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Abstract. Traveling gravity-capillary water waves on the interface of a three-dimensional fluid of
infinite depth are computed. The vortex sheet formulation with the small scale approximation is used
as the mathematical model for the fluid motion. The fluid interface is parameterized isothermally.
The traveling wave ansatz for parameterized surfaces is described. Waves are computed using Fourier
collocation and quasi-Newton iteration; large amplitude overturned traveling waves are computed
via a dimension-breaking based numerical continuation method.
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1. Introduction
We study periodic waves of the interface between two constant-density fluids

undergoing irrotational motions. The fluid regions are infinitely deep in the vertical
direction and periodic in the horizontal direction. We seek traveling wave solutions,
in which the free surface is of permanent form and steadily translating. This study is
fundamentally concerned with waves on a two-dimensional interface, between three-
dimensional fluids, which may have overhanging crests (or troughs).

It is the understanding of the authors that no study has been conducted for fully
three-dimensional water waves which are both overturned and traveling. A number
of studies have considered overturning in the time dependent problem, for example
[1, 2, 3, 4, 5, 6, 7] with a review in [8]. There are also numerous computations of
permanent three-dimensional waves (both traveling and standing waves) in which the
interface is parameterized by the horizontal coordinates, for example [9, 10, 11, 12, 13,
14]. There have been studies of axisymmetric three-dimensional overturned traveling
waves in fluid jets, where such symmetry is natural [15, 16, 17].

The reasons for the absence of previous work on three-dimensional overturned
traveling waves are two-fold. First, one must have a three-dimensional formulation
of the problem which allows for traveling waves which are overturning. Conformal
mappings are by far the most popular technique for the two-dimensional problem, but
do not generalize to three-dimensions. In a recent work, the first author and collab-
orators have developed a formulation which extends to three-dimensions and allows
for the computation of traveling waves on interfaces with arbitrary parameterizations
[18]. It is in this formulation that this paper proceeds to three-dimensions. The need
for such parametric formulations of the water wave problem is not unknown. Alterna-
tively to the track taken here, Bridges and Dias proposed a Hamiltonian formulation
which allows for arbitrary interface parameterizations [19].

The second reason for the lack of computations of overhanging three-dimensional
traveling waves is the extreme expense of the computation itself, as will be discussed
explicitly here, and is reviewed in [8]. In this work, the extreme cost will be partially
ameliorated via the use of an approximate model, called the small-scale approxima-
tion, proposed in [20] and later used in [21]. The approximation allows the most
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2 Overturned 3D Traveling Waves

Fig. 1.1. The extreme water wave on branches of traveling waves at two different Bond numbers
in a two-dimensional fluid are depicted. Left: The large amplitude limit of traveling waves with
σ= 1/8 is a self-intersecting profile. Right: The steepest wave for σ=−1/10. The left panel was
computed with Ma = 512 points, the right panel with Ma = 128. The increased resolution on the left
is to resolve the extreme curvature within the bubble. In both panels the inset figures show close-ups
of the overturned portion of the wave, with grid-points marked with circles.

costly part of the computation, the evaluation of the Birkhoff-Rott integral, to be
computed via fast Fourier transforms. The small scale approximation, although exact
in the small-amplitude limit, is not based on a small-amplitude assumption, and will
be used here to compute large amplitude three-dimensional traveling waves, including
those with overturned crests and troughs.

For two-dimensional fluids, a significant amount of work has been done in the
study of both dynamic and steady overturned waves. We will not try to review them
all here. Most relevant to this work are the exact traveling solutions of Crapper [22]
and the numerically computed waves of Meiron and Saffman [23], as these two waves
are qualitatively similar to the cross-sections of the three-dimensional waves computed
here. This paper also is an outgrowth of a number of recent two-dimensional studies
by one of the authors. The traveling wave ansatz developed in [18] has since been
used extensively to compute two-dimensional overturning traveling waves [24, 25].

The remainder of the paper is organized as follows. In section 2 we present the
vortex sheet formulation of the potential flow equations, the small scale approximation
to the Birkhoff-Rott equations, and the traveling wave ansatz. These three ingredi-
ents combine to give the system of equations which are solved for three-dimensional
traveling waves. In section 3 we present the numerical procedure used to compute
traveling waves as well as the numerical results. This third section includes an example
of an overturned three-dimensional traveling wave and discussion of the dimension-
breaking continuation procedure used to compute three-dimensional waves. In section
4 we summarize our results and present future research avenues.

2. Formulation In this work we compute three-dimensional traveling waves
in a model for the interface between two-fluids. In particular, we are interested in
the case where the fluid interface is overturned, that is, where the vertical displace-
ment is not a function of horizontal cartesian coordinates. To compute such three-
dimensional overturning waves, we will represent the interface as a parameterized
surface ~X(α,β,t) = (x1(α,β,t),x2(α,β,t),x3(α,β,t)). Following Ambrose, Siegel and
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Tlupova, [1], we will enforce that this parameterization is isothermal, i.e. that

~Xα · ~Xβ = 0, and G≡‖ ~Xα‖2 =λ‖ ~Xβ‖2≡λE. (2.1)

with

λ=

∫ ∫
G dαdβ∫ ∫
E dαdβ

We will think of λ as a constant specified at the beginning, describing the aspect ratio
of the parameterization (or how much longer the wave is in α than in β). We choose
to set λ= 1, so that G=E. We set the ranges for α and β to be equal to the period
of the wave in the corresponding horizontal coordinates, that is

x1(α+P1,β) =x1(α,β)+P1, and x2(α,β+P2) =x2(α,β)+P2.

Numerically we will take x1 =α+ x̃1 and x2 =β+ x̃2 where the x̃j are periodic correc-
tions, which are more amenable to our Fourier-collocation based numerical method.

Useful in this parameterization are the second fundamental forms

L= ~Xα,α · n̂, and N = ~Xβ,β · n̂.

In terms of which the mean curvature can be expressed as

κ=
Lλ+N

2λE
.

The isothermal parameterization is the three-dimensional analogy to the ar-
clength parameterization used in [18, 24]. The fluid velocity, ~W , is given in terms of
a Birkhoff-Rott integral,

~W ( ~X) =
1

4π

∑
n∈Z

∑
m∈Z

P.V.

∫ ∫
(µ′α ~X

′
β−µ′β ~X ′α)× ( ~X− ~X ′−nP1e1−mP2e2)∣∣∣ ~X− ~X ′−nP1e1−mP2e2

∣∣∣3 dα′ dβ′.
(2.2)

in which all the primed quantities are evaluated at (α′,β′). The parameter P1 is the
period of the wave in the first horizontal coordinate, x1, and P2 is the period of the
wave in the second horizontal coordinate, x2. This integral is notoriously difficult
to simulate, see [1], and will here be replaced by the small scale approximation of
[20, 21]. This approximation takes

W ≈ 1

2
Hα

[
µαXβ×Xα

E
3
2

]
− 1

2
Hβ

[
µβXα×Xβ

E
3
2

]
which captures the near-singular behavior of the integral and avoids the significant
difficulties associated with computing the Birkhoff-Rott integral, see, for example,
Beale’s discussion of the convergence of this integral [26]. The operators Hα and
Hβ are the Riesz transforms. The Riesz transforms are diagonalized by the Fourier
transform, and have multiplicative Fourier symbols,

Ĥαf(k) =−i k1√
k21 +k22

f̂ , and Ĥβf(k) =−i k2√
k21 +k22

f̂ .
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The ki are the components of the Fourier wave vector ~k. One can also express the
Riesz transforms in terms of differential operators as

Hα=−∂α
(
−∂2α−∂2β

)−1/2
and Hβ =−∂β

(
−∂2α−∂2β

)−1/2
.

A study of the overturning waves with the full Birkhoff-Rott integral using the algo-
rithm of Siegel and colleagues [1] is being pursued separately.

The Bernoulli equation for the evolution of the vortex sheet strength is

µt= τκ+

(
µα√
E

(V1−W · t̂1)+
µβ√
E

(V2−W · t̂2)

)
+At

(
|W |2 +2W · t̂1(V1−W · t̂1)+2W · t̂2(V2−W · t̂2)−

µ2
α+µ2

β

4E
−gx3

)
(2.3)

This equation is presented for a parameterization with λ= 1, so that G=E. Here Vj
are the tangential components of the velocity of the interface in our parameterization,
not to be confused with W · t̂j, the velocity of fluid particles on the interface. The
parameter τ is the surface tension coefficient, g is gravity, and At = ρ1−ρ2

ρ1+ρ2
is the

Atwood ratio, comparing the densities of the upper and lower fluids with densities of
ρ2ρ1, respectively.

The kinematic equation for the interface is

~Xt=U n̂+V1t̂1 +V2t̂2 (2.4)

where U is the the physical normal velocity to the interface and Vj are chosen to
preserve the isothermal parameterization. For a general interface motion, to preserve
an isothermal parameterization requires that the Vj solve an elliptic equation, as dis-
cussed in [1]. For steadily translating interfaces, as is the case for traveling waves, the
Vj can be determined by the kinematic condition (2.4) coupled with the prescription
that the interface is traveling in the x1-direction, Xt= (c,0,0), yielding c

0
0

=

 n̂ t̂1 t̂2

 U
V1
V2

.
If one considers the speed c, and interface location X to be known, then U and Vj are
specified

Vj = c(̂tj)1, and U = c(n̂)1. (2.5)

The notation (̂tj)i refers to the ith entry of tangent vector j.

From the perspective of the kinematic equation, any interface shape is allowable,
so long as the velocity of the interface is coupled to the shape by (2.5). If one chooses,
as we will here, to parameterize in a frame moving with the wave, then the interface
shape is independent of time. A sufficient condition for traveling waves in such a frame
is that the vortex sheet strength has µt= 0. The coupling of µt= 0 and (2.5), play
the role of the traveling wave ansatz in this formulation. Combining this ansatz with
equation (2.3) under an isothermal parameterization gives the equations for traveling
waves.
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To compute a traveling wave requires finding four functions x1,x2,x3, and µ as
well as a speed c, which solve four equations,

0 = τκ+
1√
E

(Ṽ ·∇)µ+At

(
|W |2 +2W · t̂1Ṽ1 +2W · t̂2Ṽ2−

1

4E
|∇µ|2−gx3

)
, (2.6a)

0 = c(n̂)1−W · n̂, (2.6b)

0 =Xα ·Xβ , (2.6c)

0 =G−λE, (2.6d)

in which Ṽj = c(̂tj)1−W · t̂j, and Ṽ= (Ṽ1,Ṽ2). We append another equation fixing the
wave amplitude to close the system. The measure of wave amplitude will vary in
our numerical method. For the results in the following section we alternately use the
crest height, total displacement, and the amplitude of a Fourier mode of the third
coordinate.

3. Results and Discussion The numerical method used is a combination of
Fourier collocation and a quasi-Newton iteration, similar to those used in [18, 27, 28].
The unknown functions x1,x2,x3, and µ are all real functions of two parametric
variables α and β. We compute both planar waves, which are constant in the direction
transverse to propagation, and fully three-dimensional waves, which depend non-
trivially on both α and β.

To compute overturned fully three-dimensional waves, we use a dimension-
breaking approach. First a branch of traveling planar waves (trivial dependence
in β) are computed. Because these waves do not depend on β, one needs only to
compute the profile at a single location. This dimension reduction makes comput-
ing large amplitude planar waves significantly less expensive than computing fully
three-dimensional branches of traveling waves. Next, branches of waves with non-
trivial β dependence are computed as bifurcations from the branch of planar waves.
These waves have transverse (β direction) periodicity which depends on the amplitude
from which they bifurcate. The numerical cost to compute such waves is significantly
greater than the planar waves, however since one can pay the planar cost to reach
large amplitude, we are able to compute well resolved, large amplitude, overturned,
fully three-dimensional waves. An example of the dimension breaking bifurcation is
depicted in figure 3.1.

The fully three-dimensional Fourier collocation begins with Ma points in α and
Mb points in β, where (α,β)∈

[
− 1

2P1,
1
2P1

)
×
[
− 1

2P2,
1
2P2

)
. Thus direct projection

of the these functions onto Fourier modes would yield 4MaMb unknowns. Problem
symmetries allow for this number to be reduced significantly.

The number of unknowns are reduced via the folllowing sequence of arguments.
The solutions sought are real functions, therefore one needs only compute the Fourier
coefficients in one quadrant of Fourier space. Second, symmetries allow for one to
look for x3(α,β) which is doubly even (in both α and β) and µ(α,β) which is odd
in α and even in β. Similarly we seek x1(α,β) which is odd in β and even in α, and
x2(α,β) which is even in α and odd in β. The last two are simply choices of how the
parametric variables α and β are aligned with respect to the horizontal coordinates
x1 and x2. These parity choices allow one to compute Fourier coefficients which are
either pure real (if the function is even in both variables) or pure imaginary (if the
function is even in one variable and odd in the other). Many of the spatial averages of
these functions need not be solved for; odd functions have zero spatial means. The end
result is that to compute a traveling wave one must solve for MaMb−Mb− 1

2Ma+1
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Fig. 3.1. The dimension breaking bifurcation of traveling waves solutions to equations (2.6) is
depicted in the speed, c, and total displacement, h= max(z)−min(z), plane. The waves bifurcate
from a planar wave with Bond number σ= 1/8, whose speed-amplitude curve is marked with the
dashed curve in the left panel. The secondary, dimension-breaking bifurcations occur at different
amplitudes depending on the transverse period (the secondary bifurcation’s speed-amplitude curves
are marked with arrows at their tips). Notice that there is closed loop, representing a “return to
trivial” global bifurcation, a close-up of this loop is inset. An example genuinely three-dimensional
profile, marked with the star in the left panel, is depicted in the right panel.

Fourier coefficients (as well as the speed c).

The system of equations we solve are the projection of equations (2.6) into Fourier
space. For (x,µ) with the above described parity, the equations support similar sym-
metries and give the same number of non-trivial Fourier coefficients as the equations.
We couple to this system an equation specifying the size of the traveling wave to close
the system. This last equation is used as our continuation parameter, the choice of
which will vary along a branch of traveling waves. For small amplitude we use the
total displacement h= max(x3)−min(x3). For large amplitude we sometimes observe
turning points, where the branch has a locally maximal displacement, in which case
we switch to another measure of the wave size, for example a Fourier coefficient of x3.

The primary numerical cost in computing traveling waves is the filling (and stor-
ing) of the approximation of the Jacobian in the quasi-Newton solver. We ameliorate
this to some extent via Broyden’s update [29], and by re-using Jacobian’s during
the continuation procedure. This does not avoid the expense of storing large Jaco-
bian matrices. The highest resolution wave computed had Ma= 128 and Mb= 256;
at this resolution the Jacobian is 32450×32450, which in IEEE type double costs
8.4GB just to store. Rather than push the computational limits of our machine, we
have chosen to present only waves which are very regular. This allows for highly
resolved computations at a relatively small number of points (see figure 3.4, which
has Ma= 128,Mb= 32). The computations done at this resolution are numerically
exact at small amplitude, and have errors smaller than visible graphically at large
amplitude. Figure 3.2 presents evidence of the convergence of the numerical method
at relatively large amplitude.

For this first work on overturned traveling waves, the small-scale approximation
to the Birkhoff-Rott integral is employed. This reduces the cost of computing W to
O(MaMblog(MaMb)). Simulation of the full Birkhoff-Rott integral is possible, but
significantly more complicated, and is being pursued separately. The difficulty of
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Fig. 3.2. Left: A relatively large amplitude wave,h= 4.23, used for the convergence study on
the right. This wave has At= 1,g=−0.1,τ = 2. At larger amplitude and transverse variation this
wave overturns, and is depicted in figure 3.4. Right: The Cauchy error of the computed wave speed,
|c(Mb)−c(2Mb)|, is plotted as a function of points in the β coordinate Mb (marked with circles).
The number of points in the α direction is fixed at Ma = 256. The solid line is O(M−2

b ).

simulating the Birkhoff-Rott integral for three-dimensional fluids is well known [11].
A modern fast technique is that of Siegel and colleagues [1] which combines Ewald
summation, matched near-field and far field expansions and a tree code, in the spirit
of the “Fast Multipole Method” [5, 30].

The computations here are based on a quasi-Newton iteration, thus they require
initial guesses. For small amplitude, it is natural to use a Stokes’ expansion to com-
pute one traveling wave, and then compute larger amplitude waves via numerical
continuation. This approach is numerically costly, as one must pay the cost of com-
puting a fully three-dimensional wave at every amplitude along the branch of traveling
waves. We take an alternate tactic, following dimension breaking bifurcations from a
planar (two-dimensional) traveling wave.

To compute three-dimensional bifurcations from a planar wave, our computations
begin with a planar solution

x1 = x̃1(α), x2 =β, x3 = x̃3(α), and µ= µ̃(α). (3.1)

A small spatial variation in the transverse direction is then added to the planar
solution, and the perturbed wave is used as an initial guess for three-dimensional
traveling wave. The initial guesses used here are exactly the planar solutions in the
x1 and x2 coordinates, from (3.1). For the displacement and vortex sheet strength,
we add small transverse dependence of period P2,

x3 = x̃3(α)

(
1+δcos

(
2π

P2
β

))
, and µ= µ̃(α)

(
1+δcos

(
2π

P2
β

))
. (3.2)

In (3.2) the parameter δ is a small constant, we used δ= 0.005. The ansatz (3.2) is
not always close to a genuinely three-dimensional traveling wave. We observe a single
period at each displacement of planar waves P2 =P2(h) for which (3.2) approximates
a three-dimensional wave. In order to find dimension breaking bifurcations one must
guess one such period, along with all the other unknowns. After a successful guess,
continuation is used to find larger amplitude, fully three-dimensional waves.
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Fig. 3.3. A three-dimensional traveling wave which bifurcates from a planar wave at small am-
plitude. As is typical for small amplitude planar waves, the transverse period of the three-dimensional
bifurcation is large, here P2 = 30π, where P1 = 2π. This wave was computed with At= 1,τ = 2,g= 2,
with Ma = 128 and Mb = 256.

A significant challenge in this procedure is guessing the transverse period, P2,
at which the bifurcations occur. We observed that the periods are largest at small
amplitude. In figure 3.1, we present a branch of planar waves, and a sequence of
dimension-breaking bifurcations. Each of these secondary bifurcations have their own
transverse period, and appear as solid curves tipped with arrows in figure 3.1. We
computed only a sampling of periods, the period P2 is observed to be continuous in
h; more secondary bifurcations exist between our sampling.

To compute our sampling of dimension breaking bifurcations, we begin by guess-
ing a large period at small amplitude. The small amplitude wave profiles at different
periods are similar, and serve as a good initial guesses for nearby periods; the small
amplitude case is numerically more forgiving with respect to poor guesses in P2. An
example of a fully three-dimensional wave at small amplitude, with large transverse
period, is in figure 3.3. The planar wave from which figure 3.3 bifurcates is a classic
Wilton ripple - in the small amplitude limit the wave resonates with its second har-
monic, see [31, 32]. After a single three-dimensional wave is found using (3.2), we use
numerical continuation (in ∂βx3 at a point) to compute branches of three-dimensional
waves.

To compute three-dimensional traveling waves which bifurcate from larger ampli-
tudes, we use the numerical continuation to follow the period dependence on ampli-
tude, P2 =P2(h). That is, we use the period from one amplitude dimension breaking
bifurcation as a starting point to search for the period of the next larger amplitude
dimension breaking bifurcation. At all amplitudes we use the ansatz (3.2) for the
displacement and vortex sheet strength of the first fully three-dimensional wave on a
branch.

The guess (3.2) is ad-hoc, not based on formal asymptotics. We would prefer
to have an explicit formula for waves which are weakly varying in the transverse
direction, as in [33]; however, we believe such a solution is impossible to find, as
it would require solving a linear non-constant coefficient PDE whose coefficients are
only known numerically. The absence of such an asymptotic formula results in regions
of parameter space where our initial guess (3.2) is not good enough to compute the
dimension breaking bifurcations. That being said, we were able to compute dimension
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breaking along the entire branch of planar traveling waves in many configurations.
One such configuration is depicted in figure 3.1, in which we compute dimension
breaking bifurcations from a planar wave with σ= 1/8.

Generally we computed only small departures from the planar traveling waves,
i.e. the local bifurcation structure. We did observe a case where the global bifurcation
was also a small departure from planar. In the left panel of figure 3.1, observe the
second and third to largest reported dimension-breaking bifurcations merge. These
two bifurcations thus form the “return to trivial” global bifurcation. This phenomenon
occurs in the two-dimensional setting as well, and is described in case (e) of the global
bifurcation theorem of [34] and was numerically computed in [25].

In one space dimension there are two qualitatively different types of overturned
traveling water waves. The first resemble the Crapper’s wave, see the left panel
of figure 1.1, which limits on an enclosed bubble and has large curvature in the
neighborhood of this bubble. The second resembles the waves computed by Meiron
and Saffman [23] and are more regular, see the right panel of figure 1.1. Numerically,
the latter requires many fewer points to resolve; the planar wave has Fourier modes
decaying to machine precision right at wave number k= 32 (corresponding to Ma=
64). In this work, we compute dimension breaking bifurcations near planar waves at
two Bond numbers σ= g

k2τ , here k is the typical wave number of the planar wave based
on its longitudinal period. The planar waves with σ= 1/8 resemble that of Crapper.
The planar waves with σ=−1/10 resemble the waves of Meiron and Saffman.

An example of an overturned three-dimensional traveling wave is depicted in
figure 3.4. This wave was computed via dimension breaking numerical continuation
from a planar wave σ=−1/10. In this configuration the overturned planar wave
is very regular (see the right panel of figure 1.1). Three-dimensional traveling waves
were also computed via dimension breaking numerical continuation from planar waves
with σ= 1/8. In the latter configuration we computed a number of dimension-breaking
bifurcations, see figure 3.1. The waves computed in this figure all have interfaces which
are functions of the horizontal cartesian coordinates. In this case the overturned waves
require significantly more points to resolve, and we were only able to resolve waves
whose interfaces did not overturn.

Although we believe that there are fully three-dimensional overturned traveling
waves at generic Bond numbers, bifurcations from waves with narrow bubbles (i.e.
Crapper-like) require too many points for our current capabilities. Numerically we
see evidence that overturned traveling waves exist in this setting, but we are only able
to compute their under-resolved approximations. We are currently pursuing a study
of overturned three-dimensional traveling waves in this more expensive case, as well
as computing full Birkhoff-Rott integral, rather than its small scale approximation,
using the Air Force Research Laboratory’s supercomputing resource center [35].

4. Conclusion Fully three-dimensional overhanging traveling waves are com-
puted in the vortex sheet equations for water waves with surface tension. The small-
scale approximation is used in the Birkhoff-Rott integral for the velocity field. A
traveling wave ansatz for parameterized surfaces is presented. Large amplitude over-
hanging waves are computed via dimension-breaking continuation from planar trav-
eling waves. Future research directions include computing these waves with the full
Birkhoff-Rott integral, instead of the small scale approximation. Also desirable would
be parameter space explorations, computing overturned traveling waves with fine
structure, as would be the case for three-dimensional bifurcations from Crapper’s
wave. It is also natural to question as to whether any of these waves are stable to
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Fig. 3.4. An overturned fully three-dimensional traveling wave solution to (2.6), using the
small-scale approximation to the Birkhoff-Rott integral. This wave was computed with At= 1,τ =
2,g=−0.2, with Ma = 128 and Mb = 32. In the left panel is the three-dimensional surface, in the
right panel is a close-up of a slice at y=−π/2. In the close-up on the right, the grid-points are
marked with solid circles.

perturbations, and should they be unstable, how instabilities manifest in the time-
dependent problem.
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