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Abstract Quadrature formulas (QFs) based on radial basis functions (RBFs) have
become an essential tool for multivariate numerical integration of scattered data.
Although numerous works have been published on RBF-QFs, their stability theory
can still be considered as underdeveloped. Here, we strive to pave the way towards
a more mature stability theory for global and function-independent RBF-QFs.
In particular, we prove stability of these for compactly supported RBFs under
certain conditions on the shape parameter and the data points. As an alternative
to changing the shape parameter, we demonstrate how the least-squares approach
can be used to construct stable RBF-QFs by allowing the number of data points
used for numerical integration to be larger than the number of centers used to
generate the RBF approximation space. Moreover, it is shown that asymptotic
stability of many global RBF-QFs is independent of polynomial terms, which are
often included in RBF approximations. While our findings provide some novel
conditions for stability of global RBF-QFs, the present work also demonstrates
that there are still many gaps to fill in future investigations.
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1 Introduction

Numerical integration is an omnipresent task in mathematics and myriad appli-
cations. While these are too numerous to list fully, prominent examples include
numerical differential equations [47,77,1], machine learning [69], finance [35], and
biology [63]. In many cases, the problem can be formulated as follows. Let Ω ⊂ RD

be a bounded domain with positive volume, |Ω| > 0. Given N distinct data pairs
{(xn, fn)}Nn=1 ⊂ Ω×R with f : Ω → R and fn := f(xn), the aim is to approximate
the weighted integral

I[f ] :=

∫
Ω

f(x)ω(x) dx

by an N-point QF. That is, by a weighted finite sum over the given function of the
form

CN [f ] =
N∑

n=1

wnf(xn).

In higher dimensions, CN is sometimes referred to as an N-point cubature formula.
The distinct points {xn}Nn=1 are called data points and the {wn}Nn=1 are referred
to as quadrature weights. Many QFs are derived based on the idea to approximate
the (unknown) function f and then exactly integrate this approximation [44,89,
26,19,58,20,59,22,10,92]. Arguably, most of the existing QFs have been derived
from being exact for polynomials up to a certain degree. See [64,70,21,71,20,94],
in addition to the above references.

That said, in recent years, QFs based on the exact integration of RBFs have
received a growing amount of interest [88,86,85,76,2,33,79,81,95,80,87]. The in-
creased use of RBFs for numerical integration and numerical differential equa-
tions [56,54,27,55,61,52,84,32,29,40,41] seems to be only logical, considering their
story of success in the last few decades. In fact, since their introduction in Hardy’s
work on cartography from 1971 (see [46]), RBFs have become a powerful tool in
numerical analysis, including multivariate interpolation and approximation theory
[13,14,98,28,53,31]. It should also be mentioned that RBF-QF can be connected
to (statistical) Bayesian quadrature [73,68,11,57]. Finally, recent literature in the
quadrature area [79,81,80,78] has focused on ’local’ RBF-FD-type implementa-
tions to reduce computational costs for large node numbers. While an extension
to such local approaches would be of interest, we restrict ourselves to global RBF
methods in this work. That said, to reduce the cost of constructing and integrating
a global interpolant, a piecewise RBF interpolant could be considered and inte-
grated in a manner similar to the construction of Newton–Cotes formulas. Some
of our results would easily carry over to this setting, which might be seen as an ex-
treme version (no overlap of nonzero measure) of RBF partition of unity methods
[3,97,28] or the overlapped RBF-FD methods [83].

Even though RBF-QFs have been proposed and applied in numerous works,
their stability theory can still be considered as under-developed, especially com-
pared to more traditional—e. g polynomial based—methods. Stability of RBF-QFs
was broached, for instance, in [88,86,76]. Further, stability of RBF-QF was dis-
cussed in [33] for integration on certain manifolds. However, to the best of our
knowledge, an exhaustive stability theory for RBF-QFs is still missing in the lit-
erature. In particular, theoretical results providing clear conditions under which
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stability of RBF-QFs is ensured are rarely encountered, even for global RBF meth-
ods.

The present work strives to fill this gap in the RBF literature partially. This is
done by providing a detailed theoretical and numerical investigation on stability of
global RBF-QFs1 for different families of kernels, including compactly supported
and Gaussian RBFs as well as polyharmonic splines (PHS). Our analysis resembles
classic stability theory for quadratures exact for polynomial spaces. In contrast to
some existing works (see [16] and references therein), we consider RBF approxima-
tions with function-independent shape parameters to obtain quadrature formulas
that do not have to be recomputed when another function is considered.

In particular, we report on the following findings. (1) We provide a sufficient
condition for compactly supported RBFs to yield a provable stable RBF-QF (see
Theorem 3 in §4). The result is independent of the degree of the polynomial term
that is included in the global RBF interpolant and assumes the data points to
come from an equidistributed (space-filling) sequence. (2) We demonstrate how
the idea of least squares can be employed to construct provable stable RBF-QFs.
(3) Asymptotic stability of pure RBF-QFs is connected to asymptotic stability of
the same RBF-QF but augmented with polynomials of a fixed arbitrary degree.
Essentially, we can show that for a sufficiently large number of data points, stability
of RBF-QFs is independent of the presence of polynomials in the RBF interpolant.

The rest of this work is organized as follows. We collect some preliminaries
on RBF interpolants and QFs in §2. In §3, a few initial comments on stability of
(RBF-)QFs are offered. Next, §4 contains our main theoretical result regarding
stability of RBF-QFs based on compactly supported kernels. §5 demonstrates how
the concept of least squares can be used to construct provable stable RBF-QFs.
Furthermore, it is proven in §6 that, under certain assumptions, asymptotic sta-
bility of RBF-QFs is independent of the polynomial terms included in the RBF
interpolant. Numerical tests in §7 accompany the previous theoretical findings.
Finally, concluding thoughts are offered in §8.

2 Preliminaries

We collect some preliminaries on RBF interpolants (§2.1) and RBF-QFs (§2.2).

2.1 Radial basis function interpolation

RBFs are often considered a powerful tool in numerical analysis, including mul-
tivariate interpolation and approximation theory [13,14,98,28,53,31]. We are es-
pecially interested in RBF interpolants. Let f : RD ⊃ Ω → R be a scalar valued
function. Given a set of distinct data points (sometimes also referred to as centers),
the RBF interpolant of f is of the form

(sN,df)(x) =
N∑

n=1

αnφ(εn∥x− xn∥2) +
K∑

k=1

βkpk(x). (1)

1 Henceforth, we will refer to these as “RBF-QFs”.
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RBF φ(r) parameter order

Gaussian exp(−r2) 0

Wendland’s φD,k(r), see [96] D, k ∈ N0 0

Polyharmonic splines r2k−1 k ∈ N k

r2k log r k ∈ N k + 1

Table 1: Some popular RBFs. The “order” k of an RBF refers to the RBF being conditionally
positive of order k.

Here, φ : R+
0 → R is the RBF (also called kernel), {pk}Kk=1 is a basis of the space of

algebraic polynomials up to degree d, Pd(Ω), and the εn’s are nonnegative shape
parameters.2 The RBF interpolant (1) is uniquely determined by the conditions

(sN,df)(xn) = f(xn), n = 1, . . . , N, (2)

N∑
n=1

αnpk(xn) = 0, k = 1, . . . ,K. (3)

Note that (2) and (3) can be reformulated as a linear system for the coefficient
vectors α = [α1, . . . , αN ]T and β = [β1, . . . , βK ]T . This linear system is given by[

Φ P

PT 0

][
α

β

]
=

[
f

0

]
, (4)

where f = [f(x1), . . . , f(xN )]T as well as

Φ =


φ(ε1∥x1 − x1∥2) . . . φ(εN∥x1 − xN∥2)

...
...

φ(ε1∥xN − x1∥2) . . . φ(εN∥xN − xN∥2)

 , P =


p1(x1) . . . pK(x1)

...
...

p1(xN ) . . . pK(xN )

 . (5)

For a constant shape parameter ε1 = · · · = εN , (4) is ensured to have a unique
solution—corresponding to existence and uniqueness of the RBF interpolant—if
the kernel φ is conditionally positive definite of order d and the set of data points
is Pd(Ω)-unisolvent. See, for instance, [28, Chapter 7] and [36, Chapter 3.1] or
references therein. In this work, we shall focus on the popular choices of RBFs
listed in Table 1. A more complete list of RBFs and their properties can be found
in the monographs [14,98,28,31] and references therein.

The set of all RBF interpolants (1) forms an N-dimensional linear space, denote
by SN,d. This space is spanned by the cardinal functions

cm(x) =
N∑

n=1

α
(m)
n φ(εn∥x− xn∥2) +

K∑
k=1

β
(m)
k pk(x), m = 1, . . . , N, (6)

which are uniquely determined by the cardinal property

cm(xn) = δmn :=

{
1 if m = n,

0 otherwise,
m, n = 1, . . . , N, (7)

2 For polyharmonic splines, it is common practice to not include a shape parameter in (1).
For simplicity, we still use (1) and set εn = 1, n = 1, . . . , n, in this case.
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and condition (3). They provide us with the following representation of the RBF
interpolant (1):

(sN,df)(x) =
N∑

n=1

f(xn)cn(x)

This representation is convenient to subsequently derive quadrature weights based
on RBFs that are independent of the function f .

2.2 Quadrature formulas based on radial basis functions

A fundamental idea behind many QFs is to first approximate the (unknown) func-
tion f : Ω → R based on the given data pairs {xn, fn}Nn=1 ⊂ Ω ×R and to exactly
integrate this approximation. In the case of RBF-QFs this approximation is chosen
as the RBF interpolant (1). Hence, the corresponding RBF-QF is defined as

CN [f ] := I[sN,df ] =

∫
Ω

(sN,df)(x)ω(x) dx. (8)

When formulated w. r. t. the cardinal functions cn we get

CN [f ] =
N∑

n=1

wnf(xn) with wn = I[cn]. (9)

That is, the RBF quadrature weights w = [w1, . . . , wN ]T are given by the moments
corresponding to the cardinal functions. This formulation is often preferred over
(8) since the weights w do not have to be recomputed when another function is
considered. In our implementation, we compute the RBF quadrature weights by
solving the linear system [

Φ P

PT 0

]
︸ ︷︷ ︸

=A

[
w

v

]
=

[
mRBF

mpoly

]
, (10)

where v ∈ RK is a Lagrange multiplier3. Furthermore, the vectors mRBF ∈ RN

and mpoly ∈ RK respectively contain the moments of the translated kernels and
polynomial basis functions:

mRBF =
[
I[φ1], . . . , I[φN ]

]T
,

mpoly =
[
I[p1], . . . , I[pK ]

]T
,

with φn(x) = φ(εn∥x−xn∥2). The moments of different RBFs can be found in the
appendix A. The polynomial moments can be found in the literature, e. g., [38,
Appendix A] and [30,62].

3 The solution of (10) can be interpreted as the solution of an equality constrained linear
optimization problem [5], where v plays the role of a Lagrange multiplier.
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3 Stability and the Lebesgue constant

This section addresses the stability of RBF interpolants and the corresponding
RBF-QFs. In particular, we show that both can be estimated in terms of the
Lebesgue constant. This was also observed in [33] for RBF-QFs on certain (com-
pact) manifolds. That said, we also demonstrate that RBF-QFs often come with
improved stability compared to RBF interpolation.

3.1 Stability of quadrature formulas

We shall start by addressing stability of RBF-QFs. To this end, let us denote the
best approximation of f from SN,d in the L∞-norm by ŝ. That is,

ŝ = argmin
s∈SN,d

∥f − s∥L∞(Ω) with ∥f − s∥L∞(Ω) = sup
x∈Ω

|f(x)− s(x)|.

Note that this best approximation w. r. t. the L∞-norm is not necessarily equal to
the RBF interpolant. Still, the following error bound holds for the RBF-QF (9),
that corresponds to exactly integrating the RBF interpolant from SN,d:

|CN [f ]− I[f ]| ≤ (∥I∥∞ + ∥CN∥∞) inf
s∈SN,d

∥f − s∥L∞(Ω) (11)

Inequality (11) is commonly known as the Lebesgue inequality; see, e. g., [9] or
[10, Theorem 3.1.1]. It is often encountered in polynomial interpolation [12,50]
but straightforwardly carries over to numerical integration. In this context, the
operator norms ∥I∥∞ and ∥CN∥∞ are respectively given by ∥I∥∞ = I[1] and

∥CN∥∞ =
N∑

n=1

|wn| =
N∑

n=1

|I[cn]|.

Recall that the cn’s are the cardinal functions (see §2.1). In fact, ∥CN∥∞ is a
common stability measure for QFs. This is because the propagation of input errors,
e. g., due to noise or rounding errors, can be bounded by ∥CN∥∞: Let f̃ : Ω → R
be a perturbed version of f , e. g. including noise or measurement errors, then

|CN [f ]− CN [f̃ ]| ≤ ∥CN∥∞∥f − f̃∥L∞ .

In other words, input errors are amplified at most by a factor that is equal to the
operator norm ∥CN∥∞. At the same time, we have

∥CN∥∞ ≥ CN [1],

where equality holds if and only if all quadrature weights are nonnegative. Also,
for this reason, the construction of QFs is mainly devoted to nonnegative QFs.

Definition 1 (Stability) We call the RBF-QF CN stable if ∥CN∥∞ = CN [1]. This
is the case if and only if I[cn] ≥ 0 for all cardinal functions cn, n = 1, . . . , N .

It is also worth noting that CN [1] = ∥I∥∞ if the QF is exact for constants. For
RBF-QFs, this is the case if at least constants are included in the underlying RBF
interpolant (d ≥ 0).
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3.2 Stability of RBF approximations

We now demonstrate how stability of the RBF-QF CN can be connected to stabil-
ity of the corresponding RBF interpolant. Indeed, the stability measure ∥CN∥∞
can be bounded from above by

∥CN∥∞ ≤ ∥I∥∞ΛN , with ΛN := sup
x∈Ω

N∑
n=1

|cn(x)|.

Here, ΛN is the Lebesgue constant corresponding to the recovery process f 7→ sN,df

(RBF interpolation). Obviously, ΛN ≥ 1. Also note that if 1 ∈ SN,d (the RBF-QF
is exact for constants), we observe

∥I∥∞ ≤ ∥CN∥∞ ≤ ∥I∥∞ΛN . (12)

Hence, the RBF-QF is stable (∥CN∥∞ = ∥I∥∞) if ΛN is minimal (ΛN = 1). We
briefly note that the inequality ∥CN∥∞ ≤ ∥I∥∞ΛN is sharp by considering the
following example.

Example 2 (∥CN∥∞ = ΛN ) Let us consider the domain Ω = [0, 1] with ω ≡ 1, which
immediately implies ∥I∥∞ = 1. In [7] it was shown that for the linear PHS φ(r) = r

and data points 0 = x1 < · · · < xN = 1 the corresponding cardinal functions cm are
simple hat functions. In particular, cm is the ordinary “connect the dots” piecewise
linear interpolant of the data pairs (xn, δnm), n = 1, . . . , N . Thus, ΛN = 1. At the
same time, this yields ∥CN∥∞ = 1 and therefore ∥CN∥∞ = ΛN .

Looking for minimal Lebesgue constants is a classical problem in approximation
and recovery theory [66,93]. For instance, it is well known that for polynomial
interpolation, even near-optimal sets of data points yield a Lebesgue constant that
grows as O(logN) in one dimension and as O(log2 N) in two dimensions; see [12,
6,8,50]. In the case of RBF interpolation, the Lebesgue constant and appropriate
data point distributions were studied, for instance, in [51,23,65,24]. That said,
the second inequality in (12) also tells us that in some cases, we can expect the
RBF-QF to have superior stability properties compared to the underlying RBF
interpolant. Finally, it should be stressed that (12) only holds if 1 ∈ SN,d. In
general, we have

CN [1] ≤ ∥CN∥∞ ≤ ∥I∥∞ΛN .

Still, this indicates that a recovery space SN,d is desired that yields a small
Lebesgue constant as well as the RBF-QF potentially having superior stability
compared to RBF interpolation.

4 Compactly supported radial basis functions

Despite the increased use of RBF-QFs in applications, provable stability results are
rarely encountered in the literature. As a first step towards a more mature stability
theory, we next prove stability of RBF-QFs for compactly supported kernels with
nonoverlapping supports. To be more precise, we subsequently consider RBFs
φ : R+

0 → R satisfying the following restrictions:
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(R1) φ is nonnegative, i. e., φ ≥ 0.
(R2) φ is uniformly bounded. W. l. o. g. we assume maxr∈R+

0
|φ(r)| = 1.

(R3) φ is compactly supported. W. l. o. g. we assume suppφ = [0, 1].

Already note that (R3) implies suppφn = Bε−1
n

(xn), where

Bε−1
n

(xn) := {x ∈ Ω | ∥xn − x∥2 ≤ ε−1
n }, φn(x) := φ(εn∥xn − x∥2).

The φn’s will have nonoverlapping support if the shape parameters εn are suffi-
ciently large. This can be ensured by the following condition:

ε−1
n ≤ hn := min

{
∥xn − xm∥2 | xm ∈ X \ {xn}

}
, n = 1, . . . , N (13)

Here, X denotes the set of data points. Finally, it should be pointed out that
throughout this section, we assume ω ≡ 1. This assumption is made for the main
result, Theorem 3, to hold. Its role will become clearer after consulting the proof
of Theorem 3 and is revisited in Remark 10.

4.1 Main result

Our main result is the following Theorem 3. After collecting a few preliminary
results, its proof is given in §4.4.

Theorem 3 Let (xn)n∈N be an equidistributed sequence in Ω and XN = {xn}Nn=1.

Furthermore, let ω ≡ 1, let φ : R+
0 → R be a RBF satisfying (R1) to (R3), and choose

the shape parameters εn such that the corresponding functions φn have nonoverlapping

support and equal moments (I[φn] = I[φm] for all n,m = 1, . . . , N). For every polyno-

mial degree d ∈ N there exists an N0 ∈ N such that for all N ≥ N0 the corresponding

RBF-QF (9) is stable. That is, I[cm] ≥ 0 for all m = 1, . . . , N .

Note that a sequence (xn)n∈N is equidistributed in Ω if and only if

lim
N→∞

|Ω|
N

N∑
n=1

g(xn) =

∫
Ω

g(x) dx

holds for all measurable bounded functions g : Ω → R that are continuous almost
everywhere (in the sense of Lebesgue), see [99]. For details on equidistributed
sequences, we refer to the monograph [60].4 Still, it should be noted that equidis-
tributed sequences are dense sequences with a special ordering. In particular, if
(xn)n∈N ⊂ Ω is equidistributed, then for every d ∈ N there exists an N0 ∈ N such
that XN is Pd(Ω)-unisolvent for all N ≥ N0; see [39]. This ensures that the corre-
sponding RBF interpolant is well-defined. It should also be noted that if Ω ⊂ RD

is bounded and has a boundary of measure zero (again in the sense of Lebesgue),
then an equidistributed sequence in Ω is induced by an equidistributed sequence
in the D-dimensional hypercube. More details on how an equidistributed sequence
in Ω can be constructed are provided in [39].

4 Examples for equidistributed sequences include low-discrepancy points [48,72,15,25] used
in quasi-Monte Carlo methods, such as the Halton points [45].
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Remark 4 It is always possible to ensure the equal moment condition, I[φn] =
I[φm] for all n,m = 1, . . . , N , in Theorem 3 by allowing the points closer to the
boundary to come with a smaller shape parameter. In this way, one can compensate
for the part of the support cut off by the boundary of the domain Ω. For instance, if
equally spaced points are used on [a, b] with a = x1 < · · · < xN = b, then the shape
parameter is εn = ε for the interior points (n = 2, . . . , N − 1) and ε1 = εN = ε/2
for the boundary points, where ε is a suitable chosen reference parameter. That
said, in our numerical tests, we observed Theorem 3 also to hold when the equal
moment condition was not satisfied.

Remark 5 It is not necessary to include polynomials in the RBF-QF (9) for The-
orem 3 to imply stability. Indeed, it is subsequently proved by Lemma 7 that the
RBF-QF (9) can also be stable when no polynomials are included. Sometimes,
the RBF-QF (9) is also referred to as the “RBF+poly-QF” when polynomials are
included. In this regard, Theorem 3 shows that stability of RBF-QFs carries over
to RBF+poly-QFs under the assumptions listed in Theorem 3. The influence of
including polynomials into the RBF-QFs on their stability is also discussed for
other kernels in §6.

4.2 Explicit representation of the cardinal functions

In preparation of proving Theorem 3 we derive an explicit representation for the
cardinal functions cn under the restrictions (R1)–(R3) and (13). In particular,
we use the concept of discrete orthogonal polynomials (DOPs). Let us define the
following discrete inner product corresponding to the data points XN = {xn}Nn=1:

[u, v]XN
=

|Ω|
N

N∑
n=1

u(xn)v(xn) (14)

Recall that the data points XN are coming from an equidistributed sequence and
are ensured to be Pd(Ω)-unisolvent for any degree d ∈ N if N is sufficiently large.
In this case, (14) is positive definite on Pd(Ω), i. e., [u, u]XN

> 0 if u ∈ Pd(Ω) and
u ̸= 0. We say that the basis {pk}Kk=1 of Pd(Ω), where K = dimPd(Ω), consists of
DOPs if

[pk, pl]XN
= δkl :=

{
1 if k = l,

0 otherwise,
k, l = 1, . . . ,K.

We now come to the desired explicit representation for the cardinal functions cm.

Lemma 6 (Explicit representation for cm) Let the RBF φ : R+
0 → R satisfy (R2)

and (R3). Furthermore, choose the shape parameters εn such that the corresponding

functions φn have nonoverlapping support and let the basis {pk}Kk=1 consists of DOPs.

Then, the cardinal function cm, m = 1, . . . , N , is given by

cm(x) = φm(x)− |Ω|
N

N∑
n=1

 K∑
k=1

pk(xm)pk(xn)

φn(x) +
|Ω|
N

K∑
k=1

pk(xm)pk(x).

(15)
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Proof Let m,n ∈ {1, . . . , N}. The restrictions (R2), (R3) together with the assump-
tion of the φn’s having nonoverlapping support yields φn(xm) = δmn. Hence, (6)
and (7) imply

α
(m)
n = δmn −

K∑
k=1

β
(m)
k pk(xn). (16)

If we substitute (16) into (3), we get

pl(xm)− N

|Ω|

K∑
k=1

β
(m)
k [pk, pl]XN

= 0, l = 1, . . . ,K.

Thus, if {pk}Kk=1 consists of DOPs, this gives us

β
(m)
l =

N

|Ω|pl(xm), l = 1, . . . ,K. (17)

Finally, substituting (17) into (16) yields

α
(m)
n = δmn − N

|Ω|

K∑
k=1

pk(xm)pk(xn),

and therefore the assertion.

It should be stressed that using a basis of DOPs is not necessary for imple-
menting RBF-QFs. In fact, the quadrature weights are—ignoring computational
considerations—independent of the polynomial basis w. r. t. which the matrix P

and the corresponding moments mpoly are formulated. We only use DOPs as a
theoretical tool to show stability of RBF-QFs.

4.3 Some low hanging fruits

Using the explicit representation (15) it is trivial to prove stability of RBF-QFs
(I[cm] ≥ 0 for all m = 1, . . . , N) when no polynomial term or only a constant is
included in the RBF interpolant.

Lemma 7 (No polynomials) Let the RBF φ : R+
0 → R satisfy (R1) to (R3) and

choose the shape parameters εn such that the corresponding functions φn have nonover-

lapping support. Assume that no polynomials are included in the corresponding RBF

interpolant (K = 0). Then, the associated RBF-QF is stable.

Proof It is obvious that cm(x) = φm(x). Thus, by restriction (R1), cm is nonneg-
ative and therefore I[cm] ≥ 0.

Lemma 8 (Only a constant) Let the RBF φ : R+
0 → R satisfy (R1) to (R3) and

choose the shape parameters εn such that the corresponding functions φn have nonover-

lapping support. Assume that only a constant is included in the corresponding RBF

interpolant (K = 1). Then, the associated RBF-QF is stable.
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Proof Let m ∈ {1, . . . , N}. If we choose p1 ≡ |Ω|−1/2, Lemma 6 yields

cm(x) = φm(x) +
1

N

1−
N∑

n=1

φn(x)

 .

Note that by (R2), (R3), and (13), we therefore have cm(x) ≥ φm(x). Hence, (R1)
implies the assertion.

4.4 Proof of the main results

The following technical Lemma will be convenient to the proof of Theorem 3.

Lemma 9 Let (xn)n∈N be equidistributed in Ω, XN = {xn}Nn=1, and let [·, ·]XN
be the

discrete inner product (14). Furthermore, let {p(N)
k }Kk=1 be a basis of Pd(Ω) consisting

of DOPs w. r. t. [·, ·]XN
. Then, for all k = 1, . . . ,K,

p
(N)
k → pk in L∞(Ω), N → ∞,

where {pk}Kk=1 is a basis of Pd(Ω) consisting of continuous orthogonal polynomials

satisfying ∫
Ω

pk(x)pl(x) dx = δkl, k, l = 1, . . . ,K.

Moreover, it holds that

lim
N→∞

∫
Ω

p
(N)
k (x)p

(N)
l (x) dx = δkl, k, l = 1, . . . ,K.

Proof The assertion is a combination of Lemma 11 and 12 from [38], where a
general positive weight function ω was considered. Here, we only consider the case
ω ≡ 1.

Essentially, Lemma 9 states that if a sequence of discrete inner products con-
verges to a continuous one, then also the corresponding DOPs—assuming that
the ordering of the elements does not change—converges to a basis of continuous
orthogonal polynomials. Furthermore, this convergence holds in a uniform sense.
We are now able to provide a proof for Theorem 3.

Proof (Proof of Theorem 3) Let d ∈ N and m ∈ {1, . . . , N}. Under the assumptions
of Theorem 3, we have I[φn] = I[φm] for all n = 1, . . . , N . Thus, Lemma 6implies

I[cm] = I[φm]

1− |Ω|
N

N∑
n=1

K∑
k=1

p
(N)
k (xm)p

(N)
k (xn)

+
|Ω|
N

K∑
k=1

p
(N)
k (xm)I[pk].

Let {p(N)
k }Kk=1 be a basis of Pd(Ω) consisting of DOPs. That is, [p

(N)
k , p

(N)
l ]XN

=

δkl. In particular, p
(N)
1 ≡ |Ω|−1/2. With this in mind, it is easy to verify that

|Ω|
N

N∑
n=1

K∑
k=1

p
(N)
k (xm)p

(N)
k (xn) =

K∑
k=1

p
(N)
k (xm)|Ω|1/2[p(N)

k , p
(N)
1 ]XN

= 1. (18)
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Thus, we have

I[cm] ≥ 0 ⇐⇒
K∑

k=1

p
(N)
k (xm)I[p

(N)
k ] ≥ 0.

Finally, observe that

K∑
k=1

p
(N)
k (xm)I[p

(N)
k ] = |Ω|1/2

K∑
k=1

p
(N)
k (xm)

∫
Ω

p
(N)
k (x)p

(N)
1 (x) dx,

under the assumption that ω ≡ 1. Lemma 9 therefore implies

lim
N→∞

K∑
k=1

p
(N)
k (xm)I[p

(N)
k ] = 1, (19)

which completes the proof.

Remark 10 (On the assumption that ω ≡ 1) The assumption that ω ≡ 1 in The-
orem 3 is necessary for (18) and (19) to both hold true. On the one hand, (18)
is ensured by the the DOPs being orthogonal w. r. t. the discrete inner product
(14). This discrete inner product can be considered as an approximation to the
continuous inner product ⟨u, v⟩ =

∫
Ω
u(x)v(x) dx. This also results in Lemma9.

On the other hand, in general, (19) only holds if the DOPs converge to a basis
of polynomials that is orthogonal w. r. t. the weighted continuous inner product
⟨u, v⟩ω =

∫
Ω
u(x)v(x)ω(x) dx. Hence, for (18) and (19) to both hold true at the

same time, we have to assume that ω ≡ 1. In this case, the two continuous inner
products are the same.

5 Provable stable least squares RBF-QFs

Theorem 3 shows that compactly supported RBFs (e. g. Wendland’s kernels) can
lead to stable interpolatory QFs if the shape parameter is so that none of the
shifted kernels have a region of overlap. In our numerical tests, we observed this
condition not just to be sufficient but also often being “close to” necessary. We
often found the RBF-QF even to have negative weights when the support regions
only slightly overlapped. At the same time, it is known that scaling Wendland’s
kernels so that the support decreases with the number of data points results in
the interpolation error to decrease only slowly or even to stagnate [28].

To provide a more practical procedure for ensuring stability of RBF-QFs, we
now demonstrate how a least-squares approach [49,43,37,38] can be used to con-
struct stable RBF-QFs by allowing the number of data points used for numerical
integration to be larger than the number of centers that are used to generate the
RBF approximation space. The subsequent least-squares approach is not limited
to compactly supported kernels and can be used to construct stable QFs that
are exact for fairly general RBF approximation spaces. The only restrictions are
that the RBF approximation space consists of continuous and bounded functions
and contains constants. Further, the number of data points used by quadrature
has to be sufficiently larger than the dimension of the RBF approximation space.
Although the least-squares approach has recently been extended to general multi-
dimensional function spaces that include constants in [39], the implications for
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RBF-QF have not yet been explored. To this end, we consider a given center point
set YM = {ym}Mm=1, generating the M-dimensional RBF space SM,d, and a larger

data point set XN = {xn}Nn=1 with N > M . Then, any QF CN [f ] =
∑N

n=1 wnf(xn)
that is exact for all f ∈ SM,d has to satisfy

b1(x1) . . . b1(xN )
...

...
bM (x1) . . . bM (xN )


︸ ︷︷ ︸

=B


w1

...
wN


︸ ︷︷ ︸

=w

=


I[b1]
...

I[bM ]


︸ ︷︷ ︸

=m

, (20)

where {bm}Mm=1 is a basis of SM,d. The matrix B in (20) depends on XN and YM
(as well as on the kernel φ and the polynomial degree d), which we denote by
B = B(XN , YM ). Assume that the data point set XN is SM,d-unisolvent, i. e.,

f(xn) = 0, ∀xn ∈ XN =⇒ f ≡ 0

holds for all f ∈ SM,d.
5 Then (20) has infinitely many solutions, which form a

(N −M)-dimensional affine linear subspace W . Every w ∈ W yields a QF that is
exact for all functions from the RBF space SM,d. We want to find a positive solution
w ∈ W so that the corresponding QF with weights w is stable (see Definition 1).
To this end, we use the following result from [39].

Lemma 11 (Corollary 3.6 in [39]) Let Ω ⊂ RD, ω : Ω → R+
0 be a Riemann inte-

grable weight function that is positive almost everywhere, and let F = span{ bm | m =
1, . . . ,M } be a finite-dimensional linear space of continuous and bounded functions

that contains constants. Further, let (xn)n∈N be an equidistributed sequence in Ω with

ω(xn) > 0 for all n ∈ N and denote the affine linear subspace of solutions of (20) by

WF . Then there exists an N0 ∈ N such that for all N ≥ N0 and discrete weights

rn,N = |Ω|ω(xn)/N, n = 1, . . . , N,

the corresponding least-squares QF

CLS
N [f ] =

N∑
n=1

wLS
n f(xn) with wLS = argmin

w∈WF

∥R−1/2w∥2,

where R−1/2 = diag(1/
√
r1, . . . , 1/

√
rN ), is positive and exact for all f ∈ F .

If we apply Lemma 11 to the RBF function space SM,d, we get Corollary 12.

Corollary 12 Let Ω ⊂ RD be compact and let ω : Ω → R+
0 be a Riemann integrable

weight function that is positive almost everywhere. Further, let d ≥ 0 be an integer,

let φ : R+
0 :→ R be a continuous and conditionally positive kernel of order d, and let

{ym}Mm=1 be a given set of centers. If (xn)n∈N is an equidistributed sequence in Ω with

ω(xn) > 0 for all n ∈ N, then there exists an N0 ∈ N such that for all N ≥ N0 and

discrete weights

rn,N = |Ω|ω(xn)/N, n = 1, . . . , N,

5 XN is SM,d-unisolvent, for instance, when the kernel φ is conditionally positive definite
of order d and XN is Pd(Ω)-unisolvent, which is a common assumption to ensure uniqueness
of RBF interpolants.
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the corresponding least-squares RBF-QF

CLS
N [f ] =

N∑
n=1

wLS
n f(xn) with wLS = argmin

w∈W
∥R−1/2w∥2, (21)

where R−1/2 = diag(1/
√
r1, . . . , 1/

√
rN ), is positive and exact for all f ∈ SM,d.

Proof We first note that the RBF function space SM,d, which we defined in §2, is
M-dimensional with M < ∞, i. e., finite-dimensional. Because the kernel φ and all
polynomials up to degree d are continuous, all functions from SM,d are continuous.

Further, since Ω ⊂ RD is compact and all functions from SM,d are continuous, they
are also bounded. Finally, d ≥ 0 implies that SM,d contains constants. Corollary
12 now follows from Lemma 11 with F = SM,d.

The weighted least-squares solution (21) has the advantage of being easy and
efficient to compute using standard tools from linear algebra. The above discussion
motivates us to formulate the following procedure to construct stable least-squares
RBF-QFs (LSRBF-QFs).

Algorithm 1 Constructing stable LSRBF-QFs

1: Input: Center points {ym}Mm=1, kernel φ, polynomial degree d ≥ 0, weight function ω,
and equidistributed data points (xn)n∈N

2: Output: An integer N ≥ M and a stable LSRBF-QF with points {xn}Nn=1 and weights

wLS ∈ RN

3: Set wLS equal to the weights of the interpolatory RBF-QF given by (10)
4: repeat
5: Increase the number of data points by one: N = N + 1
6: Set XN = {xn}Nn=1
7: Compute the matrix B = B(XN , YM ) as in (20)
8: Compute the weighted least-squares solution wLS as in (21)
9: Determine the smallest weight: wmin = min(wLS)
10: until wLS ≥ 0

Algorithm 1 assumes that XM is SM,d-unisolvent, since the interpolatory RBF-
QF given by (10) would not be defined otherwise. The possible advantage of stable
LSRBF-QFs compared to (potentially unstable) interpolatory RBF-QFs is demon-
strated in §7.2. Finally, we point out the potential application of stable LSRBF-
QFs to the construction of stable RBF methods for time-dependent hyperbolic
partial differential equations [91,42]. A crucial part of these methods is replacing
exact integrals involving the approximate solution—in this case, an (local) RBF
function— with a quadrature that should be as accurate as possible for functions
from the approximation space.

6 Polynomial terms do not influence asymptotic stability

Recall that Theorem 3 in §4 holds regardless of the degree d of the polynomial term
included in the RBF interpolant. Indeed, one might generally ask, “how are poly-
nomial terms influencing stability of the RBF-QF?”. In what follows, we address
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this question by showing that—under certain assumptions that are to be specified
yet—at least asymptotic stability of RBF-QFs is independent of polynomial terms.

Recently, the following explicit formula for the cardinal functions was derived
in [5,4]. Let us denote c(x) = [c1(x), . . . , cN (x)]T , where c1, . . . , cN are the cardinal
functions spanning SN,d; see (6) and (7). Provided that Φ and P in (5) have full
rank6,

c(x) = ĉ(x)−Bτ (x) (22)

holds. Here, ĉ(x) = [ĉ1(x), . . . , ĉN (x)]T are the cardinal functions corresponding
to the pure RBF interpolation without polynomials. That is, they span SN,−1. At
the same time, B and τ are defined as

B := Φ−1P
(
PTΦ−1P

)−1

, τ (x) := PT ĉ(x)− p(x)

with p(x) = [p1(x), . . . , pK(x)]T . Note that τ can be interpreted as a residual mea-
suring how well pure RBFs can approximate polynomials up to degree d. Recalling
(9), we see that (22) implies

w = ŵ −BI[τ ], (23)

where w is the vector of quadrature weights of the RBF-QF with polynomials
(d ≥ 0). At the same time, ŵ is the vector of weights corresponding to the pure
RBF-QF without polynomial augmentation (d = −1). Moreover, I[τ ] denotes the
componentwise application of the integral operator I. It was numerically demon-
strated in [5] that for fixed d ∈ N one has

max
x∈Ω

∥Bτ (x)∥ℓ∞ → 0 as N → ∞ (24)

if PHS are used. Note that, for fixed x ∈ Ω, Bτ (x) is an N-dimensional vector
and ∥Bτ (x)∥ℓ∞ denotes its ℓ∞-norm. That is, the maximum absolute value of the
N components. It should be pointed out that (24) was numerically demonstrated
only for PHS in [5]. However, the relations (22) and (23) hold for general RBFs as
well as varying shape parameters, assuming that Φ and P have full rank. Please
see [5, Section 4] for more details. We also remark that (24) implies the weaker
statement

∥Bτ (·)∥ℓ1 → 0 in L1(Ω) as N → ∞. (25)

Here, Bτ (·) denotes a vector-valued function, Bτ : Ω → RN . That is, for a fixed
argument x ∈ Ω, Bτ (x) is an N-dimensional vector in RN and ∥Bτ (x)∥ℓ1 denotes
the usual ℓ1-norm of this vector. Thus, (25) means that the integral of the ℓ1-
norm of the vector-valued function Bτ (·) converges to zero as N → ∞. The above
condition is not just weaker than (24) (see Remark 16), but also more convenient
to investigate stability of QFs. Indeed, we have the following results.

Theorem 13 Let ω ∈ L∞(Ω). Assume Φ and P in (5) have full rank, and assume

(25) holds. Then the two following statements are equivalent:

(a) ∥ŵ∥ℓ1 → ∥I∥∞ for N → ∞
(b) ∥w∥ℓ1 → ∥I∥∞ for N → ∞

6 P having full rank means that P has full column rank, i. e., the columns of P are linearly
independent. This is equivalent to the set of data points being Pd(Ω)-unisolvent.
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That is, either both the pure and polynomial augmented RBF-QF are asymptotically

stable or none is.

A short discussion on the term “asymptotically stable” is subsequently pro-
vided in Remark 14.

Proof Assume Φ and P in (5) have full rank, and assume (25) holds. Then (23)
follows and therefore

∥w∥ℓ1 ≤ ∥ŵ∥ℓ1 + ∥BI[τ ]∥ℓ1 ,
∥ŵ∥ℓ1 ≤ ∥w∥ℓ1 + ∥BI[τ ]∥ℓ1 .

(26)

Next, note that BI[τ ] = I[Bτ ], and thus

∥BI[τ ]∥ℓ1 =
N∑

n=1

∣∣I[(Bτ )n]
∣∣ ≤ I

 N∑
n=1

|(Bτ )n|

 = I [∥Bτ∥ℓ1 ] .

Since ω ∈ L∞(Ω), it follows that

∥BI[τ ]∥ℓ1 ≤ ∥ω∥L∞(Ω)

∫
Ω

∥Bτ (x)∥ℓ1 dx.

Hence, by assuming that (25) holds, we get ∥BI[τ ]∥ℓ1 → 0 for fixed d ∈ N and
N → ∞. Finally, substituting this into (26) yields the assertion.

Theorem 13 states that–under the listed assumptions—it is sufficient to con-
sider asymptotic stability of the pure RBF-QF. Once asymptotic (in)stability is
established for the pure RBF-QF, by Theorem 13, it also carries over to all cor-
responding augmented RBF-QFs. Interestingly, this follows our findings for com-
pactly supported RBFs reported in Theorem 3. There, conditional stability was
ensured independently of the degree of the augmented polynomials.

Remark 14 (Asymptotic stability) We call a sequence of QFs with weights wN ∈ RN

for N ∈ N asymptotically stable if ∥wN∥ℓ1 → ∥I∥∞ for N → ∞. Recall that
∥wN∥ℓ1 = ∥CN∥∞ if the weights wN correspond to the N-point QF CN . It is easy
to note that this is a weaker property than every single QF being stable, i. e.,
∥wN∥ℓ1 = ∥I∥∞ for all N ∈ N. That said, consulting (11), asymptotic stability
is sufficient for the QF to converge for all functions that can be approximated
arbitrarily accurate by RBFs w. r. t. the L∞(Ω)-norm. Of course, the propagation
of input errors might be suboptimal for every single QF.

Theorem 13 makes two assumptions. (1) Φ and P are full rank matrices; and
(2) the condition (24) holds. In the two following remarks, we comment on these
assumptions.

Remark 15 (On the first assumption of Theorem 13) Although requiring A and P

to have full rank might seem restrictive, there are often even more restrictive
constraints in practical problems. For instance, when solving partial differential
equations, the data points are usually required to be smoothly scattered so that
the distance between data points is kept roughly constant. It seems unlikely to
find A and P to be singular for such data points. See [5] for more details.
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Fig. 1: The stability measure ∥CN∥∞ for Wendland’s compactly supported RBF φ1,k with
smoothness parameters k = 0, 1, 2 on N = 100 equidistant data points. 1/h denotes the
threshold above which the basis functions have nonoverlapping support.

Remark 16 (On the second assumption of Theorem 13) The second assumption for
Theorem 13 to hold is that (25) is satisfied. That is, the integral of ∥Bτ (·)∥ℓ1 : Ω →
R+

0 converges to zero as N → ∞. This is a weaker condition than the maximum
value of ∥Bτ (·)∥ℓ1 converging to zero, which was numerically observed to hold for
PHS in [5]. The relation between these conditions can be observed by applying
Hölder’s inequality (see, for instance, [82, Chapter 3]). Let 1 ≤ p, q ≤ ∞ with
1/p+ 1/q = 1 and assume that ω ∈ Lq(Ω). Then we have∫

Ω

∥Bτ (x)∥ℓ1ω(x) dx ≤
(∫

Ω

∥Bτ (x)∥pℓ1 dx
)1/p(∫

Ω

ω(x)q dx

)1/q

.

Hence, ∥Bτ∥ℓ1 converging to zero in Lp(Ω) as N → ∞ for some p ≥ 1 immediately
implies (23). The special case of p = ∞ corresponds to (24).

7 Numerical results

We present a variety of numerical tests in one and two dimensions to demonstrate
our theoretical findings. A constant weight function ω ≡ 1 is used for simplicity.
All numerical tests presented here were generated in MATLAB7.

7.1 Compactly supported RBFs

Let us start with demonstrating Theorem 3 in one dimension. To this end, we
consider Wendland’s compactly supported RBFs in Ω = [0, 1].

Figure 1 illustrates the stability measure ∥CN∥∞ of Wendland’s compactly
supported RBF φ1,k with smoothness parameters k = 0, 1, 2 as well as the optimal
stability measure. The latter is given by CN [1] if no constants are included and by
∥I∥∞ = 1 if constants are included in the RBF approximation space. Furthermore,
N = 100 equidistant data points were used, including the end points, x1 = 0 and
xN = 1, and the (reference) shape parameter ε was allowed to vary. Finally, 1/h
denotes the threshold above which the compactly supported RBFs have nonover-
lapping support. We note that the RBF-QFs are stable for sufficiently small shape

7 See https://github.com/jglaubitz/stability_RBF_CFs

https://github.com/jglaubitz/stability_RBF_CFs
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Fig. 2: The stability measure ∥CN∥∞ for Wendland’s compactly supported RBF φ1,k with
smoothness parameters k = 0, 1, 2 on N = 100 Halton points. 1/h denotes the threshold above
which the basis functions have nonoverlapping support.

parameters. At the same time, we can also observe the RBF-QF be stable for
ε ≥ 1/h. It can be argued that this is in accordance with Theorem 3. Recall that
Theorem 3 essentially states that for ε ≥ 1/h, and assuming that all basis func-
tions have equal moments (I[φn] = I[φm] for all n,m), the corresponding RBF-QF
(including polynomials of any degree) is stable if a sufficiently large number of
equidistribiuted data points is used. Here, the equal moments condition was en-
sured by choosing the shape parameter as εn = ε for the interior data points
(n = 2, . . . , N − 1) and as ε1 = εN = ε/2 for the boundary data points.

That said, at least numerically, we observe that it is possible to drop this equal
moment condition. This is demonstrated by Figure 2. There, we perform the same
test as in Figure 1, except choosing all the shape parameters to be equal (εn = ε,
n = 1, . . . , N) and going over to nonequidistant Halton points. Nevertheless, we
can see in Figure 2 that for ε ≥ 1/h the RBF-QFs are still stable.

Next, we extend our numerical tests to the following Genz test functions [34]
(also see [9]) on Ω = [0, 1]q:

g1(x) = cos

2πb1 +

q∑
i=1

aixi

 , g2(x) =

q∏
i=1

(
a−2
i + (xi − bi)

2
)−1

,

g3(x) =

1 +

q∑
i=1

aixi

−(q+1)

, g4(x) = exp

−
q∑

i=1

a2i (xi − bi)
2


(27)

Here, q denotes the dimension under consideration and is henceforth chosen as
q = 2. These functions are designed to have different complex characteristics for
numerical integration routines. The vectors a = (a1, . . . , aq)

T and b = (b1, . . . , bq)
T

respectively contain (randomly chosen) shape and translation parameters. For each
case, the experiment was repeated 100 times. At the same time, for each experi-
ment, the vectors a and b were drawn randomly from [0, 1]2. For reasons of space,
we only report the results for g1 and k = 1 in Figure 3. As before, the smallest
errors are found for shape parameters corresponding to the stable RBF-QF. The
results for g2, g3, g4 and k = 0, 2 were similar and are therefore not reported here.
Since it might be hard to identify the smallest errors as well as the corresponding
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Fig. 3: Error analysis for Wendland’s compactly supported RBF φ2,k and the first Genz test

function g1 on Ω = [0, 1]2; see (27). In all cases, N = 400 data points (equidistant, Halton,
or random) were considered. 1/h denotes the threshold above which the basis functions have
nonoverlapping support.

shape parameter and stability measure from Figure 3, these are listed in Table
2 for d = 0, 1 together with the corresponding values for the fourth Genz test
function g4.

We see in Figure 3 that for d = −1 and increasing ε, the error increases. This
is because the supports of the translated kernels (disks in 2d) become smaller,
resulting in “holes” in the pure RBF interpolant, i. e., regions where it is zero. In
Figure 3c, for random points and d = −1, the supports become so small that all the
quadrature weights become zero. The holes vanish if at least a constant is included
in the RBF interpolant, which explains the reduced errors for the same value of
ε when d = 0 or d = 1. Finally, even for nonoverlapping supports (ε = 1/h), the
area of the holes in the pure RBF part of the interpolant can converge to zero8 as
N → ∞.

8 Assuming the sequence of points is dense in Ω
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g1 g4

emin ε ∥CN∥∞ emin ε ∥CN∥∞
Equidistant Points

d = 0 2.2e-05 2.6e+00 1.0e+00 6.1e-05 2.6e+00 1.0e+00

d = 1 2.2e-05 2.6e+00 1.0e+00 6.2e-05 2.6e+00 1.0e+00

Halton Points

d = 0 4.7e-05 5.5e-01 1.0e+00 1.9e-05 5.5e-01 1.0e+00

d = 1 1.1e-05 5.5e-01 1.0e+00 1.6e-05 5.5e-01 1.0e+00

Random Points

d = 0 6.0e-04 2.5e-01 1.0e+00 1.6e-04 2.9e-01 1.0e+00

d = 1 2.2e-04 4.0e-01 1.0e+00 1.7e-04 4.0e-01 1.0e+00

Table 2: Minimal errors, emin, for the first and fourth Genz test function, g1 and g4, together
with the corresponding shape parameter, ε, and stability measure, ∥CN∥∞. Wendland’s com-
pactly supported RBF with smoothness parameter k = 1 was used in all cases.

Remark 17 If the RBF interpolant sN,df convergences to f in L1(Ω) as N → ∞,
we get

∣∣CN [f ]− I[f ]
∣∣ = ∣∣I[sN,df ]− I[f ]

∣∣ ≤ ∫
Ω

|(sN,df)(x)− f(x)|dx → 0, N → ∞,

and therefore CN [f ] → I[f ] as N → ∞. For convergence results of RBF inter-
polants, we refer to the monographs [13,98,28]. That said, we point out that the
convergence of sN,df to f depends on the area not covered by the supports. Let
us denote the area that is covered by the supports by Ωsupp(φ,XN,ε), then the
area that is not covered by the supports is Ω \Ωsupp(φ,XN,ε). A rough but simple

lower bound for the L1(Ω)-error of sN,df and f is as follows. Note that the RBF
interpolant is zero on Ω \Ωsupp(φ,XN,ε) and thus

∫
Ω

|(sN,df)(x)− f(x)|dx ≥
∫
Ω\Ωsupp(φ,XN,ε)

|f(x)|dx, (28)

where the right-hand side is the average absolute value of f in the area not covered
by the supports. (28) indicates that convergence includes the rate with which
“holes” go to zero.

In Figures 4 and 5, we relate the error in computing the integral of g1 on Ω =
[0, 1]2 to the portion of the domain that is not covered by the possibly overlapping
supports of the Wendland functions. For equidistant points, the horizontal/vertical
distance between adjacent points is (i.e. xij and x(i±1)j or xij and xi(j±1)) is

1/(
√
N − 1), so as long as ε > 2(

√
N − 1) the circles do not overlap and the total

area that is not covered by the supports is given by

1− π

ε2
(
√
N − 1)2.
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Fig. 4: Error of CN [g1] on Ω = [0, 1]2 and the area not covered by the supports of the Wendland
functions for various N and ε when no constant is included in the RBF interpolant

Once ε ≤ 2(
√
N − 1), the circles overlap, and the total area that is not covered by

the supports becomes

1− π

ε2
(
√
N − 1)2 +

2(θ − sin(θ))

ε2
(
√
N − 1)2,

where

θ = 2sin−1


√
4(
√
N − 1)2 − ε2

2(
√
N − 1)

 .

Finally, when ε ≤
√
2(
√
N − 1), the area that is not covered by the supports is 0.

Figure 4 illustrates the error (left frame) and the area not covered by the supports
(right frame) in this situation for various N and ε. The dashed lines represent the
cases ε = 2(

√
N − 1) and ε =

√
2(
√
N − 1). On the other hand, Figure 5 illustrates

the same test for an RBF interpolant that includes a constant. It demonstrates
the improvement when the constant basis element covers the holes.

7.2 Stable LSRBF-QFs

We demonstrate that the least-squares approach discussed in §5 can stabilize RBF-
QFs. We repeat that stable LSRBF-QF can be constructed for any RBF function
space as long as we are willing to oversample, i. e., the number of data points used
by the quadrature is larger than the dimension of the RBF function space. In
other words, there are more data points than center points. Notably, oversampling
was used in some recent works [90,91,42] to stabilize RBF methods for partial
differential equations, and it would be of interest to combine this with LSRBF-
QF in future works. Here, we demonstrate the possible advantage of LSRBF-QFs
compared to interpolatory RBF-QFs (data and center points are the same) for
the RBF function space spanned by a constant and the functions φ(ε∥x−ym∥) on
Ω = [0, 1]2 using a Gaussian kernel φ(r) = exp(−r2) and a constant (independent
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Fig. 5: Error of CN [g1] on Ω = [0, 1]2 and the area not covered by the supports of the Wendland
functions for various N and ε when a constant is included in the RBF interpolant
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Fig. 6: Random points and the corresponding minimal and maximal distance, (29) and (30).
The minimal distance is the smallest distance between any two distinct points. The maximal
distance is the largest distance between any point and the closest distinct point.

of the center and data points) shape parameter ε = 0.8. The center and data
points, {ym}Mm=1 and {xn}Nn=1, are chosen as the first M and N elements of the
same sequence of random points, respectively.

Figure 6a illustrates the first 64 random points from the sequence used in our
tests. Figure 6b visualizes the minimal and maximal distance of the random data
point set XN = {xn}Nn=1 for different values for N . We define the minimal distance
of XN , denoted by hmin(XN ), as the smallest distance between any two distinct
points,

hmin(XN ) = min
xn∈XN

min
xm∈XN\xn

∥xm − xn∥2. (29)

At the same time, we define the maximal (filling) distance of XN , denoted by
hmax(XN ), as the largest distance between any point and the closest distinct point,

hmax(XN ) = max
xn∈XN

min
xm∈XN\xn

∥xm − xn∥2. (30)
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Fig. 7: Stability measure and errors for Genz’ first test function g1 on Ω = [0, 1]2 with ω ≡ 1
using an interpolatory RBF-QF and a stable LSRBF-QF. Random points and a Gaussian
kernel with a constant shape parameter were used.

Figure 7a provides the values of the stability measure for the interpolatory
RBF-QF (“RBF”) and the stable LSRBF-QF (“LSRBF”). For the same center
points (same RBF function space for which the quadrature is exact), the LSRBF-
QF uses more data points to evaluate the integrand than the interpolatory RBF-
QF. The other way around, for the same data points, the interpolatory RBF-QF
is exact for a larger RBF function space than the LSRBF-QF. At the same time,
the interpolatory RBF-QF is found to have a suboptimal stability measure (due
to negative weights), which results in stability issues. In contrast, in all cases, the
LSRBF-QF has an optimal stability measure (due to the weights being positive).
Further, Figure 7b reports on the errors of the interpolatory RBF-QF and the
stable LSRBF-QF on N random points applied to Genz’ first test function g1
on Ω = [0, 1]2 with ω ≡ 1. In this example, both formulas perform similarly. In
Figures 7c and 7d, we repeated this experiment but added uniformly distributed
noise of magnitude 10−4 and 10−2 to the function values at the data points. The
accuracy of the interpolatory RBF-QF deteriorates notably stronger than that of
the LSRBF-QF in the presence of noise due to the improved stability of the latter.
We made the same observation also for other point distributions and Genz test
functions.

The LSRBF-QF having an optimal stability measure (being positive) for suffi-
ciently large N can be explained by Corollary 12 since we are given a compact do-
main, a positive weight function, and a function space of continuous and bounded



24 J. Glaubitz and J.A. Reeger

10
0

10
1

10
2

10
1

10
2

10
3

(a) Random points

10
0

10
1

10
2

10
1

10
2

10
3

(b) Halton points

Fig. 8: The smallest number of random/Halton data points, N , needed to find a positive
LSRBF-QF that is exact for the RBF approximation space induced by the first M ran-
dom/Halton center points.
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Fig. 9: Halton points and the corresponding minimal and maximal distance, (29) and (30).
The minimal distance is the smallest distance between any two distinct points. The maximal
distance is the largest distance between any point and the closest distinct point.

functions that contains constants. Figure 8 reports the smallest number of ran-
dom/Halton data points N we needed to find a positive LSRBF-QF that is exact
for the RBF approximation space induced by using the first M random/Halton
points as centers. To also illustrate the semi-random Halton points, Figure 9 vi-
sualizes the first 64 Halton points and their minimal and maximal distance for
an increasing number N . Considering the model “N = C ·Ms” and performing a
least-squares fit for the parameters C and s given the data illustrated in Figure 8
revealed the following: For random data and center points, we found C ≈ 2.1 ·10−1

and s ≈ 1.9. For Halton data and center points, we found C ≈ 4.9 · 10−2 and
s ≈ 2.1. In both cases, we found N to be roughly linearly proportional to the
squared dimension of the approximation space for which the positive least-squares
quadrature is exact. Similar ratios were also observed in [49,43,37,36,38,17,18,67,
39]. It might be argued that the observed ratio between N and M is necessary for
the LSRBF-QF to avoid inherent stability issues predicted by the ’impossibility’
theorem proved in [75], which states that any procedure for approximating uni-
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variate functions from equally spaced samples that converges exponentially fast
must also be exponentially ill-conditioned.

Finally, we address the convergence rate observed in Figure 7b. In theory, Gaus-
sian RBF interpolants can converge almost exponentially fast9 in the L∞(Ω) with
the maximal (filling) distance. For simplicity, we considered the model “|I[f ] −
CN [f ]| = exp(−Chmax(XN )s)” and performing a least-squares fit for the param-
eters C and s using the data presented in Figure 7b. For the interpolatory RBF-
QF, we found C ≈ 2.0 and s ≈ −1.1. For the LSRBF-QF, we found C ≈ 1.8 and
s ≈ −1.3. Both QFs converge roughly exponentially, with the LSRBF-QF converg-
ing slightly faster than the interpolatory RBF-QF, even in the noiseless case. A
more general comment on the convergence of LSRBF-QFs is offered in Remark
18.

Remark 18 (Convergence of LSRBF-QF) Assume that the positive LSRBF-QF CN

on Ω is exact for all functions from the RBF approximation space SM,d(Ω) with
d ≥ 0. Due to CN being positive and exact for constants, we have ∥CN∥∞ = ∥I∥∞
and the Lebesgue inequality (11) implies

|CN [f ]− I[f ]| ≤ 2∥I∥∞

(
inf

s∈SM,d(Ω)
∥f − s∥L∞(Ω)

)

for any continuous f : Ω → R. Now consider a sequence of positive LSRBF-
QFs (CN )N∈N with CN being exact for SM,d(Ω) with M = M(N). Assume that
SM,d(Ω) ⊂ SM+1,d(Ω) for all M ∈ N and that the given function f lies in⋃

M∈N SM,d(Ω). Thus, if M(N) → ∞ for N → ∞, then (CN [f ])N∈N converges
to I[f ] as N → ∞. Let us now assume that the ratio between M and N is of the
form N = O(M2), which we numerically observed to be true. The convergence rate
of the LSRBF-QF for f is then the square root of the convergence rate of the best
approximation of f from the sequence of approximation spaces (SM,d(Ω))N∈N for
the L∞(Ω)-norm.

7.3 Polyharmonic splines

We end this section by providing a similar investigation for PHS. Again, the first
and fourth Genz test functions on Ω = [0, 1]2 are considered. However, no shape
parameter is involved for PHS, and we consider their stability and accuracy for
an increasing number of Halton points. Figure 10 shows the results for the cubic
(φ(r) = r3) and quintic (φ(r) = r5) PHS RBF. We either added no polynomials
(d = −1) or polynomial terms of order d = 0 and d = 1. Figure 10 shows that all
RBF-QFs converge while being stable or at least asymptotically stable, indepen-
dent of the added polynomial term. In particular, we see that adding polynomial
terms does not affect the asymptotic stability of the PHS RBF-QFs, per our re-
sults from §6. Finally, we see that the convergence rate of the RBF-QF depends
on the kernel rather than being governed by the polynomial degree d. The added
polynomial term reduces the error of the PHS RBF-QF but not the convergence

9 For a function from the appropriate native function space, the L∞(Ω)-error between the
function and its RBF interpolant is in O(exp(−C log hmax(XN )/hmax(XN ))); see [98].
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Fig. 10: Error analysis for the cubic (φ(r) = r3) and quintic (φ(r) = r5) PHS RBF in two
dimensions using Halton points. The first and fourth Genz test functions g1, g4 were considered
on Ω = [0, 1]2; see (27).

rate. We observe second-order convergence for the cubic PHS RBF and third-order
convergence for the quintic PHS RBF.10

8 Concluding thoughts

In this work, we investigated stability of RBF-QFs. We started by showing that
stability of RBF-QFs can be connected to the famous Lebesgue constant of the
underlying RBF interpolant. This indicates that RBF-QFs might benefit from
low Lebesgue constants. Furthermore, stability was proven for RBF-QFs based on
compactly supported RBFs under the assumption of a sufficiently large number
of (equidistributed) data points and the shape parameter(s) lying above a certain
threshold. Finally, we showed that under certain conditions, asymptotic stability
of RBF-QFs is independent of polynomial terms included in RBF approximations.
A series of numerical tests accompanied the above findings.

Acknowledgements We thank Toni Karvonen for pointing out the connection between RBF-
QFs and Bayesian quadrature. We also thank the anonymous reviewers for their helpful com-
ments on an earlier manuscript draft.

10 In Figure 10a the cubic PHS RBF-QF first shows third-order convergence before it then
settles for second-order convergence. We believe that the observed initial third-order decrease
in the error is a combination of the second-order approximation rate of the cubic PHS-RBF
interpolant and the decreasing Lebesgue constant ∥CN∥∞ in (11). Once the QF is stable
(∥CN∥∞ = ∥I∥∞), the second-order approximation rate dominates the error of the QF, and
we thus start to observe second-order convergence.
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A Moments

Henceforth, we provide the moments for different RBFs. The one-dimensional case is discussed
in §A.1, while two-dimensional moments are derived in §A.2.

A.1 One-dimensional moments

Let us consider the one-dimensional case of Ω = [a, b] and distinct data points x1, . . . , xN ∈
[a, b].

A.1.1 Gaussian RBF

For φ(r) = exp(−ε2r2), the moment of the translated Gaussian RBF,

mn = m(ε, xn, a, b) =

∫ b

a
exp(−ε2|x− xn|2) dx, (31)

is given by

mn =

√
π

2ε

[
erf(ε(b− xn))− erf(ε(a− xn))

]
.

Here, erf(x) = 2/
√
π
∫ x
0 exp(−t2) dt denotes the usual error function, [74, Section 7.2].

A.1.2 Polyharmonic splines

For φ(r) = rk with odd k ∈ N, the moment of the translated PHS,

mn = m(xn, a, b) =

∫ b

a
φ(x− xn) dx,

is given by

mn =
1

k + 1

[
(a− xn)

k+1 + (b− xn)
k+1

]
, n = 1, 2, . . . , N.

For φ(r) = rk log r with even k ∈ N, on the other hand, we have

mn = (xn − a)k+1

[
log(xn − a)

k + 1
−

1

(k + 1)2

]
+ (b− xn)

k+1

[
log(b− xn)

k + 1
−

1

(k + 1)2

]
.

Note that for xn = a the first term is zero, while for xn = b the second term is zero.

A.2 Two-dimensional moments

Here, we consider the two-dimensional case, where the domain is given by a rectangular of the
form Ω = [a, b]× [c, d].

A.2.1 Gaussian RBF

For φ(r) = exp(−ε2r2), the two-dimensional moments can be written as products of one-
dimensional moments. In fact, we have∫ b

a

∫ d

c
exp(−ε2∥(x− xn, y − yn∥22) = m(ε, xn, a, b) ·m(ε, yn, c, d).

Here, the multiplicands on the right-hand side are the one-dimensional moments from (31).
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Fig. 11: Illustration of how the moments can be computed on a rectangle in two dimensions

A.2.2 Polyharmonic splines and other RBFs

If it is not possible to trace the two-dimensional moments back to the one-dimensional ones,
we are in need of another approach. This is, for instance, the case for PHS. We start by noting
that for a data points (xn, yn) ∈ [a, b] × [c, d] the corresponding moment can be rewritten as
follows:

m(xn, yn) =

∫ b

a

∫ d

c
φ(∥(x− xn, y − yn)

T ∥2) dy dx =

∫ b̃

ã

∫ d̃

c̃
φ(∥(x, y)T ∥2) dy dx

with translated boundaries ã = a − xn, b̃ = b − xn, c̃ = c − yn, and d̃ = d − yn. We are not
aware of an explicit formula for such integrals for most popular RBFs readily available from
the literature. That said, such formulas were derived in [79,81,80] (also see [95, Chapter 2.3])
for the integral of φ over a right triangle with vertices (0, 0)T , (α, 0)T , and (α, β)T . Assuming

ã < 0 < b̃ and c̃ < 0 < d̃, we therefore partition the shifted domain Ω̃ = [ã, b̃]× [c̃, d̃] into eight
right triangles. Denoting the corresponding integrals by I1, . . . , I8, the moment m(xn, yn)
correspond to the sum of these integrals. The procedure is illustrated in Figure 11.

The special cases where one (or two) of the edges of the rectangle align with one of the axes
can be treated similarly. However, in this case, a smaller subset of the triangles is considered.
We leave the details to the reader, and note the following formula for the weights:

m(xn, yn) =

[
1− δ0

(
b̃d̃

)]
(I1 + I2) +

[
1− δ0

(
ãd̃

)]
(I3 + I4)

+
[
1− δ0 (ãc̃)

]
(I5 + I6) +

[
1− δ0

(
b̃c̃
)]

(I7 + I8)

Here, δ0 denotes the usual Kronecker delta defined as δ0(x) = 1 if x = 0 and δ0(x) = 0 if

x ̸= 0. The above formula holds for general ã, b̃, c̃, and d̃. Note that all the right triangles can
be rotated or mirrored in a way that yields a corresponding integral of the form

Iref(α, β) =

∫ α

0

∫ β
α
x

0
φ(∥(x, y)T ∥2) dy dx. (32)

More precisely, we have

I1 = Iref(b̃, d̃), I2 = Iref(d̃, b̃), I3 = Iref(d̃,−ã), I4 = Iref(−ã, d̃),

I5 = Iref(−ã,−c̃), I6 = Iref(−c̃,−ã), I7 = Iref(−c̃, b̃), I8 = Iref(b̃,−c̃).
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φ(r) Iref(α, β)

r2 log r α
144

[
24α3 arctan

(
β/α

)
+ 6β(3α2 + β2) log(α2 + β2)− 33α2β − 7β3

]
r3 α

40

[
3α4arcsinh

(
β/α

)
+ β(5α2 + 2β2)

√
α2 + β2

]
r5 α

336

[
15α6arcsinh

(
β/α

)
+ β(33α4 + 26α2β2 + 8β4)

√
α2 + β2

]
r7 α

3346

[
105α8arcsinh

(
β/α

)
+ β(279α6 + 326α4β2 + 200α2β4 + 48β6)

√
α2 + β2

]
Table 3: The reference integral Iref(α, β)—see (32)—for some PHS

Finally, explicit formulas of the reference integral Iref(α, β) over the right triangle with vertices
(0, 0)T , (α, 0)T , and (α, β)T for some PHS can be found in Table 3. Similar formulas are also
available, for instance, for Gaussian, multiquadric and inverse multiquadric RBFs.

We note that the approach presented above is similar to the one in [86], where the domain
Ω = [−1, 1]2 was considered. Later, the same authors extended their findings to simple poly-
gons [85] using the Gauss–Grenn theorem. Also see the recent work [87], addressing polygonal
regions that may be nonconvex or even multiply connected, and references therein. It would be
of interest to see if these approaches also carry over to computing products of RBFs correspond-
ing to different centers or products of RBFs and their partial derivatives, again corresponding
to different centers. Such integrals occur as elements of mass and stiffness matrices in numer-
ical PDEs. In particular, they are desired to construct linearly energy stable (global) RBF
methods for hyperbolic conservation laws [36,40,41].
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3. Babuška, I., Melenk, J.M.: The partition of unity method. International Journal for Nu-
merical Methods in Engineering 40(4), 727–758 (1997)

4. Bayona, V.: Comparison of moving least squares and RBF+poly for interpolation and
derivative approximation. Journal of Scientific Computing 81(1), 486–512 (2019)

5. Bayona, V.: An insight into RBF-FD approximations augmented with polynomials. Com-
puters & Mathematics with Applications 77(9), 2337–2353 (2019)

6. Bos, L., Caliari, M., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation
at the Padua points: the generating curve approach. Journal of Approximation Theory
143(1), 15–25 (2006)

7. Bos, L., De Marchi, S.: Univariate radial basis functions with compact support cardinal
functions. East Journal on Approximations 14(1), 69 (2008)

8. Bos, L., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at the Padua
points: the ideal theory approach. Numerische Mathematik 108(1), 43–57 (2007)



30 J. Glaubitz and J.A. Reeger

9. van den Bos, L., Sanderse, B., Bierbooms, W.: Adaptive sampling-based quadrature rules
for efficient Bayesian prediction. Journal of Computational Physics p. 109537 (2020)

10. Brass, H., Petras, K.: Quadrature Theory: The Theory of Numerical Integration on a
Compact Interval. No. 178 in Mathematical Surveys and Monographs. AMS (2011)

11. Briol, F.X., Oates, C.J., Girolami, M., Osborne, M.A., Sejdinovic, D.: Probabilistic inte-
gration: A role in statistical computation? Statistical Science 34(1), 1–22 (2019)

12. Brutman, L.: Lebesgue functions for polynomial interpolation-a survey. Annals of Numer-
ical Mathematics 4, 111–128 (1996)

13. Buhmann, M.D.: Radial basis functions. Acta Numerica 9, 1–38 (2000)
14. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge

University Press (2003)
15. Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numerica 1998, 1–49

(1998)
16. Cavoretto, R., De Rossi, A., Sommariva, A., Vianello, M.: RBFCUB: A numerical package

for near-optimal meshless cubature on general polygons. Applied Mathematics Letters
125, 107704 (2022)

17. Cohen, A., Davenport, M.A., Leviatan, D.: On the stability and accuracy of least squares
approximations. Foundations of Computational Mathematics 13(5), 819–834 (2013)

18. Cohen, A., Migliorati, G.: Optimal weighted least-squares methods. The SMAI Journal of
Computational Mathematics 3, 181–203 (2017)

19. Cools, R.: Constructing cubature formulae: The science behind the art. Acta Numerica 6,
1–54 (1997)

20. Cools, R.: An encyclopaedia of cubature formulas. Journal of Complexity 19(3), 445–453
(2003)

21. Cools, R., Mysovskikh, I., Schmid, H.: Cubature formulae and orthogonal polynomials.
Journal of Computational and Applied Mathematics 127(1-2), 121–152 (2001)

22. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Courier Corporation (2007)
23. De Marchi, S.: On optimal center locations for radial basis function interpolation: compu-

tational aspects. Rend. Splines Radial Basis Functions and Applications 61(3), 343–358
(2003)

24. De Marchi, S., Schaback, R.: Stability of kernel-based interpolation. Advances in Compu-
tational Mathematics 32(2), 155–161 (2010)

25. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: The quasi-Monte Carlo
way. Acta Numerica 22, 133 (2013)

26. Engels, H.: Numerical Quadrature and Cubature. Academic Press (1980)
27. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis

functions. In: Proceedings of Chamonix, vol. 1997, pp. 1–8. Vanderbilt University Press
Nashville, TN (1996)

28. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific
(2007)

29. Flyer, N., Barnett, G.A., Wicker, L.J.: Enhancing finite differences with radial basis func-
tions: experiments on the Navier–Stokes equations. Journal of Computational Physics
316, 39–62 (2016)

30. Folland, G.B.: How to integrate a polynomial over a sphere. The American Mathematical
Monthly 108(5), 446–448 (2001)

31. Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions With Applications to the
Geosciences. SIAM (2015)

32. Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numerica 24,
215–258 (2015)

33. Fuselier, E., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Kernel based
quadrature on spheres and other homogeneous spaces. Numerische Mathematik 127(1),
57–92 (2014)

34. Genz, A.: Testing multidimensional integration routines. In: Proc. of International Con-
ference on Tools, Methods and Languages for Scientific and Engineering Computation, pp.
81–94 (1984)

35. Glasserman, P.: Monte Carlo Methods in Financial Engineering, vol. 53. Springer Science
& Business Media (2013)

36. Glaubitz, J.: Shock Capturing and High-Order Methods for Hyperbolic Conservation Laws.
Logos Verlag Berlin GmbH (2020)

37. Glaubitz, J.: Stable high order quadrature rules for scattered data and general weight
functions. SIAM Journal on Numerical Analysis 58(4), 2144–2164 (2020)



Towards stability results for global RBF-QFs 31

38. Glaubitz, J.: Stable high-order cubature formulas for experimental data. Journal of Com-
putational Physics p. 110693 (2021)

39. Glaubitz, J.: Construction and application of provable positive and exact cubature for-
mulas. IMA Journal of Numerical Analysis (2022). DOI 10.1093/imanum/drac017. URL
https://doi.org/10.1093/imanum/drac017. Drac017

40. Glaubitz, J., Gelb, A.: Stabilizing radial basis function methods for conservation laws using
weakly enforced boundary conditions. Journal of Scientific Computing 87(2), 1–29 (2021)
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42. Glaubitz, J., Nordström, J., Öffner, P.: Energy-stable global radial basis function methods
on summation-by-parts form. arXiv preprint arXiv:2204.03291 (2022)
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