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Abstract: The propagation of a high energy laser through a near stagnant absorbing media8

is studied. The absorption values and timescale of the problem are such that the laser induces9

convective heat currents transverse to the beam. These currents couple to the laser via the10

refractive index, causing time dependent thermal blooming. A novel numerical method is11

developed, and applied to the model of [1], using Radial Basis Functions (RBFs) for spatial12

differencing, which allow for irregular point spacings and a wide class of geometries. Both13

the beam and laser-induced fluid dynamics are numerically simulated. These simulations are14

compared to a historical experiment of a 300W laser in a smoke-filled chamber with good15

agreement; both cases included a crescent shaped spot at the target.16

1. Introduction17

This study considers the propagation of a high energy laser through an absorbing fluid medium.18

In particular we focus on a feedback mechanism between fluid heating and beam propagation19

known as thermal blooming [2, 3]. Historical numerical simulations of thermal blooming20

simplify the motion of the fluid background, either by prescribing it [4–6], sampling it from a21

statistical distribution [7–9], or neglecting convection in the dynamics [10–13]. These numerical22

studies complement predictions of scaling laws and asymptotics [14–16] as well as experimental23

investigations [17, 18]. As the thermal blooming phenomenon is one where fluid temperature24

dynamics play an important role, it is natural to simulate convection in the fluid. Recently,25

a model was proposed and simulated which includes the fully nonlinear1 laser-induced fluid26

motions (due to temperature driven buoyancy changes) in fluids which are initially both uniform27

and quiescent [1, 20, 21]. In this work, we compare the predictions of this model, to those of28

a laboratory experiment. We simulate the beam and fluid dynamics using a modern and novel29

numerical method, and discuss its performance as compared to the method in [1]. The current30

method is an improvement over previous in that it is flexible in its geometry and boundary31

conditions (where [1] requires square, periodic domains with equi-spaced points). Recent work32

in [20], suggests that resolving the exact physical domain becomes crucial for modeling steady33

state laser-fluid interactions; the numerical method described herein allows for the flexibility to34

simulate the model of [1] in realistic experimental geometries.35

Both the laboratory experiment and the numerical method consider a 300W, 1.07µm laser. The36

medium of propagation is a near quiescent smoke-filled aquarium. The beam travels one meter37

generating a 2cm centimeter spot at a target board, whose dynamics are experimentally recorded.38

The experiment was conducted in 2010 by Peter Wick and Chris Lloyd, who kindly provided39

access to video of their trial for comparison purposes. The experiment is compared to numerical40

simulations of the beam spot through an initially quiescent fluid including the effect of convection.41

There are two major sources of discrepancy between experimental measurements and numerical42

results. First, the model does not include background fluid temperature or velocity fluctuations43

prior to turning on the laser, nor is it possible prevent these completely experimentally. Second,44

1In this work the Navier-Stokes equations are simulated directly, as compared to for example the approximate fluid
flows used in [6, 19].



both the real part of the refractive index and the linear loss rate for a smoke-filled aquarium45

are unknown and needed for the numerical simulations; estimated values are used. In spite of46

these difficulties, we observe good agreement between numerical simulations and the laboratory47

experiment.48

2. Modeling49

In this section we present the mathematical system for the laser, a wave optics model, coupled50

the Navier-Stokes equations for the fluid. This model was first presented in [1], where it was51

simulated using Fourier collocation in the extremely high power regime (the results of [1] in the52

geometry of this work would correspond to a MW class laser in clean dry air). In this work, a53

new numerical method is developed for this system, using Radial Basis Functions (RBFs) [22].54

The model is then simulated in the 300W power regime and compared to an experiment in a55

smoke-filled tank.56

For the beam propagation, we use the classic paraxial approximation to Maxwell’s equations,57

which assumes only small deviations in refractive index and a separation of scales between the58

longitudinal and transverse aspect ratios of the laser. This model is well established in a number59

of communities as being accurate for the envelope of a traveling wave, see [23, 24].60

∂A
∂z
=

(
i

2kn0
4H − in1k − α

)
A, (1)

In equation (1), k = 6 × 104 cm−1 is the wavenumber, A is the complex amplitude, 4H is the61

Laplacian in the coordinates transverse to the beam (here x and y). The parameter n0 is the62

refractive index of the undisturbed medium at the particular laser wavelength [25].63

The measurement of n0 of a aerosol laden gas is complicated, and the range of realistic n064

values is broad, and certainly depends on aerosol concentration. For example the real part of the65

refractive index of cigarette smoke at 1070 nm is estimated at n0 ≈ 1.5 in [26], while clean air66

has a 1070 nm real refractive index of n0 ≈ 1.00027 [25]. The real index is defined as a measure67

of how much the speed of light is reduced from its vacuum value as it propagates through the68

medium. This propagation speed is largely determined by the number of molecules and other69

particles the light energy encounters during propagation (barring anomalous dispersion effects70

caused by strong absorption line effects—which are mostly absent around 1070 nm). Given that71

there are approximately 1022 gas molecules per ml (cm3) of air, and at most about 106 aerosol72

particles per cm3 in a cloud of cigarette smoke that could reduce visibility to hundreds of meters,73

the 16 orders of magnitude difference in the number concentration of molecules and particles74

indicates that the real index of the smoky air is insignificantly different from the clean air. We75

present simulations with both extremes, n0 = 1.0005 (near the clean air value [25]) and n0 = 1.576

(pure smoke [26]).77

The refractive index correction n1 is modeled using the Gladstone-Dale relationship for78

an ideal gas with density fluctuations coupled to temperature fluctuations via a Boussinesq79

approximation [1],80

n1 = (n0 − 1)
ρ1
ρ0
,

ρ1
ρ0
=

T1
T0
, n1 = (n0 − 1)

T1
T0
.

The linear loss rate, or extinction, α, is unknown, but an estimate of it can be quantified with a81

radiative transfer code such as LEEDR [27]. LEEDR can break down the gaseous molecular82

effects into scattering and absorption losses for propagation at any wavelength from the UV to83

the RF based on the latest spectroscopic databases (e.g. HITRAN 2016) coupled to a full or84

partial (Rayleigh where applicable) Mie scattering calculation. LEEDR also provides estimates85

of extinction losses due to suspended particulates or aerosols such as cigarette smoke through a86



comprehensive database of complex index of refraction optical properties, where the real part of87

the index dictates the speed of propagation (as described above), and the imaginary part captures88

the absorption magnitude. For assumed conditions of 22◦C and 50% relative humidity with a89

particulate distribution representing 300 m visibility in a cloud of cigarette smoke (the LEEDR90

calculation uses optical properties for a near equal mixture of soot and water soluble particles)91

yields a 1070 nm molecular extinction of 3.6 × 10−3 km−1 (2.8 × 10−3 km−1 absorption plus92

8 × 10−4 km−1 scattering) and aerosol extinction of 3.4 km−1 (2.8 km−1 scattering plus 0.6 km−1
93

absorption). Thus while the real index is dominated by the sheer number of gaseous molecules,94

the extinction is nearly all due to the relatively high concentration of smoke particulate.95

The temperature fluctuations are evolved in the incompressible Navier-Stokes equations,96

presented below in non-dimensional form.97

ut + (u · ∇)u = ∇P +
1
Re
∆u + RiT ®e2 (2a)

Tt + (u · ∇)T =
1
Pe
∆T + St|A|2 (2b)

∇ · u = 0 (2c)

These equations have been non-dimensionalized using a beam width as the characteristic98

lengthscale L, a velocity scale U, a convective time scale τ = L
U , a temperature scale T0, a beam99

intensity scale of A0, and a pressure scale of P0 = ρ0U2. The variable T is the normalized100

temperature fluctuations T = T1
T0
; in the numerical results section we report T1 = T0T , so that our101

reported temperatures have the more intuitive units, degrees K . The fluid length and velocity102

scales are measured against g, ν and µ, the force due to gravity, the kinematic viscosity and103

thermal diffusivity respectively, typical choices in non-dimensional fluid simulations. The104

non-dimensional numbers which are introduced are the classic Reynolds (Re), Peclet (Pe), and105

Richardson (Ri), as well as the less common Stanton number (St) [28], all defined below,106

Re =
UL
ν
, Pe =

UL
µ
, Ri =

gL
U2 , St =

βA2
0L

UT0
.

These equations are valid for for general values of the above parameters, the simulations presented107

here fix the values for a single experiment. We set L = 2cm, based on the beam spot diameter,108

τ = 0.1sec, based on the experiments duration, g = 981 cm
sec2 , the gravitational constant, and109

U = 20 cm
sec from a convective scaling. The parameters ρ = 1.2 × 10−9 kg

cm3 , cp = 1 kJ
kgK , and110

ν = .15 cm2

sec , µ = 0.2 cm2

sec correspond to dry air. The beam power scale V2
0 = 191 W

cm2 , is derived111

from the total laser power using P = πr2/2A2
0 [6]. The constant β =

α
ρ0cp

can be recovered by112

from the linear loss rate estimated here at α = 3 × 10−5cm−1.113

3. Numerical Method114

Approximate solutions to (1) and (2) are computed by first approximating derivatives in the115

direction transverse to the beam propagation using the Radial Basis Function generated Finite116

Differences (RBF-FD) approach that has been popularized over the last 20 years [29–34]. RBF-FD117

approaches have been shown to be computationally efficient and effective at solving problems118

that require nonuniform discretizations for resolving rapidly changing features in the solution to119

a PDE. In particular, [29] details the successes of solving systems of PDEs in geophysics (with120

similar character to those in the model presented here) utilizing RBF-FD. The illustrations [29]121

(and the references therein) highlight the efficiency that can be achieved with RBF-FD (even on a122

standard workstation) when compared to industry standard computational codes. More recently,123

RBF-FD discretization of a nonlinear wave equation is compared to Fourier-split step (a standard124

method for wave optics) in [22].125



The method begins by discretizing the domain, taking advantage of problem symmetries.
Consider the domain x ∈ Ω ⊂ R2 in the transverse direction. Any x in the domain can be

expressed componentwise as x =
[

x y

]T
. When the initial conditions are symmetric about

the line x = 0, the values of A, u, T and P maintain this symmetry for all time and propagation
distance. This can be used to reduce the computational domain to Ω̃ = {x ∈ Ω : x ≥ 0}. The
set is discretized by scattering node locations, SN = {xi}Ni=1 across Ω̃, and by defining a set of
fictitious nodes

S̃N =

x ∈ Ω :

−1 0

0 1

 x ∈ SN and


1

0


T

x , 0
 .

That is, S̃N is the set of points with nonzero x-component from SN reflected about x = 0. For
each point xk ∈ SN , define the sets Nk =

{
xk, j

}n
j=1 to be the n points in SN

⋃
S̃N nearest

to xk . Then the action of the differential operators on A, T , P, and the components of u will
be approximated at each xk by first constructing an RBF interpolant of the function, with
interpolation points from the set Nk , and then computing the action of the operators on the
interpolant. The RBF interpolants used here utilize the Polyharmonic Spline RBF φ(r) = r7 and
supplemental bivariate polynomials up to degree m = 7 (as in, e.g., [32–34]). If L is a linear
operator and f : R2 → R is smooth the action of L on f is then given by a matrix multiplication,
i.e. [

L f (x)
���
x=x1

L f (x)
���
x=x2

· · · L f (x)
���
x=xN

]T
≈ Df (3)

where

f =
[

f (x1) f (x2) · · · f (xN )

]T
. (4)

The N × N matrix operators are sparse2 as long as n � N (the number of nearest neighbors is
much less than the total number of points). They are also made smaller by leveraging problem
symmetries about x = 0 when populating the matrices. When the operator L acts on a function
f that is even about x = 0, then the entries of row k of the matrix operator are defined as

Deven
ki =



wk, j if xk, j ∈ SN and xk, j = xi

wk, j if xk, j ∈ S̃N and

−1 0

0 1

 xk, j = xi

0 otherwise

.

Likewise, if f exhibits odd symmetry about x = 0, then row k of D has entries

Dodd
ki =



wk, j if xk, j ∈ SN and xk, j = xi

−wk, j if xk, j ∈ S̃N and

−1 0

0 1

 xk, j = xi

0 otherwise

.

2with nN nonzero entries



After approximating the differential operators in the transverse direction (1) reduces to
d
dz

A(z, t) =
(

i
2kn0

Deven
∆

− αI
)

A(z, t) − ik(η0 − 1)T(z, t) � A(z, t), (5)

and (2) can be written
d
dt

u(z, t) = −
(
u(z, t) �

(
Dodd

x u(z, t)
)
+ v(z, t) �

(
Dodd

y u(z, t)
))
+ · · ·

Deven
x P(z, t) + 1

Re
Dodd
∆

u(z, t) (6a)

d
dt

v(z, t) = −
(
u(z, t) �

(
Deven

x v(z, t)
)
+ v(z, t) �

(
Deven

y v(z, t)
))
+ · · ·

Deven
y P(z, t) + 1

Re
Deven
∆

v(z, t) + RiT(z, t) (6b)

d
dt

T(z, t) = −
(
u(z, t) �

(
Deven

x T(z, t)
)
+ v(z, t) �

(
Deven

y T(z, t)
))
+ · · ·

1
Pe

Deven
∆

T(z, t) + StA(z, t)1, (6c)

System (6) uses the following discrete closure for the pressure, inherited from the continuous126

incompressibility condition,127

Deven
∆

P(z, t) =
(
Dodd

x u(z, t)
)
�

(
Dodd

x u(z, t)
)
+ u(z, t) �

(
Dodd

xx u(z, t)
)
+ · · ·(

Deven
x v(z, t)

)
�

(
Dodd

y u(z, t)
)
+ v(z, t) �

(
Dodd

xy u(z, t)
)
+ · · ·(

Deven
x v(z, t)

)
�

(
Dodd

y u(z, t)
)
+ u(z, t) �

(
Deven

xy v(z, t)
)
+ · · ·(

Deven
y v(z, t)

)
�

(
Deven

y v(z, t)
)
+ v(z, t) �

(
Deven

yy v(z, t)
)
− RiDeven

y T(z, t).

In system (6) and equation (7) the operators Dx , Dy and D∆ are the matrices that approximate the128

actions of ∂
∂x ,

∂
∂y and ∆, respectively. Here the operation � represents elementwise multiplication129

of two vectors, and u, v, T, A and P are defined using the notational convention of equation (4).130

The variables T and u are slowly varying with respect to z and relative to x and y allowing
for the independent of evolution of system (6) at a discrete set of points in {zi}Nz

i=1. The present
implementation solves system (6) at all values of zi , i = 1, 2, . . . , Nz , with one call to Matlab’s
ode113 with “RelTol” set to 10−3 and “AbsTol” set to 10−6. At each intermediate time step of
this adaptive Runge-Kutta method the closure for P(z, t) must be solved as well as (5) for A(z, t).
Equation (5) is also solved using Matlab’s ode113 with ’RelTol’ set to 10−3 and ’AbsTol’ set to
10−6. Since this method is adaptive and requires a value of T(z, t) at each intermediate step in z,
a cubic spline interpolant is constructed on the set T(zi, t), i = 1, 2, . . . , Nz , and evaluated at the
locations of z prescribed by the intermediate steps. In the present implementation “free slip"
boundary conditions are employed for the velocity. These conditions assume that at the boundary
the normal component of the velocity is zero, and that the normal derivative of the tangential
component is zero. For example, if Ω = [−L, L] × [−L, L], for L > 0, then at the right boundary
u = 0 and ∂

∂x v = 0. For the pressure at the boundary,

∇P · n = (u · ∇)u · n,

is enforced pointwise.131

4. Results and Discussion132

In this section we present the results of the numerical method, including comparison to the133

laboratory experiment.134



4.1. Cost of the Numerical Method135

Using an N point discretization, and n nearest neighbors to construct the RBF stencils, construction136

of each approximate differential operator requires O(n3N) operations, with n � N . This137

construction is “embarrassingly parallel" since the weights for the approximate derivative at138

each node can be computed independently. While we did not perform tests on parallel scaling139

here, the results on the scaling presented in [33] applies. The differential operators are sparse,140

with O(nN) nonzero entries, so that at each time step application of these operators through141

multiplication requires at most O(nN) operations. In the cases where a system of linear equations142

must be solved, e.g., when recovering the pressure from its closure, a precomputed sparse LU143

factorization is utilized to reduce the cost of obtaining the solution of the system of equations144

to O(nN). The propagation of the solution in time (and in the propagation direction, z, in the145

paraxial equation) is completed using MATLAB’s adaptive multi-step method (ode113). These146

adaptive methods have cost which grows with the eigenvalues of the differential equation. In147

this problem these eigenvalues grow when the refractive index n0, wavenumber k, or the number148

of spatial points are increased, leading to longer computational times. An example runtime is149

reported in section 4.3.150

4.2. Node Sets and Convergence151

To begin, the domain in the transverse direction is taken to be Ω =
{
x ∈ R2 : ‖x‖2 ≤ ρ

}
,152

corresponding to a cylindrical tube of radius ρ. The set SN is constructed by first dividing Ω153

radially into nr concentric circles where the innermost circle has radius 0–a single point–and the154

outermost has radius ρ. To determine these radii first choose r̃j , j = 1, 2, . . . , nr , to satisfy the155

conditions156

r̃j − r̃j−1 = R(r̃j, h) (7a)
r̃1 = 0 (7b)

r̃nr−1 ≤ ρ (7c)
r̃nr > ρ (7d)

where the function R : R × R→ R defines a desired node density at a given radius depending
on a desired (maximum) node spacing h. The solution to system (7) can be found by iteratively
increasing nr , starting at 2, and solving the equations (7a) and (7b) of (7) until (7c) and (7d) are
satisfied. The radii of the concentric circles are then defined to be rj =

r̃j
r̃nr

ρ. Since symmetry
about x = 0 is leveraged, the concentric circle with radius rj is parameterized by an angle
θ ∈

[
− π2 ,

π
2
]
. Discrete values of θ are chosen on this circle so that for l = 0, 1, 2, . . . , nθ j

θ jl = −
π

2
+ l

π

nθ j
,

where

nθ j =


π

2 sin−1
(
rj−rj−1

2rj

)  ,
ensuring that the points on the circle of radius rj are equally spaced in the 2-norm with spacing157

roughly equal to the difference between rj and rj−1. Here d·e denotes the ceiling operation. On each158

concentric circle we then define a set of points Xj =
{
xjl

}nθ j
l=0 , with xjl = rj

[
cos θ jl sin θ jl

]T
,159

and take SN =
nr⋃
j=1

Xj . Two such nodes sets are illustrated in the left two frames of figure 1 for160

different choices of R and with h = 0.75 and ρ = 15.161



Fig. 1. Left two frames: Two sets SN generated using the method described in section
4 with h = 0.75, ρ = 15 and R(r, h) as indicated. Right frame: The first two node
sets used for assessing convergence of the present algorithm with refinement in the
transverse direction.

Since the method utilized for propagation in t and z is adaptive, solutions were computed for
small t and z to assess convergence of the algorithm described in the previous section relative
to the typical spacing between points in the transverse direction. Using the node generation
method just described, with h = 1.5, ρ = 15 and R(r, h) = h, a nearly uniformly spaced set
of nodes was generated and the solution to (6) was computed at z = 1 and t = 0.0001 with
the physical parameter choices given at the beginning of the next section. Parameter choices
for the numerical method were φ(r) = r7, m = 7, n = 90 Denote the radii of the concentric
circles generated in this initial case by r (0)j , j = 1, 2, . . . , n(0)r , and call the set of nodes generated
SN (0) . Let p = 1, 2, . . . and from SN (0) new sets of radii are generated recursively such that

r (p)2j =
r
(p−1)
j +r

(p−1)
j+1

2 , j = 1, 2, . . . , n(p−1)
r − 1, and r (p)2j−1 = r (p−1)

j , j = 1, 2, . . . , n(p)r . The number
of radii in each new set is then n(p)r = 2n(p−1)

r − 1. Likewise, on the concentric circle of radius
r (p)2j−1 = r (p−1)

j the number relating to the discrete values of θ is increased so that n(p)θ j = 2n(p−1)
θ j

and the values the new angles are given by θ(p)
j(2l) = θ

(p−1)
jl

= π
2 + (2l) π

n
(p)
θ j

, l = 0, 2, . . . , n(p−1)
θ j

, and

θ
(p)

j(2l+1) =
π
2 + (2l + 1) π

n
(p)
θ j

, l = 0, 2, . . . , n(p−1)
θ j
− 1. On the concentric circles of radius r (p)2j , those

that do not correspond to radii in the set {r (p−1)
j }

n
(p−1)
r

j=1 , the discrete values of θ and resulting set
X (p)2j are defined as in the previous paragraph. Defining a set of nodes, SN (p) , from these new
radii and angles guarantees that it contains SN (p−1) while cutting the node spacing roughly in half.
An illustration of SN (0) and SN (1) is given in the right frame of figure 1. After generating the node
set SN (p) , the solution to system (6) is again computed at z = 1 and t = 0.0001, and the absolute
difference is computed at each point in both discretizations, SN (p−1)

⋂
SN (p) . The maximum of

the difference in the solutions at the points in SN (p−1) at each iteration of this process is shown
against the largest distance between a node and its nearest neighbor for each consecutive set
SN (p) . That is, figure 2 illustrates the largest absolute difference in the solutions computed on the



Fig. 2. An illustration of the convergence of the numerical method described in section
3 relative to the typical spacing between nodes in the transverse direction to the laser
propagation. A convergence rate of roughly O

(
(h(p))7

)
is achieved, consistent with

theoretical predictions.

sets SN (p−1) and SN (p) for points in SN (p−1)
⋂
SN (p) is plotted against

h(p) = max
xi ∈SN (p)

min
x ∈ SN (p)

x , xi

‖x − xi ‖2.

The figure illustrates a convergence rate of O
(
(h(p))7

)
, which corresponds to the choice of m = 7162

and is consistent with the theoretical predictions in, for instance, [35].163

4.3. Comparison of Simulation and Experiment164

The numerical method described in section 3 was applied with the parameter choices: k =165

5872.1358, η0 = 1.0005 and η0 = 1.5, α = 3 × 10−4, St = 0.19, Ri = 981, Re = 6.67 and166

Pe = 5. The node set used in the transverse direction was generated with node density based167

on R(r, h) = h
2 +

h
4

(
tanh

(
10

(
r
ρ −

1
2

))
+ 1

)
, as in the center frame of figure 1, with h = 0.1 for168

η0 = 1.0005 and h = 0.05 for η0 = 1.5. A sequence of solutions at z = 100 and for each choice of169

eta0, three values of t were chosen to imitate the behavior of the experimental images in the first170

row of frames in figure 3, with the sequence of solutions shown in the middle and bottom rows.171

Solutions were computed on a workstation with two Intelr Xeonr CPU E5-2697 v3 processors,172

each running at 2.60GHz, and 256 GB of memory running MATLAB R2022b. The wall clock173

times required to compute the solutions for η0 = 1.0005 and η0 = 1.5 were roughly 41389 and174

84927 seconds, respectively.175

In figure 3 both the experimental measurements (top row) and numerical simulations (middle176

and bottom rows) experience laser induced convective thermal blooming. All spots have increased177

in diameter and developed a crescent shape due to the buoyancy driven fluid flow (the crescent’s178



Fig. 3. Top Row: Photographs of the beam spot from the laboratory experiment at a
sequence of times. Middle Row: Numerical simulations of the beam spot at estimated
times (t = 0, 0.4, and 0.42) and distances (z = 100), with an estimated α = 0.0003 and
η0 = 1.0005. Bottom Row: Numerical simulations of the beam spot at estimated times
(t = 0, 0.375, and 0.46) and distances (z = 100), with an estimated α = 0.0003 and
η0 = 1.5.



orientation dictated by gravity). The numerical simulation begins with perfectly quiescent179

atmosphere without temperature fluctuation. Neither of these are possible experimentally (small180

temperature fluctuations and velocity currents cannot be fully removed even in a closed tank).181

These initial fluctuations in the temperature and velocity account for some of the differences182

between the two figures (e.g. scintillation). The addition of the initial background fluctuations to183

the simulation would require both changes to the numerical method (which interpolates the fluid184

parameters in the propagation direction) as well as a choice of initial fluctuations which were not185

measured experimentally. Additionally, we do not numerically simulate, nor model, the camera186

(so speckle and frame rate are additional sources of difference). We believe the framerate to be187

unimportant due to the timescale of the problem (if we numerically average our simulation over a188

framerate of 60Hz, the pictures in figure 3 are not visibly different). Given that the absorption189

was not measured in the experiment, and no iterative refinement of the estimated value for α190

based on the output of the numerics was undertaken3, we find the agreement between the figures191

to be excellent.192

5. Conclusion193

Numerical simulations of a high energy laser in an absorbing medium was presented. The194

parameter regime included laser induced thermal blooming, with crescent formation. An RBF195

based spatial differencing method, which allows for irregular point spacings and a wide class196

of geometries was developed and applied to the the laser-fluid model of [1]. Good agreement197

between experiment and numerical simulation were observed, given the limitations of the model198

equation.199
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