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Abstract

The six Painlevé equations were introduced over a century ago, motivated
by rather theoretical considerations. Over the last several decades, these
equations and their solutions, known as the Painlevé transcendents, have
been found to play an increasingly central role in numerous areas of math-
ematical physics. Due to extensive dense pole fields in the complex plane,
their numerical evaluation remained challenging until the recent introduction
of a fast ‘pole field solver’ (Fornberg and Weideman, J. Comp. Phys. 230
(2011), 5957-5973). The fourth Painlevé equation has two free parameters in
its coefficients, as well as two free initial conditions. After summarizing key
analytical results for PIV , the present study applies this new computational
tool to the fundamental domain and a surrounding region of the parameter
space. We confirm existing analytic and asymptotic knowledge about the
equation, and also explore solution regimes which have not been described
in the previous literature.
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1. Introduction

With the increasing presence of the Painlevé equations in the reduction
of partial differential equations (PDEs) [1, 2, 3, 4] and the subjects of combi-
natorics [5, 6, 7], orthogonal polynomials [8, 9, 10, 11, 12], statistical physics
[13, 14, 15, 16, 17, 18], integrable continuous dynamical systems [19, 20] and
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quantum physics [21, 22, 23, 24] a greater understanding of the solution space
for each of the six equations is important. A collection of applications spe-
cific to the PIV equation is presented in [25]. In the past, solutions that are
pole free along the real axis have proven to be particularly relevant. As a
resource for the future, one present goal has been to identify such cases, as
well as those with pole free sectors in the complex-plane, throughout the PIV

equations four-parameter solution space.
The solutions of the six Painlevé equations (PI-PV I) are free from movable

branch points, but with the possibility of movable poles or movable isolated
essential singularities ([26], section 32.2). This Painlevé property inspired
the introduction of a novel numerical approach [27]–combining a Padé based
ODE solver [28] with a partly randomized integration path strategy–that
allowed for the first time rapid numerical solutions of the Painlevé equations
over extended regions in the complex plane. It was first used for PI [27] and
later for PII [29]. It was then applied to the fourth Painlevé equation
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in the special case of α = β = 0 [30]. As in these three previous numerical
studies, computational explorations in this paper are limited to solutions u(z)
that are real when z is real, although some of the presented theory includes
solutions that are not always real on the real axis.

For a small portion of the two-dimensional (α,β)-parameter space there
exist examples of solutions expressible as rational functions or in terms of
special functions, such as the parabolic cylinder function. These well docu-
mented solutions appear, however, as only isolated points or one-parameter
families in the four-dimensional space of parameters and initial conditions
(ICs). Much of the present study is focused on the distribution of singular-
ities for solutions to (1). These are all first order poles with residue +1 or
-1.

The solutions presented in this paper are parameterized by α, β and the
values for u(0) and u′(0). Another way to parameterize the solution space
is through four “Stokes multipliers”, which provides a link between the PIV

equation and a certain Riemann-Hilbert problem [31, 32, 33, 34, 35]. This
approach is particularly well suited for analytical work such as connection
formulas and far-field asymptotics. Distant pole field structures can also
be approximated via suitable transformations [36, 37] (however, the present
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focus is more on pole-free regions). The two parameterization approaches
can be related to each other utilizing, for instance, the software RHPackage
[38] to solve the Riemann-Hilbert problem (given a set of Stokes multipliers
and parameters to define α and β) to determine the corresponding set of
values for u(0) and u′(0).

1.1. Organization of the paper

Section 2 recalls some available theory, including symmetries in PIV and
different solution transformations. Section 3 discusses closed form solutions
of PIV , in particular solutions in terms of rational and elementary special
functions and also the asymptotic behaviors presented in the literature. This
is followed in section 4 by the numerical approach used here to explore the
much larger space of solutions for which no closed form solutions are avail-
able. Sections 5 and 6 describe such explorations of the parameter and solu-
tion spaces, first highlighting the “fundamental domain” and then extending
into inspections of the previously unexplored region of β > 0, for which no
instances of closed form solutions or transformations have been reported.

2. Symmetries and Solution Hierarchies

This section describes the known symmetries in the PIV equation and
transformations that relate solutions for different parameter choices.

2.1. Symmetries in the Equation

Let PIV (α, β) be the set of all solutions of (1) for the particular α and β.
Direct inspection of (1) shows that if u(z) ∈ PIV (α, β), then [39]

−u(−z) ∈ PIV (α, β), (2)

−iu(−iz) ∈ PIV (−α, β), and (3)

iu(iz) ∈ PIV (−α, β). (4)

Incidentally the first of these symmetries also holds for PIII (for all param-
eter choices), but never for any of the other Painlevé equations. Due to
these symmetries, any solution presented in this paper has at least one other
counterpart for the same choice of α and β.

3



2.2. The Bäcklund and Schlesinger Transformations

The equations PII through PV I have collections of transformations relat-
ing solutions for given parameters to those of different choices. For instance,
[39, 40, 41, 42] collectively present sixteen such transformations for PIV .
Some of these transformations were not always presented correctly. Updated
expressions along with computational verification of their forms can be found
in [43].

3. Closed Form Solutions and Asymptotic Approximations

Before discussing the closed form solutions presented in the literature, we
note again that these at most form two dimensional manifolds in the four
dimensional solution space. That is, they provide a very limited view of the
solution types that are possible.

3.1. Rational Solutions

The PIV equation has six different sequences of parameter choices leading
to rational solutions expressible in terms of either Generalized Hermite or
Generalized Okamoto polynomials [44], with two particular choices leading
to the only known entire solutions, −2z and −(2/3)z. The locations of the
parameter choices in the (α,β)-plane leading to such solutions are shown in
figure 1 as dark (blue) and light (yellow) hexagrams for Generalized Hermite
and Generalized Okamoto polynomials, respectively.

3.2. Special Function Solutions

In addition to the rational solutions, PIV admits solutions that are de-
scribed by combinations of special functions, cf. [26], chapters 12 and 13.
This includes solutions expressible in terms of parabolic cylinder functions,
Dν(ζ) [5, 45], and, as discovered more recently, solutions in terms of the
confluent hypergeometric function, 1F1(a, b; ζ), [23, 24]. In either case, for
each of the appropriate choices of α and β there is a one parameter family
of solutions that are expressible in terms of these special functions. Figure 1
displays the locations of all such parameter choices as black curves.

Three distinct types of solutions have been proposed in the form of de-
terminants involving parabolic cylinder functions [5, 45]. However, only one
of these expressions has been confirmed numerically [43].
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3.3. Asymptotic Approximations

Beyond the known closed form solutions, it is noted in [26], section 32.11,
that when β = 0, there are solutions that decay asymptotically along the real
axis either as z → +∞ or z → −∞. These solutions result from assuming
that the second derivative term in (1) is negligible.

When assuming instead that both the first and second derivative terms
in (1) are neglible, the method of dominant balance (see, e.g., [46], Section
3.4) leads to the quartic equation

3

2
ŵ(z)4 + 4zŵ(z)3 + 2(z2 − α)ŵ(z)2 + β = 0. (5)

Each root of (5) provides a leading asymptotic term for solutions that are
smooth as z → ±∞. Any number of further terms then follow by substitution
into (1). For instance, (6) through (9) illustrate the first two terms.
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Solutions matching these behaviors as z → +∞ and z ∈ R do not oscillate
and are free from poles for all z ∈ R greater than some finite value z0 ∈ R.
No other such solutions were observed in the numerical explorations. An
analogous statement could be made as z → −∞ by the symmetry (2). With
the assumption u(z) ∈ R for z ∈ R, only the latter two are available as
asymptotic approximations when β > 0. Later in this paper, ICs leading
to solutions matching (6)-(9) as z → +∞ will be marked in several figures
(described as pole counting diagrams) as shown in figure 4.

As with the information presented in this section, the rest of this paper
will discuss only the asymptotic behaviors as z → +∞, z ∈ R, since the
symmetry (2) makes it clear that there are analogous solutions with similar
asymptotic behaviors as z → −∞. This is also seen by comparing the left
and right frames in figure 3.
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3.4. The Parameter Space and the Weyl Chambers

Based on the various symmetries, solution hierarchies and known closed
form solutions, the parameter space of PIV with β ≤ 0 can be described in
terms of the so-called Weyl chambers (see e.g., [47], section II-A, or [39],
section 26). These chambers feature a complete regularity in the (α,

√
−2β)-

plane.
The significance of the Weyl Chambers, when extended to complex α

and β, is that a single chamber in theory provides all of the information to
construct solutions for every arbitrary (α, β) pair ([39], section 25). The real
part of this chamber is shown as a shaded gray region in figure 1, often called
the fundamental domain. An explicit description of the fundamental domain
can be found in [39], section 26.
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Figure 1: Two views of the Weyl Chambers. The shaded region indicates the real part
of the fundamental domain. Both figures show several of the chambers and locations
of the rational and special function solutions to PIV (dark hexagrams (blue) represent
generalized Hermite type, light hexagrams (yellow) show generalized Okamoto type, and
lines (black) show parabolic cylinder and confluent hypergeometric types).

Notice that in the case of solutions that are real along the real axis, every
parameter choice leading to a rational or special function solution of PIV

has β ≤ 0. This is also true for the decaying asymptotic approximation
discussed in section 3.3. For this reason, part of this study will be devoted
to the unexplored region of β > 0.
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4. The Numerical Method and Exploration Approach

Explorations of the four dimensional space of parameters and ICs require
a fast numerical method and a systematic approach for comparing solutions
of different parameter choices. These techniques are discussed here.

The extensive pole fields appearing in these solutions have motivated the
development of various solution techniques. However, many of the previous
methods were limited in the choice of the parameters in the coefficients by
considering special forms of the equation (e.g. Riemann Hilbert problems
[31]), constrained to the real axis [48, 49, 50], or restricted to a small domain
around the origin [51]. The present method extends the ‘pole vaulting’ idea
[48] in three fundamental ways: (i) use of a ‘pole friendly’ ODE integrator
[28], (ii) not using any rigid choices of diversion paths around a pole, but
instead utilizing a freely branching network of paths in the complex plane,
and (iii) targeting paths toward whole regions in the complex plane (rather
than only toward other real axis locations). Some of the existing numerical
methods were surveyed in [52].

4.1. A Brief Description of the Numerical Method

The numerical scheme introduced in [27] can achieve very high orders of
accuracy, with minimal loss of accuracy even in the vicinity of poles. This is
accomplished utilizing a flexible path selection strategy that can efficiently
cover large areas of the complex plane starting from arbitrary ICs and for
any choice of α and β. When integrating from one start location to a single
end location this scheme uses the following strategy, which will be called pole
avoidance:

1. Choose the location of the initial condition as the first expansion point.

2. Compute the Padé approximation about the expansion point.

3. Evaluate the Padé approximation a distance h away in each of five
directions in a swath directed toward the target point and choose as
the next expansion point the one with the smallest solution magnitude.

4. Unless the target point has been reached, return to step 2.

This pole avoidance strategy is effective when finding the solution to an initial
value problem (IVP) at a single point. However, if the solution is desired
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at many different points (for instance, for the visualization of the solution
over a region in the complex plane) the method is extended to the pole field
solver.

1. Set up a coarse grid of target points in the complex plane.

2. Select the target points in random order.

3. Apply the pole avoidance strategy to reach a predetermined neighbor-
hood of the current target point, starting from the closest point that
has already been evaluated. In the first step this is the location of the
IC.

4. Once all of the coarse grid target points have been accounted for, set
up a fine grid of the desired evaluation points.

5. Compute from the end of each of the previous paths (using a single
Padé expansion) values of nearby fine grid evaluation points.

The majority of the explorations conducted in this paper utilized Padé
approximations with the numerator and denominator both polynomials of
order 7, resulting in an expansion with truncation error O(h14). The coeffi-
cients of these polynomials were computed using the Toeplitz approach as in
[27]. The step size was typically chosen as h = 0.0625. In [43] it is illustrated
that the numerical method, when all computations are performed to machine
precision, with this combination of polynomial order and continuation step
size can easily produce solutions with relative error on the order of 10−5 or
better, except when computing over large regions with no poles.

The initial value problem is well-posed (and the numerical procedure
is correspondingly well-conditioned) when meandering through a pole-field,
allowing high orders of accuracy to be maintained. However, across smooth
areas the initial value problem is exponentially unstable. The center frame
of figure 2 illustrates this result for the following closed form solution of PIV

[53] whose pole locations and residues are shown in the left frame of the
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figure. The solution is

u(z) = −z − d
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withW the Wronskian and 1F1(a, b; ζ) the confluent hypergeometric function.
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Figure 2: Left: Pole locations and residues in the solution (10) of the PIV equation. Poles
of residue +1 are marked with dark (blue) circles and poles of residue -1 are marked
with light (yellow) circles. Center: Log base 10 of the relative error in the numerical
solution (10) of (1) computed at machine precision using order 14 Padé approximations
(the numerator and denominator both polynomials of order 7) and step size of 0.0625.
Right: Log base 10 of the relative error in the numerical solution (10) of (1) computed at
25 digits of accuracy using order 40 Padé approximations (the numerator and denominator
both polynomials of order 20) and step size of 0.25. In both cases the pole field solver is
started with a high precision initial condition at z = 0.5. Notice the similarity in the error
patterns of the numerical solutions.

To verify the features in the solutions presented in this paper, we uti-
lized the extended precision solver discussed in [43] with all computations
performed with precision on the order of 10−25. Both the step sizes and the
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orders of the Padé approximations were adjusted to ensure adequate accu-
racy. Reliance on extended precision solvers provides only a partial remedy
to computing solutions over smooth regions. The right frame of figure 2
shows accuracy still decreases when considering points increasingly far from
a pole field when using an extended precision solver. The loss of accuracy
would have been reduced in this example if the paths had been constrained
to remain within them. A complete remedy against the loss of accuracy
over smooth regions can be obtained by combining the initial value problem
within pole-fields with boundary value problems that link these near-field
solutions to far-field asymptotics.

Further tests are available for checking the accuracy in a solution that
has no closed form. For instance, the randomized path selection strategy
lends to comparisons of the same solution computed twice (as this would use
different paths). Since the present study only considers solutions for which
u(z) ∈ R when z ∈ R, differences between the upper (Im(z) > 0) and lower
(Im(z) < 0) half-planes can likewise be used for error estimation.

4.2. Pole Counting

The pole field solver makes it possible to rapidly obtain solutions for a
variety of initial conditions. To explore the differences in solution charac-
teristics for each fixed choice of α and β, the number of poles on either
the positive or negative real axis is examined for varying (u(0), u′(0)) ∈ R2.
This, paired with the asymptotic behavior discussed in section 3.3, allows
the characterization of the numerous solution possibilities for each fixed α
and β. Figure 3 (adapted from [30]) provides a prototypical example in the
case of α = β = 0. This figure displays the number of poles on the positive
and negative real axes for each choice of initial conditions shown, and each
of the frames is denoted a pole counting diagram.

Consider, for now, only the right frame in figure 3, since the left is com-
pletely analogous due to the symmetries discussed in section 2.1. Each of
the ICs marked by a curve or contained within a shaded region generates a
solution with a finite number of poles on the positive real axis. The gray
scale/pattern bar in figure 4 indicates the exact number of poles for a given
initial condition with darker and lighter shades indicating odd and even num-
bers of poles, respectively. On the other hand, ICs neither contained in a
shaded region nor marked by a curve generate solutions with an infinity of
poles on the corresponding half (positive/negative) of the real axis.
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Negative Real Axis
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4
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′
(0
)

Figure 3: Number of poles on the positive and negative real axes for α = 0 and β = 0.
For a description of the markers and shading see figure 4.

In this case of α = β = 0, each of the shaded regions in the right half-
plane contains ICs that generate solutions with an odd number of poles on the
positive real axis, while the u(0), u′(0) values along the isolated curves lead
to solutions with an even number. The opposite holds in the left half-plane.

Most of the ICs in the shaded regions generate solutions that oscillate
as z → +∞; however, each initial condition marked by a curve, located at
the boundary of a shaded region, or designated by an isolated marker has no
oscillations as z → +∞. These solutions are precisely those approximated
by the roots of the quartic equation (5) as z → +∞. The appropriate root is
indicated by the symbols shown in left frame of figure 4. When two markers
appear along the same curve, those ICs generate solutions matching both
behaviors (in separate intervals of the real axis), as shown in, for example,
figures 7 and 15.

5. Numerical Illustrations of the Fundamental Domain

Solution types occurring for parameter choices in the fundamental domain
are discussed in the following sections. These (and subsequent) sections de-
scribe some solutions as having adjacent pole free sectors. This terminology
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As z → +∞

u(z) ∼

√
−2β

2z

u(z) ∼ −

√
−2β

2z

u(z) ∼ −2z

u(z) ∼ −
2
3
z

Closed form 9
8
7
6
5
4
3
2
1
0

Figure 4: Legend and gray scale/pattern bar for figures 3, 6, 8, 9, and 10. The legend shows
the markers indicating the ICs that generate the dominant asymptotic behaviors (6)-(9)
and closed form solutions. If a marker occurs on a curve, then the dominant behavior
or type of closed form solution occurs for all of the ICs along that curve. If a marker is
emphasized by containing an “×”, then it indicates an isolated IC matching the dominant
behavior or the IC generates an isolated rational solution. The gray-scale/pattern bar on
the right indicates the number of poles on the positive or negative real axis.

arises from asymptotic (and numerical) knowledge that the poles in the solu-
tions of PIV align in the eight sectors shown in figure 5. Further discussions
of these sectors are available in [30].

5.1. An Exploration of the Fundamental Domain

In section 3.4 the fundamental domain was introduced, and it was noted
that solutions for all parameter choices in theory can be found by applying
the transformations discussed in section 2.2 to the solutions in this domain.
However, the literature describes solutions in this domain only for the cases
α = β = 0 (numerical and asymptotically decaying solutions), (α = 0, β =
−2/9) (a rational solution), along the line β = 0 (asymptotically decaying
solutions), and along the curve β = −2(α − 1)2 (asymptotically decaying,
rational and special function solutions). All of these occur on the boundary
of the fundamental domain.

5.1.1. Parameter Choices with Rational or Special Function Solutions

It should again be noted that, for each of the parameter choices (α =
0, β = −2

9
) and along the curve β = −2(α−1)2, the closed form or asymptotic

solutions only lead to a single solution or a one parameter family of solutions
in the u(0) versus u′(0) plane. To gain some insight into arbitrary ICs (in
the same manner as figure 3) the frames in figure 6 show the number of poles
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The Eight Sectors of PIV
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8
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Figure 5: The eight sectors of poles in the solutions of PIV .

appearing on the positive real axis for each of the two remaining vertices of
the fundamental domain, as well as the case (α = 0, β = −2/9).

Within the frames of figures 3 and 6 it is easy to see that often the ICs
of solutions matching (6) through (9) along the real axis as z → +∞ appear
as the boundaries of regions of initial conditions generating solutions with
a finite number of poles on the real axis. In some cases, however, such ICs
appear along curves that are not part of these boundaries. In such a case,
these curves correspond to the ICs of solutions that decay asymptotically
(see section 3.3) or those of one parameter families of solutions in terms of
special functions.

Further study of the last two frames of figure 6 highlights a peculiar
behavior of the solutions matching (6) through (9) when the α and β choices
occur at the vertex of a Weyl chamber. For these solutions, two or three
of the behaviors w+

µ , µ = ±1, and w−−1 are present in the same solution (as
indicated by two separate markers occurring along the same line), but in
different segments of the positive real axis. Take, for instance, the ICs for
(α = 0, β = −2) indicated by the arrow in the second frame of figure 6.
Along the curve containing these ICs there are three separate markers. The
solutions in a neighborhood of these particular ICs are shown in figure 7,
illustrating that different dominant asymptotic behaviors can occur in the
same solution (again, in different segments of the real axis).

5.1.2. Parameter Choices Along the Boundary β = 0

When the boundary β = 0 is considered, the literature generally only
describes solutions to PIV that decay asymptotically as z → +∞ [26, 54].
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α = 1, β = 0

-4 -2 0 2 4
u(0)

α = 0, β = −2

-4 -2 0 2 4
u(0)

α = 0, β = −0.2222
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4

u
′
(0
)

7

Figure 6: Number of poles on the positive real axis for α = 0 and β = −2/9, α = 0 and
β = −2, and α = 1 and β = 0. A detailed description of the markers and shading is given
in figure 4.

Connection formulas are available that indicate some of these solutions also
match −2z and −(2/3)z as z → −∞ [26, 54, 55]. Through the symmetries
discussed in section 2.1 there must also be solutions that decay asymptotically
as z → −∞ and match −2z or −(2/3)z as z → +∞. The frames in figure
3 and the right frame in figure 6 illustrate the locations of the ICs that
generate such solutions. They are those ICs that match w+

µ , µ = ±1, in the
case of asymptotic decay and w−−1 and w−+1 in the cases of −2z and −(2/3)z,
respectively. In all cases along the boundary β = 0 we find that the behaviors
w+
µ , µ = ±1, are identical in line with (6) and (7).

5.1.3. Parameter Choices Along the Boundary β = −2(α− 1)2

PIV has a one-parameter family of solutions expressible in terms of the
parabolic cylinder function or confluent hypergeometric function for each
choice of α and β along the boundary described by β = −2(α−1)2. The lead-
ing order asymptotic behavior of these solutions can differ for distinct choices
of α and β along this boundary. That is, these special function solutions
match the dominant behavior of w−−1 ∼ −2z in the case of (α = 0, β = −2)
and w+

−1 in the case of (α = 1, β = 0). The center and right frames of figure
6 provide examples of choices of parameters along this boundary.
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Figure 7: Solutions (along the real axis (top) and pole locations and residues (bottom))
with adjacent pole free sectors for α = 0 and β = −2. The initial condition u(0) for each
column is shown at the top and, in each column, u′(0) = 0 and u0 = 3.170110354518507.
The initial condition (u(0) = u0 and u′(0) = 0) is marked with an arrow in the center
frame of figure 6. In the bottom row of figures poles of residue +1 are marked with dark
(blue) circles and poles of residue -1 are marked with light (yellow) circles.
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5.1.4. Parameter Choices Along the Boundary α = 0 and Interior to the
Fundamental Domain

Along the boundary α = 0 and interior to the fundamental domain solu-
tions matching each of (6) through (9) are generated from distinct ICs. There
are now no solutions that match two of these behaviors at the same time,
but in different segments of the real axis. As a prototype, the distinctness of
these ICs can be witnessed in the leftmost frame of figure 6.

5.1.5. A Note on Connection Formulae

Consider the left and right frames of figure 3, showing the number of
poles along the negative and positive real axes, respectively. One finds that
a segment of the curve extending from the origin and down to the right in the
right frame cuts across the shaded region that extends from the origin up and
to the right in the left frame. Along this segment PIV therefore has solutions
that are smooth in both directions. A similar analysis of the pole counting
diagrams for any choice of α when β = 0 would result in an analogous family
of solutions that are smooth in both directions. These appear to be the
only examples of solutions that have connection formulae available in the
literature [26, 54, 55].

Examination of figure 6 (together with the symmetry (2)) shows that
similar comparisons of the number of poles on the positive and negative real
axes simultaneously will again identify solutions that are smooth in both
directions for regions of ICs near u(0) = u′(0) = 0 in cases where β is
negative. It turns out that such regions (sometimes only a curve) appear
to exist for all parameter choices within the fundamental domain. Figure 8
illustrates this for a choice interior to the fundamental domain (α = 0.25,
β = −0.125).

In a following section, figure 10 will show that similar regions will also
occur outside the fundamental domain when β < 0, however, with the dif-
ference that there now may be a finite number of poles on the real axis in
either one or both directions. In contrast, positive choices of β do not seem
to produce any such regions of ICs.

6. Solution Patterns Outside the Fundamental Domain

The (α,β) space is far too wide to complete an exhaustive survey of here.
Therefore, the rest of this paper focuses on the unexplored space of β > 0
and highlights some solution types that seem to appear for all α and β. In
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Figure 8: Number of poles on the negative real axis (left), entire real axis (center), and
positive real axis (right) for α = 0.25 and β = −0.125.

this section, the terminology “nearly pole-free half-plane” refers to a solution
with a finite number of poles for all z such that Re(z) > z0 or Re(z) < z0 for
some finite z0 ∈ R.

6.1. The Unexplored Space of Positive Beta

Information about PIV with β > 0 is noticeably absent from the liter-
ature. For instance, all known closed form solutions occur only when β is
nonpositive. Even the Bäcklund and Schlesinger transformations are only
applicable to β-values that are nonpositive (assuming u(z) is real when z is
real). Exploration of such cases and knowledge of the tronqueé like solutions
that appear in the α = β = 0 case suggests that solutions with β > 0 also
feature noteworthy characteristics. For instance, there are further analogues
to the solution that is pole free for a half-plane.

The dominant asymptotic behaviors (6) and (7) no longer occur as solu-
tions that are real along the real axis, due to the term

√
−2β. Therefore,

the figure 9 is much simpler than its counterparts for β ≤ 0 with a single IC
matching the behavior of w−1+1 ∼ −(2/3)z and ICs along the boundaries of
regions with finite poles generating solutions that match w−−1 ∼ −2z.

6.2. Parameters Larger in Magnitude

This section illustrates some α,β choices slightly larger in magnitude.
When β > 0 there is little difference in the pole counting diagrams from the
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Figure 9: Number of poles on the positive real axis for parameter choices where α = 0
and β > 0. A detailed description of the markers and shading is given in figure 4. Similar
diagrams for α 6= 0 and larger β are shown in figure 10.

choices presented in the earlier figures. However, choices of β ≤ 0 become
far more complicated without indicating the existence of further types of
solutions with special characteristics. Even parameter choices in adjacent
Weyl chambers generate significantly different behaviors near u(0) = u′(0) =
0. Figure 10 displays some choices for α and β larger in magnitude.

6.3. Solutions With a Nearly Pole Free Half Plane

It was noted in [30] that, when α = β = 0, there exists a particular
solution with an entire half-plane free of poles. The present study has found
that solutions with a nearly pole free half plane are not confined to only
this special choice of α and β. In fact, evidence suggests that for each α
and β there exists at least one such solution, and very likely only one. The
likelihood that there is only one such solution for each α and β pair makes this
solution a prime candidate for comparing and making connections between
all parameter choices.

For each α and β this special solution type matches the root w−+1 ∼
−(2/3)z as z → +∞ and z ∈ R. Knowing this, computing the initial
conditions leading to such a solution is a simple matter of solving a boundary
value problem (BVP). Applying the familiar methodology of counting poles
along the positive, and now negative, real axes allows the identification of
further special characteristics of these solutions.
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Figure 10: Number of poles on the positive real axis at the six (α, β) locations marked
in figure 11 (all exterior to the fundamental domain). The initial conditions for solutions
asymptotic to w−+1 in the top middle, bottom left, and bottom right frames occur outside
of the domain shown at (u(0) = −4.6822,u′(0) = 20.7787), (u(0) = −10.7942,u′(0) =
120.3759), and (u(0) = 49.4606,u′(0) = −2442.3215), respectively. A detailed description
of the markers and shading is given in figure 4.
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Figure 11: Number of poles on the positive (right) and negative (left) real axis for solutions
matching w−+1 ∼ −(2/3)z as z → +∞ and z ∈ R and each α and β. The solid curves
indicate the boundaries of the Weyl chambers, while the dashed lines show the boundaries
of regions of finite poles on both the positive and negative real axes. Note that in this case
β > 0 implies an infinity of poles along R−. The circles (red) containing an × indicate
those parameters shown in figure 10. The changes in shading occur simultaneously in
the left and right frames corresponding to a pole moving from one half of the real axis
(positive/negative) to the other.
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In figure 11 the pole counts are shown along the negative and and pos-
itive real axes (left and right frames, respectively) overlayed with the Weyl
chambers marked by solid curves. Also in these frames, dashed lines mark
the boundaries of regions in the α versus β plane where these solutions have
only a finite number of poles on the negative real axis. Notice that these
dashed curves form a regular structure similar to that of the Weyl chambers,
with the parabolas offset by one unit on the α axis and the horizontal lines
occurring at β values where these new parabolas and those from the Weyl
chambers intersect.

6.3.1. The Tops of the Parabolas

To begin, consider the parameter choices at the tops of these new parabo-
las. These occur at α = 2m and β = 0, m ∈ Z. In these cases the poles
nearest the origin form very regular patterns. Examples for several different
choices of m are shown in figure 12. Notice the pole structure near the center
of these figures. When m < 0 poles of residue +1 align in a structure similar
to the roots with a positive real part of the degree m Okamoto I polynomial,
while poles of residue −1 appear similar to the roots of the degree m − 1
polynomial. On the other hand, when m > 0 the poles of residue +1 (like-
wise, −1) align in a structure similar to all of the roots of the order m + 1
(likewise, m) polynomials. Note that the Okamoto I polynomials in this con-
text are singly indexed as in [47] while those in the rational solutions of PIV

are doubly indexed generalized Okamoto polynomials as in [44].
Although this study is focused on pole locations for PIV solutions, figure

12 offers a good opportunity to also make some brief comments about their
zeros. Based on how u(z) appears in the denominator of the two terms in
the right hand side of (1), we can deduce:

• If β = 0, then u(z) = 0 implies that u′(z) = 0. That is, every zero has
at least multiplicity two.

• If β 6= 0, every zero is simple.

• If β > 0, u(z) cannot have a zero along the real axis (given our as-
sumption that u(z) is real valued there).

Perturbing β slightly away from zero in the last subplot of figure 12 (but
keeping α, u(0), and u′(0) unchanged) causes pole fields to enter from both
sides, and leads to the solutions shown in the top and bottom frames of figure
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Figure 12: Zero and pole locations of solutions to (1) with various even integer values of α
with β = 0. The values of m in the titles correspond to the discussion at the beginning of
section 6.3.1. Poles of residue +1 are marked with dark (blue) circles and poles of residue
-1 are marked with light (yellow) circles. Locations of zeros are marked by ×’s (red).
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13. Although some zero pairs are too tight to be clearly distinguishable as
such, the figure nevertheless illustrates all of the observations above.

6.3.2. Along the Parabolas

When α and β are taken directly on the parabolas the solutions asymp-
totic to −(2/3)z are nonoscillatory as z → −∞. An example of this is shown
in the center frame of figure 14. Now, if α or β are varied slightly such that
the choice of parameters no longer falls on one of the parabolas, these solu-
tions can have either an infinity of poles or oscillate as z → −∞. Examples
of this are also shown in the left and right frames of figure 14.

6.3.3. When β is Positive

For β > 0, figure 11 showed that all of the solutions asymptotic to w−+1 ∼
−(2/3)z as z → +∞, z ∈ R, have an infinity of poles on the negative real
axis. These solutions also do not generally have an entire half-plane free of
poles. Instead, numerical evidence points to a value z0 ∈ R such that for all
z with Re(z) > z0 the solution has no poles.

6.3.4. Other Solutions With a Pole Free Half-Plane

The solutions asymptotic to −(2/3)z as z → +∞ are not the only so-
lutions that have a half-plane pole free. There are, of course, the rational
solutions. Likewise, there are solutions expressible in terms of parabolic
cylinder or confluent hypergeometric functions that also feature a pole free
half-plane. Generally, these other solutions with a pole free half-plane match
different roots of (5) as z → +∞ than w−+1 ∼ −(2/3)z.

6.4. Solutions With Adjacent Pole Free Sectors

Common among the solutions that match w±µ as z → +∞ and z ∈ R is the
absence of poles in sectors adjacent to the positive real axis. The solutions
are similar to the tronquée solutions of PI discussed in [30]. For both PI

and PIV (with α = β = 0) these solutions are characterized by at least two
adjacent pole free sectors. Figure 7 first illustrated that for certain choices of
α and β the two or three of the behaviors w±µ , µ = ±1, can occur along the
positive real axis in the same solution, but in different segments of the axis.
Figure 15 also displays two solutions where the asymptotic behaviors of w+

µ ,
µ = ±1, and w−−1 are simultaneously present (along different segments of the
real axis) in the case of (α = 0, β = −2).
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Figure 13: Zero and pole locations for three solutions to PIV . The middle figure displays
the zeros and poles of the solution matching the bottom left frame of figure 12. This figure
matches −(2/3)z as z → +∞ for the case of α = 6 and β = 0, where u(0) ≈ −0.15560961
and u′(0) ≈ 0.30039611. The top and bottom frames occur by perturbing β by +0.1 and
−0.1, respectively, while leaving α, u(0) and u′(0) unchanged. Poles of residue +1 are
marked with dark (blue) circles and poles of residue -1 are marked with light (yellow)
circles. Locations of zeros are marked by ×’s (red).
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Figure 14: Solutions (pole locations and residues) normal to the parabola β = −2(α−2)2.
All frames depict the solutions asymptotic to −(2/3)z as z → +∞. The center frames
occur directly along the parabolas where α = αL0 = 1.25 (top) and α = αR0 = 2.75
(bottom). The left and right frames in both the top and bottom then depict the solutions
along the line normal to the parabola at α = α0 at α0 ± 10−4. Poles of residue +1 are
marked with dark (blue) circles and poles of residue -1 are marked with light (yellow)
circles.
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Figure 15: Solution types (along the real axis (top) and pole locations and residues (bot-
tom)) with adjacent pole free sectors for α = 0 and β = −2. In all frames u′(0) = 0. The
left and right frames both show that these solutions simultaneously match the roots w+

µ ,

µ = ±1, and w−−1. Poles of residue +1 are marked with dark (blue) circles and poles of
residue -1 are marked with light (yellow) circles. Locations of zeros are marked by ×’s
(red).
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Analyzing figures 7 and 15, it can be seen that not only are some of
the canonical sectors shown in figure 5 free from poles, but there are also
regions sandwiched between two rows of poles that are also pole free. The
sequence shown in figure 7 also suggests that as a critical value of u(0) = u0 is
approached with u′(0) fixed, the width of these sandwiched pole free regions
can be increased.

7. Conclusions

This study of the fourth Painlevé equation started by numerically con-
firming various previous analytic and asymptotic results. A further explo-
ration of the fundamental domain then identified solutions for general (α,β)-
values with noteworthy characteristics, such as numerous families of solutions
with adjacent pole-free sectors. Also, solutions with a nearly pole-free half
plane were found.

Most of the observations in this study were obtained numerically, leaving
analytical considerations of some of the illustrated solution types an open
topic. Further numerical tasks of interest include enlarging the explored
(α, β)-region, both to values of larger magnitude and (more importantly)
to complex values for the parameters. Another extension, requiring only
minimal changes to the numerical method, would be to drop the assumption
that u(z) ∈ R for z ∈ R.

8. Acknowledgments

Discussions with Peter Clarkson, Harvey Segur, and André Weideman
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asymptotics and physical applications, volume 278 of NATO Adv. Sci.
Inst. Ser. B Phys., Plenum, New York, 1992, pp. 33–47. Proc. NATO
Adv. Res. Workshop, Sainte-Adéle, Canada, 1990.
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Painlevé property, Phys. Rev. A (3) 25 (1982) 1257–1264.

[20] B. Grammaticos, A. R. Ramani, V. Papageorgiou, Do integrable map-
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fourth Painlevé equation, IMA J. Appl. Math. 50 (1993) 167–193.

[50] A. A. Abramov, L. F. Yukhno, A method for the numerical solution of
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