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Background.—The International Classification of Headache Disorders provides criteria for the diagnosis and subclassifi-
cation of migraine. Since there is no objective gold standard by which to test these diagnostic criteria, the criteria are based on
the consensus opinion of content experts. Accurate migraine classifiers consisting of brain structural measures could serve as an
objective gold standard by which to test and revise diagnostic criteria. The objectives of this study were to utilize magnetic
resonance imaging measures of brain structure for constructing classifiers: (1) that accurately identify individuals as having
chronic vs episodic migraine vs being a healthy control; and (2) that test the currently used threshold of 15 headache days/month
for differentiating chronic migraine from episodic migraine.

Methods.—Study participants underwent magnetic resonance imaging for determination of regional cortical thickness,
cortical surface area, and volume. Principal components analysis combined structural measurements into principal components
accounting for 85% of variability in brain structure. Models consisting of these principal components were developed to achieve
the classification objectives. Tenfold cross validation assessed classification accuracy within each of the 10 runs, with data from
90% of participants randomly selected for classifier development and data from the remaining 10% of participants used to test
classification performance. Headache frequency thresholds ranging from 5-15 headache days/month were evaluated to deter-
mine the threshold allowing for the most accurate subclassification of individuals into lower and higher frequency subgroups.

Results.—Participants were 66 migraineurs and 54 healthy controls, 75.8% female, with an average age of 36 +/− 11 years.
Average classifier accuracies were: (1) 68% for migraine (episodic + chronic) vs healthy controls; (2) 67.2% for episodic
migraine vs healthy controls; (3) 86.3% for chronic migraine vs healthy controls; and (4) 84.2% for chronic migraine vs episodic
migraine. The classifiers contained principal components consisting of several structural measures, commonly including the
temporal pole, anterior cingulate cortex, superior temporal lobe, entorhinal cortex, medial orbital frontal gyrus, and pars
triangularis. A threshold of 15 headache days/month allowed for the most accurate subclassification of migraineurs into lower
frequency and higher frequency subgroups.

Conclusions.—Classifiers consisting of cortical surface area, cortical thickness, and regional volumes were highly accurate
for determining if individuals have chronic migraine. Furthermore, results provide objective support for the current use of 15
headache days/month as a threshold for dividing migraineurs into lower frequency (ie, episodic migraine) and higher frequency
(ie, chronic migraine) subgroups.
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The diagnosis and subclassification of migraine
are based upon a patient’s report of symptoms and
exclusion of secondary headache disorders. Formal
diagnostic criteria for migraine are available in the
International Classification of Headache Disorders
(ICHD), the latest version being the ICHD-3 beta.1

These diagnostic criteria were devised according to
the consensus opinion of a group of headache experts
who are members of the International Headache
Society Classification Committee. Publication of cri-
teria for diagnosing migraine and other headache dis-
orders was a substantial advance in the field,
providing standardization of migraine diagnoses
when performing research and guiding clinicians
when evaluating patients. However, a major limita-
tion during the development of formal diagnostic cri-
teria for migraine is that there is not an objective
“gold standard” for making a migraine diagnosis that
can be used to test the value of individual compo-
nents of the criteria. Thus, some aspects of the diag-
nostic criteria are mostly arbitrary, such as the
division of chronic migraine (CM) from episodic
migraine (EM) based upon a headache frequency of
15 headache days per month. Objective biomarkers
for diagnosing and subclassifying migraine would
allow for optimization of migraine diagnostic criteria.

The goal of this study was to utilize brain mag-
netic resonance imaging (MRI) structural data to
develop classifiers that can differentiate the brain
structure of an individual patient with migraine from
that of a healthy control subject and that differentiate
the brain structure of an individual CM patient from
that of a patient with EM.This study also investigated
the headache frequency threshold that allowed for
a classifier to most accurately assign individual
migraine patients to a lower frequency migraine sub-
group or a higher frequency migraine subgroup based

upon brain structure. In doing so, this study investi-
gated whether the threshold of 15 headache days per
month that is currently used to differentiate CM from
EM is supported by brain structural differences
between these two headache frequency subgroups.

METHODS
Approvals.—Approvals were obtained from the

Institutional Review Boards of the Mayo Clinic and
Washington University in St. Louis. Each subject
underwent an informed consent process and provided
written informed consent prior to participation.

Subject Inclusion and Exclusion Criteria.—Heal-
thy controls without migraine, people with EM, and
people with CM were enrolled as participants. Head-
ache diagnoses were made according to ICHD
2 diagnostic criteria. Potential participants were
excluded if they had acute or chronic pain conditions
other than migraine, if they had contraindications to
MRI, if they had neurologic disorders other than
migraine, if they used daily medications that could be
considered migraine prophylactic medications (eg,
anti-seizure medications, antidepressants, blood pres-
sure medications), if they used opioids, if they met
criteria for medication overuse, and if they had abnor-
mal brain MRI scans according to usual clinical
interpretation.

Collection and Analyses of Participant Charac-
teristics.—Participants were studied when they were
in their usual state of health. Data collected from all
participants included age, sex, medication use,
medical history, Beck Depression Inventory-II (BDI-
II) score, and State-Trait Anxiety Inventory (STAI)
scores.2-4 Additional data collected from migraine par-
ticipants included headache frequency, number of
years with migraine, and Migraine Disa-
bility Assessment (MIDAS) score.5 Data were
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compared among subject groups using two-tailed
t-tests or Fisher’s exact test, as appropriate.

Imaging Parameters.—Participants were imaged
on one of two Siemens (Erlangen, Germany) MRI
machines, each at a different institution: (1)
MAGNETOM Trio 3T scanner using a 12-channel
head matrix coil; or (2) MAGNETOM Skyra 3T
scanner using a 20-channel head matrix coil. Struc-
tural scans included a high-resolution 3D T1-
weighted sagittal magnetization prepared rapid gra-
dient echo (MP-RAGE) series (Trio parameters:
TE = 3.16 ms, TR = 2.4 seconds, 1 × 1 × 1 mm voxels,
256 × 256 mm field of view [FOV], acquisition matrix
256 × 256; Skyra parameters: TE = 3.03 ms; TR = 2.4
s; 1 × 1 × 1.3 mm voxels; 256 × 256 mm FOV, acquisi-
tion matrix 256 × 256) and T2-weighted images in
axial plane (Trio parameters: TE = 88 ms, TR =
6280 ms, 1 × 1 × 4 mm voxels, 256 × 256 mm FOV,
acquisition matrix 256 × 256; Skyra parameters:
TE = 84 ms; TR = 6800 ms; 1 × 1 × 4 mm voxels; 256 ×
256 mm FOV, acquisition matrix 256 × 256). Nearly
equal proportions of migraine and healthy control
participants were imaged on each of the two MRI
scanners: 32 of 54 (59%) healthy control participants
were imaged on scanner one and 38 of 66 (58%)
migraine participants were imaged on scanner one,
including 28 of 51 (55%) EM participants and 10 of 15
(66%) CM participants.

Cortical Reconstruction and Segmentation.—T1
MP-RAGE sequence image processing was performed
using the automated FreeSurfer image analysis suite
(version 5.3, http://www.surfer.nmr.mgh.harvard
.edu/).All image post-processing was conducted using a
single Mac workstation running OS X Lion 10.7.5 soft-
ware (Apple, Inc., Cupertino, CA, USA) to prevent
post-processing irregularities derived from using mul-
tiple workstations.6 FreeSurfer methodology is well
described in prior papers.7 Briefly, processing includes
skull stripping, automated Talairach transformation,
segmentation of subcortical gray and white matter,
intensity normalization, and gray-white mater bound-
ary tessellation and surface deformation.7-10 This auto-
matic segmentation and parcellation process provides
information used to calculate regional volumes,cortical
surface areas, and cortical thicknesses over the left and
right hemispheres.

In order to validate the accuracy of the brain
reconstruction process and to avoid inclusion of erro-
neous datasets into the final analysis, the automated
segmentations and parcellations of each individual
participant were manually inspected for errors before
including the data for statistical analysis.

Mean thickness, surface area, and volume esti-
mates were then extracted from FreeSurfer and
exported to MATLAB (2007a, MathWorks, Natick,
MA, USA) for further analyses. Overall, there were
204 structural measures including 68 measures of cor-
tical thickness, 68 measures of cortical surface area,
and 68 measures of regional volume.

Statistical Analysis.—Statistical analyses aimed to
accomplish the following tasks: (1) classify migraine
patients (CM and EM together, EM alone, and CM
alone) vs healthy controls; (2) classify CM vs EM
using the ICHD criteria of 15 headache days per
month for assigning participants to CM or EM groups
and determine the actual headache frequency thresh-
old that allows for the most accurate classification of
individuals to a higher frequency vs a lower frequency
migraine subgroup. The same analysis pipeline was
used for each of the classification tasks. The pipeline
consisted of four major steps, as follows:

1. Balancing class sample sizes: Some of the classifi-
cation problems in the two tasks had imbalanced
class sample sizes. For example, using 15 headache
days per month as the headache frequency thresh-
old, the dataset consisted of 51 EM patients but
only 15 CM patients. A well-known oversampling
approach called Synthetic Minority Oversampling
Technique (SMOTE) was used to handle class
imbalance and match the minority and majority
class sample sizes.11

2. Dimension reduction: Since a total of 204 features
were used in the classification, the dimensionality
of the features exceeded the sample size, creating
difficulty in classification. Thus, principal compo-
nents analysis (PCA) was used to achieve dimen-
sion reduction. PCA works by finding linear
combinations of features, called principal compo-
nents (PCs). Usually, a few PCs sufficiently account
for the majority of the variability in the original
feature space, leading to dimension reduction. In
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this study PCs for the area, thickness, and volume
features were derived separately (ie, three sets of
PCs). The PCs that accounted for 85% of the vari-
ability in the area, thickness, and volume were kept
for further analyses.

3. Classification: The PCs produced from (2) were
used to build classification models. Four different
classification algorithms, including diagonal linear
discriminate analysis (DLDA), diagonal quadratic
discriminate analysis (DQDA), support vector
machine (SVM), and decision tree (DT), were
used so that results could be cross-referenced. To
avoid over-fitting, 10-fold cross-validation was
used to assess classification accuracy. Specifically,
in each of the 10 cross-validation runs, 10% of the
subjects (randomly) were put aside to test the clas-
sification performance, and the remaining 90% of
the subjects were used to develop the classifier.
The average performance of the 10 runs and the
best performance among the 10 runs were col-
lected and reported.

4. Interpretation: To facilitate interpretation of the
classification results, for each classification algo-
rithm, a step-wise search was performed to identify
the best subset of PCs. The search started with
finding the PC that achieved the highest cross vali-
dation accuracy (eg, PC1). Next, the remaining PCs
were searched for the one PC that when used in

conjunction with PC1, improved the cross-
validation accuracy the most (eg, PC2). The search
continued until adding more PCs did not improve
the cross-validation accuracy by 1% or more.

Since each PC is a linear combination of the origi-
nal features, the combination coefficients of the origi-
nal features were assessed for contributions to the PC
and further to the classification. Specifically, for each
original feature, the mean and standard deviation of
its coefficient were calculated.According to the three-
sigma rule, nearly 95% of the coefficients lie within
two standard deviations of the mean. As a result, the
original features whose coefficient exceeded two
standard deviations were considered to be significant,
contributing to the PCs and the classification.

RESULTS
Subject Characteristics.—Data from 120 subjects

were available for this study, including 54 healthy con-
trols, 51 EM patients, and 15 CM patients. (Table 1)
Mean age of the entire cohort was 36.3 +/− 11.1 years.
Ninety-one participants were female and 29 were
male. There were not differences in age or sex distri-
bution between the subject cohorts. There were not
differences in BDI-II scores, state anxiety scores, and
trait anxiety scores between subject groups with the
exception of a slightly higher BDI-II score in the

Table 1.—Subject Characteristics

Healthy Control
(n = 54)

Migraine
(n = 66)

Control vs
Migraine P value

EM
(n = 51)

CM
(n = 15)

EM vs
CM P value

Age in years 37 (11) 36 (11) .82 37 (12) 35 (6) .41
Female 39 (72.2%) 52 (78.8%) .52 39 (76.5%) 13 (86.7%) .49
BDI-II score 2.2 (4) 4.1 (4.3) .01 3.8 (4.1) 5.3 (4.9) .31
State Anxiety 24.8 (5.3) 26.8 (7.1) .08 26.4 (6.8) 28 (8.3) .51
Trait Anxiety 28.8 (7.9) 31.6 (8.9) .08 31.4 (9.5) 32.1 (6.9) .77
Headache frequency

(days/month)
N/A 9 (6) N/A 6 (3) 19 (5) <.001

Years with migraine N/A 16 (10) N/A 17 (11) 14 (9) .22
MIDAS N/A 20.5 (19) N/A 14.7 (10.2) 40.2 (27.5) .003

The “migraine” cohort includes EM and CM participants. Values are means followed by standard deviation in parentheses, except
for “female,” which is reported as an absolute number followed by the percentage of the cohort that is female. Subject cohorts were
similar for age, sex, and anxiety scores. Depression scores were slightly higher in the migraine group, but average scores for the
migraine group and control group were within normal/non-depressed ranges.
BDI-II = Beck Depression Inventory; MIDAS = Migraine Disability Assessment.
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migraine group compared to healthy participants.
However, the mean BDI-II scores were within
normal ranges (not indicative of depression) in both
groups. As expected, MIDAS scores and headache
frequency were higher in the CM group compared to
the EM group.

Experiment I: Classify Migraine Patients vs Heal-
thy Controls.—There were 66 migraine patients
(EM + CM) and 54 healthy controls. This imbalance
in number of people in each cohort was considered to
be unsubstantial, and thereby step (1), balancing class
sample sizes, was skipped in the analysis pipeline. The
remaining steps in the analysis pipeline were applied.
The classification accuracy is summarized in Table 2.
Note that among the four classification algorithms in
(3), DQDA and DT produced the best results, yield-
ing average overall classification accuracies of 68%
and 64.7%, respectively. Since these accuracies were
less than optimal, the second part of step (4), ie, exam-
ining the contributions of original features to the clas-
sification, was not performed. We suspected that the
unsatisfactory classification accuracy might be due to

heterogeneity within the migraine cohort, such as
would be seen if there were subgroups within the
migraine cohort.

To test the possibility of there being headache
frequency subgroups within the entire migraine
cohort, we went on to classify CM vs healthy controls
and EM vs healthy controls.The average overall accu-
racy for classifying CM vs healthy controls was 86.3%
in the DQDA model and 74.6% in the DT model
(Table 3). Although DQDA produced significantly
better classification results, we chose to still present
the results by DT for consistency with our other
experiments. Table 4 and Figure 1 show the features
that contribute to the classification of CM vs healthy
controls. Although structural measures of several
regions contribute to the classification, structure of
the anterior cingulate cortex, entorhinal cortex, tem-
poral pole, and transverse temporal gyrus were fre-
quently represented.The average overall accuracy for
classifying EM vs healthy controls was 67.2% in the
DQDA model and 66.5% in the DT model (Table 2).
Since these accuracies were less than optimal, we

Table 2.—Migraine vs Healthy Control and Episodic Migraine vs Healthy Control Classification Accuracies

DQDA DT

Migraine (Episodic Migraine + Chronic Migraine) vs Healthy Control

Average accuracy ± SD over 10 runs
Overall accuracy 68.0% ± 2.3% 64.7% ± 2.4%
Migraine accuracy 77.9% ± 4.2% 69.6% ± 4.1%
Healthy control accuracy 55.9% ± 9.7% 58.7% ± 6.6%

Best accuracy among 10 runs
Overall accuracy 72.5% 70%
Migraine accuracy 74.2% 71.2%
Healthy control accuracy 70.4% 68.5%

EM vs healthy control

Average accuracy ± SD over 10 runs
Overall accuracy 67.2% ± 2.4% 66.5% ± 6.0%
EM accuracy 57.5% ± 5.5% 65.7% ± 5.4%
Healthy control accuracy 76.5% ± 2.6% 67.2% ± 8.3%

Best accuracy among 10 runs
Overall accuracy 73.3% 77.1%
EM accuracy 70.6% 72.5%
Healthy control accuracy 75.9% 81.5%

The average and best accuracies for classifying migraine (EM + CM) vs healthy controls and EM vs healthy controls are listed when
using DQDA and DT. For example, when using DQDA the average overall accuracy for classifying migraine vs healthy control was
68% while the best accuracy achieved was 72.5%.
CM = chronic migraine; DT = decision tree; DQDA = diagonal quadratic discriminate analysis; EM = episodic migraine.
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chose not to proceed with the second part of step (4),
ie, examining the contributions of original features to
the classification.

Experiment II: Classify CM vs EM and Determine
the Headache Frequency Threshold That Allows for
the Most Accurate Classification of Higher Frequency
vs Lower Frequency Migraine.—Different headache
frequency (headache days/month) thresholds were
investigated to find the number of headache days
that most accurately divided the migraine partici-
pants into lower frequency and higher frequency
subpopulations based upon measures of brain struc-
ture. Headache thresholds of 5, 6, 7, 8, 9, 10, 11, 12,
and 15 days per month were explored. Thresholds of
13 and 14 days resulted in the same partition of
patients as 15 days and thus were not separately
analyzed. Table 5 summarizes the class sample sizes
corresponding to each threshold. It can be seen that
class imbalance existed for most of the

thresholds. Therefore, we applied SMOTE, ie, step
(1) in the analysis pipeline, to the analysis of those
thresholds. Then, we applied steps (2) and (3).
Figure 2 shows the 10-fold cross-validation classifi-
cation accuracies with respect to the different
thresholds produced by four classification algo-
rithms. As shown in Figure 2, using a headache fre-
quency of 15 headache days per month to divide the
migraine patients into two headache frequency sub-
groups allowed for the most accurate classification.
This observation was consistently obtained from all
four different classification algorithms. Nine days
with headache per month was the second most
optimal headache frequency threshold for differen-
tiating migraine subpopulations. It is our intention
to explore the sensitivity of this threshold (9 days) in
future studies.

With 15 headache days per month used to divide
the migraine group into CM and EM subgroups, we
proceeded with CM vs EM classification. Application
of the step-wise search, step (4) in the analysis pipe-
line, reduced the number of PCs used in the classifi-
cation to 1-7 across all four classification algorithms.
Figure 3 shows an example of the process of the step-
wise search (the example classification algorithm is
DQDA). The search first found PC17, which when
used alone achieved 65.7% cross validation accuracy.
Then, PC14 was identified, which when used together
with PC17 achieved an accuracy of 71.6%. The best
classification accuracy (91.2%) is achieved with six
PCs (PC17, PC14, PC45, PC5, PC26, and PC39). The accu-
racy improvement from adding more PCs to the
model was less than 1% and thus the model consisting
of 6 PCs was considered complete. The average
overall accuracy of differentiating CM from EM was
84.2% in the DQDA model and 83% in the DT
model. Table 3 shows the overall and best accuracies
for classifying CM vs EM.

Finally, we looked for the original features that
comprised the PCs used in the final classification
model (Table 6; Fig. 4). Although several different
brain regions were included in these PCs, a few were
most frequently present, including the temporal
pole, anterior cingulate cortex, superior temporal
lobe, medial orbital frontal gyrus, and the pars
triangularis.

Table 3.—Chronic Migraine vs Healthy Control and Chronic
Migraine vs Episodic Migraine Classification Accuracies

DQDA DT

Chronic Migraine vs Healthy Control

Average accuracy ± SD over 10 runs
Overall accuracy 86.3% ± 1.9% 74.6% ± 3.5%
CM accuracy 90.6% ± 2.9% 74.7% ± 5.9%
Healthy control accuracy 82.2% ± 2.6% 74.4% ± 4.4%

Best accuracy among 10 runs
Overall accuracy 88.6% 80.0%
CM accuracy 94.1% 78.4%
Healthy control accuracy 83.3% 81.5%

Chronic Migraine vs Episodic Migraine

Average accuracy ± SD over 10 runs
Overall accuracy 84.2% ± 4.2% 83.0% ± 5.2%
EM accuracy 81.8% ± 4.9% 84.3% ± 8.3%
CM accuracy 86.7% ± 4.2% 81.8% ± 4.7%

Best accuracy among 10 runs
Overall accuracy 91.2% 90.2%
EM accuracy 88.2% 96.1%
CM accuracy 94.1% 84.3%

The average and best accuracies for classifying CM vs healthy
controls and CM vs EM are listed when using DQDA and DT.
For example, when using DQDA the average overall accuracy
for classifying CM vs EM was 84.2% while the best accuracy
achieved was 91.2%.
CM = chronic migraine; DT = decision tree; DQDA = diagonal
quadratic discriminate analysis; EM = episodic migraine.
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Table 4.—Principal Components of the Chronic Migraine vs Healthy Control Classification Model

DQDA DT Brain Hemisphere MRI Features in PCs

Cortical surface area PCs

7 X R Caudal anterior cingulate
R Entorhinal
R Transverse temporal
L Transverse temporal

8 X R Entorhinal
R Rostral anterior cingulate

9 X R Transverse temporal
L Temporal pole

10 X

R Caudal anterior cingulate
R Rostral anterior cingulate
L Entorhinal
L Transverse temporal

11 X X

R Transverse temporal
R Insula
L Parahippocampal
L Insula

15 X X

R Superior temporal
R Temporal pole
L Pars triangularis
L Temporal pole

17 X R Frontal pole
L Superior temporal

18 X L Entorhinal
L Supramarginal

Cortical thickness PCs

21 X X R Caudal anterior cingulate
R Isthmus cingulate
R Posterior cingulate

23 X

R Isthmus cingulate
R Parahippocampal
R Pars orbitalis
R Rostral anterior cingulate
R Temporal pole
L Parahippocampal
L Rostral anterior cingulate

27 X
R Medial orbital frontal
L Entorhinal
L Isthmus cingulate

28
X R Entorhinal

R Insula
L Superior temporal

29 X
R Pars opercularis
R Pars triangularis
L Caudal middle frontal

30 X

R Superior temporal
R Frontal pole
L Entorhinal
L Parahippocampal

32 X X
R Pericalcarine
L Pars triangularis
L Temporal pole

Volume PCs

37 X L Caudal middle frontal
L Cuneus
L Lingual
L Paracentral
L Pericalcarine

38 X

R Entorhinal
R Pericalcarine
L Cuneus
L Pericalcarine
L Temporal pole

40 X

R Entorhinal
R Parahippocampal
R Rostral anterior cingulate
R Transverse temporal

The PCs that comprise the CM vs healthy control classifiers derived via DQDA and DT are presented.The classifiers contained PCs consisting of cortical surface area,
cortical thickness, and regional volume measurements. The left-most column contains the name of the PC. An “X” under “DQDA” or “DT” indicates that the PC was
part of the classifier derived using DQDA or DT analyses in at least one of the ten iterations. The right-most column lists the brain regions for which structural
measures comprise that PC, named according to FreeSurfer terminology. For example, PC8 comprises cortical surface area measurements of the entorhinal cortex and
rostral anterior cingulate. DT = decision tree; DQDA = diagonal quadratic discriminate analysis; L = left; MRI= magnetic resonance imaging; PC = principal
component; R = right.
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Fig. 1.—Regions that comprise the chronic migraine vs healthy control classifiers. Brain regions for which surface area, thickness,
or volume measures contributed to a classifier differentiating patients with chronic migraine from healthy controls are demon-
strated on a 3-D rendering of the brain. The principal components to which these regions contribute are listed in Table 4.
transv = transverse; sup = superior; temp = temporal; ant = anterior; post = posterior.
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DISCUSSION
The main finding of this study is that multivariate

models consisting of brain cortical thickness, cortical
surface area, and regional volumes were highly accu-
rate for classifying individual people with migraine as

having CM vs EM and for classifying individuals as
having CM vs being a healthy control. Classifiers
based upon these structural measures could be of
practical use since these structural data can be gener-
ated from brain MRI scans typically used in the

Table 5.—Class Sample Sizes for Different Headache Frequency Thresholds

Thresholds
(headache
days/month)

Number of participants
in low frequency class

(headache frequency < threshold)

Number of participants
in high frequency class

(headache frequency >= threshold)

5 18 48
6 27 39
7 33 33
8 34 32
9 42 24
10 43 23
11 46 20
12 47 19
15 51 15

The number of study participants in “lower frequency” and “higher frequency” migraine subgroups depended upon the chosen
headache frequency threshold for dividing the migraine participants into these two headache frequency subgroups.

Fig. 2.—Tenfold cross-validation classification accuracies with respect to the different headache frequency thresholds produced by
4 classification algorithms. The accuracy of each classifier for identifying individual migraine participants as belonging to a lower
frequency migraine group or a higher frequency migraine group according to different headache frequency thresholds is demon-
strated. These plots show that classifiers based upon DQDA and DT were the most accurate and that the most accurate
classification occurred when a headache frequency threshold of 15 headache days per month was used. The plots also indicated that
there was a large improvement in classification accuracy when moving from a threshold of 8 headache days per month to 9 headache
days per month, suggesting the possible existence of headache frequency subgroups in addition to those based on 15 headache days
per month. DQDA = diagonal quadratic discriminate analysis; DT = decision tree: DLDA = diagonal linear discriminate analysis:
SVM = support vector machine.
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clinical setting. Exploration of the headache fre-
quency threshold that allowed for the most accurate
differentiation of migraine frequency sub-cohorts
showed that 15 days per month was the best thresh-
old, supporting the current ICHD diagnostic criterion
of 15 headache days per month to differentiate CM
from EM. In our analyses, brain structure differences
in participants with migraine (EM + CM) vs healthy
control subjects and EM vs healthy control subjects
did not allow for highly accurate classification of par-
ticipants as having migraine of any frequency or being
a healthy control or as having EM vs being a healthy
control.

This study shows that CM is associated with aber-
rant brain structure and that the structural differences
in CM are of a magnitude that allows for accurate
differentiation from the brains of people with EM
and from healthy controls. These data suggest that
either, (1) more frequent migraine attacks lead to
more extensive brain structural change; or (2) more
severe brain structural aberrations predispose a
migraine patient to a more severe form of migraine
(ie, CM). Longitudinal imaging studies that investi-
gate relationships between changing migraine pat-

terns and brain structure would help to clarify the
direction of the relationship between migraine fre-
quency and brain structure.

These study findings support the use of 15 head-
ache days per month as the threshold between CM
and EM. Despite testing several different headache
frequency thresholds that were less than 15, models of
brain structure most accurately differentiated sub-
cohorts of migraineurs based upon headache fre-
quency when 15 headache days per month was used.
Although the selection of 15 headache days per
month to differentiate CM from EM in the ICHD
diagnostic criteria was mostly arbitrary, these study
findings suggest that this is likely a good choice, cor-
responding to significant differences in brain struc-
ture. It is possible, and our data suggest, that there
may be additional headache frequency thresholds
that allow for accurate subclassification of patients
with migraine. As illustrated in Figure 2, headache
frequency thresholds of 5 days per month (or perhaps
less) and 9 days per month might also allow for accu-
rate subclassification based on brain structure. These
additional subclassifications could be consistent with
and might be helpful to further define the criteria for
the “low-frequency EM” and “high-frequency EM”
classifications that are often used.12

Structural measures of the temporal pole,
anterior cingulate cortex, superior temporal lobe,
entorhinal cortex, medial orbital frontal gyrus, and
pars triangularis were frequently present within the
PCs that comprised the models that classified CM vs
EM and CM vs healthy control. Each of these struc-
tures has previously been shown to be involved in
pain processing, and several of these regions have
previously been identified as having abnormal struc-
ture and/or function in patients with migraine. The
temporal pole and the anterior cingulate cortex have
frequently been identified as regions with atypical
structure and function in migraine.

The temporal pole and the superior temporal
lobe participate in multisensory integration. The tem-
poral pole is a multisensory region that integrates
visual, auditory, olfactory, and somatosensory
stimuli.13-15 Several research neuroimaging studies
have demonstrated that compared to healthy con-
trols, migraineurs have greater stimulus-induced

Fig. 3.—Step-wise addition of principal components to the
chronic migraine vs episodic migraine classifier. This figure
illustrates the accuracy of the CM vs EM classifier (this
example is based on diagonal quadratic discriminate analysis or
DQDA) as individual principal components (PCs) were added
to the classifier. For example, a classifier containing PC17 alone
had 65.7% accuracy for classifying individuals with migraine as
having CM vs EM. When PC14 was added to the model, the
accuracy improved to 71.6%, and when all 6 PCs were included
in the model, the accuracy improved to 91.2%.
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Table 6.—Principal Components of the Chronic Migraine vs Episodic Migraine Classification Model

DQDA DT Brain Hemisphere MRI Features in PCs

Cortical surface area PCs

5 X X R Superior temporal
L Superior temporal
L Paracentral

12 X

R Frontal pole
L Medial orbital frontal
L Postcentral
L Posterior cingulate
L Temporal pole

14 X X
R Pars triangularis
L Frontal pole
L Lingual

Cortical thickness PCs

17 X X R Medial orbital frontal
L Medial orbital frontal
L Rostral anterior cingulate

26 X
R Superior temporal
R Insula
L Temporal pole

27 X X

R Pericalcarine
L Caudal anterior cingulate
L Entorhinal
L Medial orbital frontal

29 X
R Pars opercularis
L Postcentral

32 X

R Rostral anterior cingulate
L Rostral anterior cingulate
L Rostral middle frontal
L Temporal pole

Volume PCs

45 X R Caudal anterior cingulate
R Pars triangularis
R Transverse temporal
L Pars opercularis
L Pars triangularis

46 X
R Pars triangularis
R Precentral
L Postcentral

47 X

R Superior temporal
R Temporal pole
L Caudal anterior cingulate
L Transverse temporal

The PCs that comprise the CM vs EM classifiers derived via DQDA and DT are presented.The classifiers contained PCs consisting
of cortical surface area, cortical thickness, and regional volume measurements. The left-most column contains the name of the PC.
An “X” under “DQDA” or “DT” indicates that the PC was part of the classifier derived using DQDA or DT analyses in at least one
of the ten iterations.The right-most column lists the brain regions for which structural measures comprise that PC, named according
to FreeSurfer terminology. For example, PC5 comprises cortical surface area measurements of the right superior temporal lobe, the
left superior temporal lobe, and the left paracentral lobule. CM = chronic migraine; DT = decision tree; DQDA = diagonal qua-
dratic discriminate analysis; L = left; MRI = magnetic resonance imaging; PC = principal component; R = right.
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Fig. 4.—Regions that comprise the chronic migraine vs episodic migraine classifiers. Brain regions for which surface area, thickness
or volume measures contributed to a classifier differentiating patients with chronic migraine from those with episodic migraine are
demonstrated on a 3-D rendering of the brain. The principal components to which these regions contribute are listed in Table 6.
transv = transverse; sup = superior; temp = temporal; ant = anterior; post = posterior.
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activation of the temporal pole, atypical resting state
functional connectivity of the temporal pole, and
atypical structure of the temporal pole.14,16-20 The
superior temporal sulcus participates in multisensory
integration and in determining the social salience of
someone else’s pain.21,22 The upper bank of the supe-
rior temporal sulcus receives and integrates inputs
from somatosensory, visual, and auditory cortices.23

Because of the potentially important role for multi-
sensory integration in production of migraine symp-
toms, such as worsening headache intensity with
exposure to visual and auditory stimuli and triggering
of migraine attacks by sensory stimuli, the temporal
pole and other regions that mediate multisensory
integration might be particularly important in
migraine physiology.14,15

The anterior cingulate cortex, medial orbital
frontal gyrus, entorhinal cortex, and pars triangularis
participate in affective and cognitive aspects of pain
processing. The anterior cingulate cortex is involved
in affective and cognitive pain processing, in pain
anticipation, and it is a key component of the salience
network, a network of functionally connected brain
regions that mediates the segregation of important
environmental stimuli from those that are less
relevant.24-26 Prior studies have demonstrated atypical
activation, functional connectivity, and structure of
the anterior cingulate cortex in migraineurs.20,27-35 The
orbital frontal cortex participates in the affective
response to pleasant and painful stimuli and in
emotion-based decision making.36,37 Brodmann’s area
10 of the orbitofrontal cortex activates during the
premonitory and headache phases of a migraine
attack and parts of the orbital frontal cortex have
been shown to have atypical gray matter volume and
atypical functional connectivity in people with
migraine compared to healthy controls.27,34,35,38,39 The
entorhinal cortex participates in modulating expecta-
tions for pain and in anxiety-driven hyperalgesia.40

The pars triangularis of the inferior frontal gyrus
plays a role in determining the empathy for pain in
others, an empathy that is likely to be affected by
frequently recurring attacks of migraine.41,42 The infe-
rior frontal gyrus (unclear if specifically the pars tri-
angularis) has been demonstrated as having atypical
stimulus-induced activation and atypical functional

connectivity in patients with migraine compared to
healthy controls.20,43-45

Few studies have investigated brain structure and
function of patients with CM, comparing them to
healthy controls or to patients with EM. A small
voxel-based morphometry study found that patients
with CM have less gray matter in the anterior cingu-
late cortex than patients with EM and that there were
correlations between headache frequency and gray
matter volume in anterior cingulate cortex and tem-
poral pole.32 A resting state functional connectivity
study of 20 patients with CM vs 20 healthy controls
identified atypical functional connectivity of the ante-
rior cingulate cortex in participants with CM.31

Studies comparing patients who have high frequency
EM (ie, 8-14 headache days per month) to those with
lower frequency EM (ie, 1-2 headache days per
month) have found differences in stimulus-induced
activations, resting functional connectivity, and struc-
ture of the temporal pole and anterior cingulate
cortex.46-48

There are aspects of the study design and avail-
able data that need to be considered when interpret-
ing the results of this study: (1) Headache frequency
was determined via patient self-report. Some error in
estimation of headache frequency was likely. Future
studies should employ prospective headache diary
maintenance prior to imaging in order to better deter-
mine headache frequency. (2) There were a limited
number of patients with headache frequencies less
than 5 headache days per month and greater than 15
headache days per month, making it unfeasible to test
headache frequency thresholds that were less than 5
and more than 15. Future studies are required to
determine if there are additional headache frequency
subgroups of migraine patients defined according to
headache frequencies of less than 5 or greater than 15
headache days per month. (3) Two MRI scanners
were used in this study. As detailed in the Methods
section, nearly equal proportions of participants in
each subject cohort were imaged on each of the two
MRI scanners, and thus the use of two scanners likely
had little effect on our study results. The use of two
MRI machines may in fact make our results more
generalizable than if all data were collected from one
scanner.
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CONCLUSIONS
In conclusion, classifiers containing MRI mea-

sures of brain cortical thickness, cortical surface area,
and regional volumes accurately classified individuals
as having CM vs EM and as having CM vs being a
healthy control. Fifteen headache days per month was
the headache frequency threshold that allowed for
the most accurate classification of migraine patients
into higher and lower frequency headache subgroups
according to their brain structure, providing support
for the currently used threshold of 15 headache days
per month for differentiating CM from EM. Future
studies will investigate the utility of other structural
measures (eg, those obtained via diffusion tensor
imaging) and the utility of functional MRI data for
building classifiers that differentiate migraine from
healthy controls and that differentiate EM from CM.
It is anticipated that these additional data will
enhance the accuracy of such classifiers. Future
studies will also construct classifiers that differentiate
migraine from other headache disorders. Such classi-
fiers would help to determine brain structural and
functional aberrations that are specific to migraine
and could eventually be developed into computer-
aided diagnostic tools that might help to clinically
differentiate migraine from other headache disorders
when that differentiation is otherwise difficult.
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