough that they warrant further study. Further401

differences and complications in implementing algorithms based on (3.7) as an error402

estimate are discussed in remark 4.1.403

4. An Implementation of Adaptive Local Kernel Approximations. Given404

the error estimate developed in the previous sections, an initial implementation of an405

h-adaptive method for approximating action of a linear operator is now presented.406

This implementation only adds nodes to the set S to decrease the spacing between407

nodes locally (refinement), but it does not remove nodes where the error estimate408

indicates the error is smaller than the prescribed tolerance (derefinement). Efficient409

computation of the estimate relies on the similarities between the systems of linear410

equations used to solve for weights when including in the basis for approximation411

polynomials up to order m and polynomials up to order m+ µ.412

4.1. Weight Computation. Application of Lk to the interpolant written in413

the cardinal basis reveals414

Lksk,n,m[f ] =

n∑
i=1

(Lkψk,n,m,i) fk,n,i(4.1)415

Defining416

wk,n,m = (Lkψk,n,m,i)417

the approximate operation amounts to an inner product between a vector contain-418

ing values of the function to which the operation is being applied and a vector of419

“weights” containing the operator Lk applied to the cardinal basis elements. This420

is a standard method for determining approximation weights, e.g., as in the case of421

finite difference or pseudospectral approximations of derivatives or for Newton-Cotes422
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quadrature weights for approximating definite integrals. In any case, these weights423

are independent of the function f . However, construction of the cardinal basis to424

determine these weights is unnecessary, and instead an equivalent process determines425

the weight set wk,n,m utilizing (2.1) as426

Sk,n,m

[
wk,n,m

vk,n,m

]
=

[
LΦk,n

LΠk,m

]
.(4.2)427

Here LkΦk,n and LkΠk,m are to be understood as the vectors obtained by entry-wise428

application of Lk to the entries of Φk,n and Πk,m, respectively.429

4.2. Reduced Computational Cost for the Error Estimate. Given that430

Sk,n,m is the upper left block of Sk,n,m+µ, computation of the error estimate can be431

completed more efficiently than solving two full systems of linear equations. Block432

matrix inversion of Sk,n,m+µ yields that if the solution to (4.2) is available, then433

wk,n,m+µ =wk,n,m − Λk,n,m(P̃T
k,n,m+µΛk,n,m)−1

(
LΠ̃k,m+µ − P̃T

k,n,m+µwk,n,m

)
.

(4.3)

434

The cost of determining wk,n,m is O((n +Md,m)3), while the dominant part of the435

cost of determining wk,n,m+µ is only a further O(n(Md,M+µ −Md,m)2) incurred for436

the multiplication P̃T
k,n,m+µΛk,n,m. Now, to guarantee unique values of wk,n,m+µ it437

is necessary that n ≥Md,m+µ.438

These costs can be better understood by noting439

Md,m+µ =Md,m+µMd,m,440

where441

Md,m+µ =
(m+ µ+ d)!

(m+ µ)!

m!

(m+ d)!
,442

and considering the case of n =Md,m+µ. For this choice of n, the cost of determining443

wk,n,m is ∼ 2/3(Md,m+µ+1)3M3
d,m. Determination of wk,n,m+µ through (4.3) is then444

only an additional ∼ 8/3(Md,m+µ − 1)2(Md,m+µ − 1/4)M3
d,m operations. If instead,445

the system of equations446

Sk,n,m+µ

[
wk,n,m+µ

vk,n,m+µ

]
=

[
LΦk,n

LΠk,m+µ

]
(4.4)447

is solved for wk,n,m+µ, then the cost is an additional ∼ 16/3M3
d,m+µM

3
d,m operations.448

To further illustrate the efficiencies in evaluating (4.3), define τd,m and τd,m+µ449

to be the times it takes to solve (4.2) and (4.4), respectively. Further, let τ
′

d,m+µ450

be the time it takes to solve (4.3) for wk,n,m+µ. Figure 1 illustrates τd,m+µ/τd,m in451

the first row and τ
′

d,m+µ/τd,m in the second for various choices of m and µ and for452

d = 1, 2, 3. These frames were generated by averaging the elapsed computation times453

of 1000 instances of solving each of these systems of equations for each choice of m, µ454

and d. Comparing the contour plots in the first and second rows demonstrates that in455

every case there is improvement in computational efficiency when solving (4.3) instead456

of the full system of linear equations and that these improvements become more457

apparent as d increases. Note that all computations presented here were performed458

on a workstation with two Intel® Xeon® CPU E5-2697 v3 processors, each running459

at 2.60GHz, and 256 GB of memory running MATLAB R2022b.460
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Fig. 1. Demonstrations of how many times longer it takes to solve (4.4) (with average compu-

tation time τd,m+µ) and (4.3) (with average computation time τ
′
d,m+µ) relative to the time it takes

to solve (4.2) (with average computation time τd,m). These frames were generated by averaging the
elapsed computation times of 1000 instances of solving each of these systems of equations for each
choice of m, µ and d.

4.3. A Naive Algorithm for Adaptive Kernel Based Approximation.461

The focus of this paper is the development of an efficient error estimate for local “h-462

adaptive” kernel based methods. Such approaches to adaptation add new points to463

the set S in a neighborhood of those points in X0 where the error estimate is found464

to be too great. This has the effect of locally decreasing the size of hk,n. With the465

estimate available, there are many possibilities for choosing the locations of these new466

points. The algorithm can be generically described in the following steps:467

1: Given a set of N (0) nodes, S(0), a set of K(0) points, X (0)
0 = {x(0)

k,0}K
(0)

k=1 , a de-
sired tolerance, ε, and a maximum number of refinement levels, lmax. (And, if
necessary, a tesselation T (l) of S(l).)

468

2: Set l = 0.469

3: while l ≤ lmax do470

4: Set R(l) = ∅ ▷ R(l) stores the indices of the points in X (l)
0 requiring refinement.471

5: for k ∈ {1, 2 . . . ,K(l)} do472

6: Determine the n points in S(l) nearest to x
(l)
k,0. Call this set of points N

(l)
k,n.473

7: if l = 0 then474

8: Set R(l) = R(l)
⋃
k ▷ Initially, all points in X (l)

0 are marked for refine-
ment.

475

9: else476

10: if there is an index i such that x
(l)
k,0 = x

(l−1)
i,0 then ▷ Check if x

(l)
k,0 ex-

isted at the previous level.
477

11: if N (l)
k,n \ N (l−1)

i,n ̸= ∅ then ▷ Determine if the set of nodes nearest

to x
(l)
k,0 has changed.

478
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12: Set R(l) = R(l)
⋃
k ▷ If the set of nodes nearest to x

(l)
k,0 has

changed, then mark this point for refinement.
479

480

13: else481

14: Set R(l) = R(l)
⋃
k ▷ If x

(l)
k,0 did not exist at the previous level, then

mark this point for refinement.
482

483484485

15: if R(l) = ∅ then ▷ Determine if there are no elements of X (l)
0 that have been

marked for refinement at this level.
486

16: Break and return L(l)
k sk,n,m as the local approximation of L(l)

k f associated

with each x
(l)
k,0 ∈ X (l)

0

487

488

17: Set S(l+1) = S(l) and X (l+1)
0 = X (l)

0 . (And, if necessary, set T (l+1) = T (l).) ▷ Ini-
tialize the various sets for the next level of refinement.

489

18: for k /∈ R(l) do490

19: Set L(l+1)
k sk,n,m = L(l)

k sk,n,m ▷ Retain the current approximation where re-
finement is unnecessary.

491

492

20: for k ∈ R(l) do493

21: Compute L(l+1)
k sk,n,m and L(l+1)

k sk,n,m+µ utilizing the nodes in N (l)
k,n. ▷ Up-

date the approximations where refinement was necessary at this level.
494

22: if ∥L(l+1)
k sk,n,m − L(l+1)

k sk,n,m+µ∥> ε then ▷ Determine if the error indi-
cator is too large.

495

23: Add new nodes to the set S(l+1) in a neighborhood of x
(l)
k,0 and update

the set X (l+1)
0 (and, if necessary, update T (l+1)).

496

497498

24: Set K(l+1) = |X (l+1)
0 |, then increment l by 1.499500

Notice that in this implementation, at each level l, the approximation L(l+1)
k sk,n,m501

is updated for each x
(l)
k,0 ∈ X (l)

0 that has a set of nearest neighbors that has changed502

with the addition of new points to the set S(l). This is not necessary, and it is503

possible to update the approximation only for those points x
(l)
k,0 for which the error504

estimate in line 22 violates the specified tolerance, reducing the computational cost.505

Some computational experiments were performed with this method that reduces the506

cost; however, the best performance is achieved by updating the approximation for507

all points whose nearest neighbors have changed.508

In all of the results presented here, the set S(0) begins with 10d equally spaced509

points in [−1, 1]d. Implementation of line 23 of the algorithm then depends upon the510

operation L. First, for approximating definite integrals at level l of the algorithm511

note that512

�

Ω

f(x)dx =

K(l)∑
k=1

�

ω
(l)
k

f(x)dx,513

where ω
(l)
k is a portion of Ω associated with a simplex t

(l)
k , with midpoint x

(l)
k,0, in a514

set of simplices constructed on the set S(l). A set of new nodes, that may contain515

the point x
(l)
k,0, is added to S(l+1). In this implementation x

(l)
k,0 and the midpoints of516

the facets of the simplices (e.g., edges of triangles when d = 2) are added to S(l+1).517

Then x
(l)
k,0 and t

(l)
k are removed from X (l+1)

0 and T (l+1), respectively. To the set T (l+1)518

are added the simplices in a tesselation of the set of points containing the vertices519

of t
(l)
k and the points that have been added to S(l+1). The midpoints of these new520

simplices are then added to the set X (l+1)
0 . The left half of figure 2 depicts how the521
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Fig. 2. Illustration of a naive implementation of line 23 of the algorithm. The left half of this
figure illustrates refinement when the operation Lk is local definite integration. The first column

illustrates the state of the sets S(l+1), X (l+1)
0 and T (l+1) defined at step 17 of the algorithm. The

second column then illustrates what is added to these sets. Notice that x
(l)
k,0 and t

(l)
k are removed

from X (l+1)
0 and T (l+1), respectively, in step 23. The right half of this figure similarly illustrates

refinement when the operation Lk is differentiation at x
(l)
k,0. Nothing is removed from the sets in

the case of differentiation.

sets S(l+1), X (l+1)
0 and T (l+1) change from their definition in step 17 of the algorithm522

under refinement in step 23 when approximating a definite integral.523

On the other hand, for approximating a derivative when d = 1 the two points524

x
(l)
k,0 ± h(0)/2l+1 are added to both S(l+1) and X (l+1)

0 , while nothing is removed525

from either set. Here h(0) is the initial spacing between adjacent nodes. When526

d = 2, the points x
(l)
k,0 ± h(0)/2l+1

[
1 0

]T
, x

(l)
k,0 ± h(0)/2l+1

[
0 1

]T
, x

(l)
k,0 ±527

h(0)/2l+1
[
1 1

]T
, and x

(l)
k,0 ± h(0)/2l+1

[
1 −1

]T
are added to the both S(l+1)528

and X (l+1)
0 , while nothing is removed from either set. The right half of figure 2 depicts529

how the sets S(l+1) and X (l+1)
0 change from their definition in step 17 of the algorithm530

under refinement in step 21 when approximating a derivative at a point.531

These strategies for adding nodes are certainly not the only ones available and532

may not be optimal. In particular, there is no guarantee that polynomial unisolvency533

is maintained with this method for adding additional nodes. This could be overcome534

by locally considering node sets that provide some guarantees of unisolvency, such as535

modifications of the Leja or Fekete points [22, 32, 9, 6] or through more recent methods536

specific to approximation by RBF-FD (e.g., as in [24]). However, the refinement537

strategies discussed above perform well enough to illustrate the performance of even538

naively implemented algorithms based on the error estimate.539

Remark 4.1. As discussed in remark 3.6, estimation of the error when solving a540

PDE requires the construction of two different approximate solutions, both of which541

require the inversion of a, potentially large, system of linear equations. This alters542

some of the aspects of the algorithm presented above for approximating the application543

of L to a known function. In particular, error estimation and addition of new nodes544

(similar to lines 22 and 23 of the algorithm) would occur after updating appropriate545

weights for approximating the local action of L at all nodes marked for refinement,546

and then determining the solution of two systems of linear equations, which is an547

expensive procedure. Algorithms that leverage the relationship (4.3) between the548

This manuscript is for review purposes only.



LOCAL ADAPTIVE KERNEL METHODS 17

weights constructed from interpolants that include polynomials of degreem andm+µ549

may be able to reduce this cost and deserve investigation.550

5. Computational Experiments. Demonstrations of the agreement between551

the error estimate and actual error are provided in the following section when utilizing552

the algorithm described in section 4.3. These demonstrations explore two common553

linear operations in both d = 1 and d = 2 for two test functions with localized features554

that require significant refinement to be resolved.555

5.1. Test Functions and Kernel Selection for Computational Experi-556

ments. Computational experiments were performed for d = 1 and d = 2 using the557

test functions558

f1(x) =

2d∑
i=1

1

1 + a ∥x− yi∥22
559

and560

f2(x) =

2d∑
i=1

e−a∥x−yi∥2
2 ,561

both with yi a randomly chosen shift in (−1, 1)d. Graphically these functions are562

similar in character with features that become more localized as a increases. However,563

the series expressions for the terms in f1 and f2 behave quite differently. That is,564

1

1 + a ∥x− y∥22
=

∞∑
j=0

(−1)jaj
(
∥x− y∥22

)j

=

∞∑
j=0

∑
|β|=j

j!(−1)jaj

β!
(x− y)

2β
565

has radius of convergence ∥x− y∥2 < 1/
√
a with terms that grow for all j when566

outside the radius of convergence, and567

e−a∥x−y∥2
2 =

∞∑
j=0

(−1)j
aj

j!

(
∥x− y∥22

)j

=

∞∑
j=0

∑
|β|=j

(−1)jaj

β!
(x− y)

2β
568

has infinite radius of convergence and terms that grow only until finite j (for each569

fixed ∥x− y∥2).570

While there are many options to choose from for the kernel used in the local571

approximations, the results here considered the use of φ(r) = r3.572

5.2. Results in 1-Dimension. To illustrate the performance of the algorithm573

described in section 4.3 for d = 1 it was applied to approximate the action of both574

Lf =

1�

−1

f(x)dx

(
i.e., Lkf =

�

ωk

f(x)dx

)
575

and576

Lf =
d

dx
f(x), x ∈ [−1, 1]

(
i.e., Lkf =

d

dx
f(x)

∣∣∣∣
x=xk,0

)
.577

Consider the choice of a = 1000, N (0) = 10, m = 1, and µ = 2. Figure 3 illustrates578

a single example of adaptive quadrature for evaluating the integral of f2(x) over579
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Fig. 3. An example of adaptive approximate numerical quadrature of f2 for x ∈ [−1, 1] with
a = 1000, m = 1, µ = 2, ε = 10−5, y1 = 0.08, y2 = 0.39, and N = 93. The top frame indicates the
function and node locations. The middle frame shows the node spacing, which corresponds to the
widths of the intervals being integrated over. The bottom frame illustrates agreement of the absolute
error estimate and actual absolute error and satisfaction of the prescribed tolerance. Node locations
where no marker for the error estimate or actual error appears indicate estimates and actual errors
that fall well below the vertical limits of the plot.

the interval [−1, 1]. The top frame illustrates f2 and the locations of the nodes580

required to achieve a tolerance of ε = 10−5, while the middle frame shows the node581

spacing, corresponding to the widths of the subintervals being integrated over. Both582

the top and middle frames indicate that the algorithm is adaptively placing points583

with increased density where the function is changing rapidly (i.e., the derivative is584

larger). This is the expected behavior. The bottom frame then illustrates that the585

absolute error estimate and actual absolute error are in agreement and both meet the586

prescribed tolerance with N = 93 nodes on [−1, 1].587

Similarly, figure 4 shows a single example of adaptive differentiation of f2(x) on588

the interval [−1, 1]. Since the error estimate is utilized to approximate the absolute589

error in the derivative, more points are required to achieve a specific tolerance in590

comparison to adaptive quadrature. This is because the derivatives of both f1(x) and591

f2(x) are an order of magnitude larger than the maximum value of their integrals over592

[−1, 1]. In fact, the maximum of the derivative for any choice of a can be as large as593

2(3
√
3a/8) for f1 and 2(

√
2ae−1) for f2. For this reason, in this example the algorithm594

is applied to computing the derivative of f2(x) with ε = 10−2 so that individual nodes595

are visually distinguishable except where the nodes are adaptively placed with the596

greatest density. Still, the top and middle frames indicate that the algorithm is again597

adaptively placing points with increased density where the derivative is large and the598

bottom frame illustrates that the error estimate and actual error are in agreement599

and meet the prescribed tolerance, now with N = 3093 nodes on [−1, 1].600

Second, figure 5 demonstrates the number of nodes, N , required to locally reach601

various prescribed tolerances, ε ∈ [10−7, 10−4], for a = 100 and both f = f1 (solid602

curves) and f = f2 (dashed curves) for each value of m = 1, 2, 3, 4 and µ = 2, 3. There603
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Fig. 4. An example of approximation differentiation of f2 for x ∈ [−1, 1] with a = 1000, m = 1,
µ = 2, ε = 10−2, y1 = 0.08, y2 = 0.39, and N = 3093. The top frame indicates the function and
node locations. The middle frame shows the node spacing. The bottom frame illustrates agreement
of the absolute error estimate and actual absolute error and satisfaction of the prescribed tolerance.
Node locations where no marker for the error estimate or actual error appears indicate estimates
and actual errors that fall well below the vertical limits of the plot.

is no noticeable improvement, which would be indicated by fewer nodes being required,604

when increasing µ from 2 to 3, so that the discussion in section 4.2 indicates that µ = 2605

should be preferred for the reduced computational expense. Further computational606

experiments were performed with µ = 1 and µ > 3, all of which indicated that µ = 2607

is a reasonable choice.608

Figure 5 also provides a comparison between the adaptive algorithm developed609

here applied to quadrature and the more familiar adaptive trapezoidal rule. The610

implementation of the adaptive trapezoidal rule mirrors the presentation in [1, Section611

5.5]. The figure illustrates that even when the adaptive kernel method is of the same612

anticipated order as the adaptive trapezoidal rule (i.e., when m = 1) the method here613

requires fewer nodes to achieve the desired tolerance.614

The impact of the radius of convergence of and the growth of the terms in the615

Taylor formula on the required number of nodes for each test function was also assessed616

for both numerical quadrature and differentiation. Both the radius of convergence and617

growth of the terms were controlled by varying a (here a ∈ [1, 1000]) and the number618

of required nodes to achieve specified tolerances (ε ∈ [10−7, 10−4] for quadrature and619

ε ∈ [10−6, 10−3] for differentiation) was recorded. The contours in each frame of620

figures 6 and 7 illustrate log base 10 of the number of nodes N required for each621

choice of a and ε, with each frame corresponding to a different value of m = 1, 2, 3, 4.622

Due to the memory requirements for storing all diagnostic data used in the analyses623

presented here, the algorithm was forced to terminate when N > 105.5. This limit624

should not be necessary for more efficient implementations of the algorithm and here625

only impacted the results for numerical differentiation in the case of m = 1. The626

consequences of this limit are illustrated by the missing curves down and to the right627

of the curve indicating N = 105 in the top left frame of figure 7. As expected,628

This manuscript is for review purposes only.



20 J. A. REEGER

Fig. 5. Log base 10 of the average maximum absolute error versus log base 10 of the average
number of nodes required to achieve that error for approximate definite integration of f1 (solid
curves) and f2 (dashed curves) for x ∈ [−1, 1] with a = 100. The average is taken over 10 choices of
y1 and y2 for each value of ε, corresponding closely to the error shown. The left frame corresponds
to a choice of µ = 2 while in the right frame µ = 3. In both cases curves are shown for m = 1, 2, 3, 4
along with analogous results for an adaptive trapezoidal rule (AT in the legend) that utilizes the
difference between Simpson’s rule and trapezoidal rule as an error estimate.

an increase in a, which leads to more localized features in both f1 and f2 and faster629

growth of their derivatives, necessitates an increase in N to achieve the same tolerance630

ε. Consistent with remark 3.1, theorem 3.3 and figure 5 the number of nodes required631

for each value of a and ε decreases with increasing m. However, despite the finite632

and infinite radii of convergence of the Taylor formulas of f1 and f2, respectively, the633

algorithm performs similarly, demonstrating that it gracefully handles the growth in634

the terms of the series and finite radii of convergence.635

5.3. Examples in 2-Dimensions. For d = 2 computational experiments were636

performed for both637

Lf =

�

Ω

f(x)dx, Ω = [−1, 1]2
(
i.e., Lkf =

�

ωk

f(x)dx

)
638

and639

Lf = ∇f, x ∈ [−1, 1]2
(
i.e., Lkf = ∇f(x)

∣∣∣∣
x=xk,0

)
.640

Consider the choice of a = 1000, N (0) = 100, m = 4, and µ = 2. Figure 8641

illustrates a single example of adaptive quadrature for evaluating the integral of f2(x)642

over the domain [−1, 1]2 with ε = 10−6. The top left frame illustrates the magnitude643

of f2, while the top right frame shows the node spacing, represented by the area of644

the triangles ωk. The top right frame again indicates that the algorithm is adaptively645

placing points with increased density where the function is changing rapidly. The646

bottom frames illustrate that the absolute error estimate and actual absolute error647

are in agreement with N = 2366.648
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Fig. 6. An illustration of the number of nodes required to achieve an estimated error tolerance
of ε for approximate definite integration of f1 (solid curves) and f2 (dashed curves) for x ∈ [−1, 1]
with a ∈ [1, 1000]. The contours indicate the log base 10 of the mean of the number of required nodes
for ten random choices of y1 and y2 for each value of a and ε. In all cases µ = 2.

Similarly, figure 9 shows a single example of adaptive differentiation of f2(x) on649

the domain [−1, 1]2. Since the derivative can again be large, in this example the650

algorithm is applied to computing the derivative of f2 with ε = 10−2. Still, the651

top right frame indicates that the algorithm is again adaptively placing points with652

increased density where the derivative is large and the bottom frames illustrate that653

the error estimate and actual error are in agreement and meet the prescribed tolerance,654

now with N = 14852 nodes on [−1, 1]2.655

Again, the choice of µ = 2 in these examples is motivated by computational656

experiments. Figure 10 is analogous to the presentation in figure 5, only now for657

approximate definite integration over [−1, 1]2. There is again no noticeable improve-658

ment when increasing µ from 2 to 3, and µ = 2 is likewise preferred for the reduced659

computational expense. However, it is clear in these examples that the algorithm660

performs better for a function whose Taylor series has infinite radius of convergence.661

Remark 5.1. In all of the computational examples presented here, no problems662

resulting from the conditioning of the problem or systems of linear equations were663

observed, even up to m + µ = 16 and under refinement. This is in line with the664

observation in [3] (which follows from a result in [18]) that for the choice of φ(r) = rρ,665

with ρ an odd positve integer, the high condition numbers of the systems of linear666

equations do not have the expected impact on the accuracy of the computed weights.667

This is likely not the case for other choices of the kernel, φ. In particular, use of several668

common choices for the kernel (e.g., Gaussian, multiquadric or inverse multiquadric)669

may necessitate the use of stable algorithms, some of which are detailed in [8, 10].670
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Fig. 7. An illustration of the number of nodes required to achieve an estimated error tolerance
of ε for approximate differentiation of f1 (solid curves) and f2 (dashed curves) for x ∈ [−1, 1] with
a ∈ [1, 1000]. The contours indicate the log base 10 of the mean of the number of required nodes for
ten random choices of y1 and y2 for each value of a and ε. In all cases µ = 2.

6. Conclusions. This article presented a novel approach to constructing ap-671

proximations to the action of linear operators that locally adapt the spacing of the672

discrete point set to achieve a prescribed error tolerance. The approach described here673

utilized kernel methods similar to RBF-FD to overcome the difficulties experienced674

with an analogous use of polynomial interpolation in the presence of scattered nodes,675

particularly when d > 1. Computational experiments have shown that the estimate676

and actual absolute error are in agreement and that the estimate can be successfully677

used to indicate where refinement of the discrete node set is required.678

This study is not exhaustive. In particular, there is significant opportunity to679

explore node placement strategies where the error estimate indicates the need for re-680

finement. Further, the choice to refine at every point where the estimate is computed681

that has a change in its nearest neighbors from one level to the next is likely unnec-682

essary. Therefore, approaches to refining only where the error indicator is larger than683

the prescribed tolerance are an important avenue for investigation.684

Disclaimer. This report was prepared as an account of work sponsored by an685

agency of the United States Government. Neither the United States Government nor686

any agency thereof, nor any of their employees, make any warranty, express or im-687

plied, or assumes any legal liability or responsibility for the accuracy, completeness, or688

usefulness of any information, apparatus, product, or process disclosed, or represents689

that its use would not infringe privately owned rights. Reference herein to any specific690

commercial product, process, or service by trade name, trademark, manufacturer, or691

otherwise does not necessarily constitute or imply its endorsement, recommendation,692
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Fig. 8. An example of adaptive approximate numerical quadrature of f = f2 for x ∈ [−1, 1]

with a = 1000, m = 4, µ = 2, n = Md,m+µ = 28, ε = 10−6, y1 =
[

0.32 0.78
]T

, y2 =[
0.47 −0.96

]T
, y3 =

[
−0.82 0.72

]T
, y4 =

[
−0.52 −0.84

]T
and N = 2366. The top

left frame illustrates the magnitude of the function. The top right frame shows the node spacing
measured by the areas of the triangles ωk. The bottom frames illustrate agreement of the absolute
error estimate and actual absolute error and satisfaction of the prescribed tolerance.

or favoring by the United States Government or any agency thereof. The views and693

opinions of authors expressed herein do not necessarily state or reflect those of the694

United States Government or any agency thereof.695
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