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Abstract During the past decade, with breakthroughs in systems biology, precision medicine
has emerged as a novel paradigm that has transformed healthcare. Precision medicine
is an approach for disease treatment and prevention that takes into account individ-
ual variability where medical imaging is a key component. This tutorial focuses on
research investigating the roles of medical imaging in cancer diagnosis and treatment
planning. While the cornerstone of the imaging research is mathematical and statis-
tical modeling, the research has to take a multidisciplinary and systematic approach
because of the nature of the problem. We offer a comprehensive review and discussion
on four important components that form an imaging pipeline: imaging preprocess-
ing, imaging feature extraction, feature dimensionality reduction, and classification.
To illustrate the clinical relevance, our in-house-developed system, the imaging mul-
titexture disease diagnosis system, is presented with two clinical case studies: one on
breast cancer diagnosis using contrast-enhanced digital mammography imaging and
the other on cholangiocarcinoma using computed tomography imaging. The future
directions of the imaging research are highlighted in the end.

Keywords clinical decision support; multitexture data integration; disease diagnosis; cancer;
treatment planning

1. Introduction

Cancer is the leading cause of death for Americans aged 40–79 years (Sagon [50]). According
to the National Cancer Institute [44], nearly 1.7 million new cancer cases and 595,000 cancer
deaths (one out of every four deaths) were estimated to occur in the United States in
2016. In fact, approximately 40% of men and women will be diagnosed with cancer at some
point during their lifetimes. National expenditures for cancer care in the United States
totaled nearly $125 billion in 2010 and could reach $156 billion in 2020 (see National Cancer
Institute [44] for details). In clinical cancer practice, tissue biopsy is the gold standard
because of its accuracy in diagnosis and treatment response evaluation. Although valuable,
tissue biopsies have several limitations: they are invasive, are uncomfortable, and expose the
patient to significant risk (Field et al. [17]). In addition, a biopsy sample is usually done
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for a single location of a tumor at a single time point. This fails to capture the spatial
genomic diversity of the tumor and its temporal changes, which have been recognized to
account for diagnostic and treatment failure of a number of aggressive cancers. Imaging, on
the other hand, provides macroscopic information on tumor morphology, physiology, and
function (Zinn et al. [72]). It is efficient and noninvasive; thus imaging is naturally performed
for the entire tumor and at multiple time points in follow-ups. In recent years, cutting-
edge imaging technologies have been developed with high-quality, high-resolution images to
provide complementary views of the structural, functional, and mechanical properties of a
tumor. This has pushed imaging to an unprecedented opportunity for cancer care toward
personalized and precision medicine. Consequently, there has been considerable research
over the last decade aimed at screening imaging features to identify patterns for tumor
phenotype prediction (see Davnall et al. [12], Kassner and Thornhill [29], Skogen et al. [55],
Zacharaki et al. [68]). In general, mathematical and statistical models are developed to
assist the prediction, but their usefulness depends on the imaging features investigated. To
enhance the performance of these models, research has been devoted to developing methods
that extract texture features from medical images.

In medical images, texture characterization has become an important problem. Texture
can be thought of as the local characteristic pattern of image intensity that identifies a tissue.
Since changes in the local texture will cause changes in the local spatial frequency, tex-
ture analysis evaluates the local spectral or frequency contents to extract multiple features
on the pixel/voxel level. The analysis of these texture features provides a meaningful way
to assist in disease diagnosis and staging. Texture analysis is an ongoing field of research,
with broad applications that include the segmentation of specific anatomical structures,
the detection of lesions, the distinction between pathological and healthy tissue in differ-
ent organs, and the associations with genomic features. Extensive research has investigated
various texture analysis methods for medical image processing, which can be generally clas-
sified into four categories: structural methods, model-based methods, statistical methods,
and transformation-based methods. In structural methods, texture is characterized by fea-
ture primitives and their spatial arrangements. One example of the primitive is a square
object that is represented in terms of the straight lines that form its border. While simple,
structural texture analysis techniques may be limited in practical use since they can only
describe regular objects such as a square or sphere. Model-based methods represent texture
via the use of generative image models (e.g., fractals). The main idea behind a fractal model
is the property of self-similarities—that is, an object can be decomposed into smaller simi-
lar copies of itself. A metric called fractal dimension is introduced to describe the disorder
of an object—i.e, the higher the dimension value, the more complicated the object. One
criticism of the model-based approach is the computational complexity involved in the esti-
mation of the large number of model parameters. Statistical methods identify the texture
by considering the spatial distribution of intensity values at each pixel/voxel in the images
and compute a set of second-order (or even higher-order) statistics from the distributions of
the local features. Examples of these methods are gray level co-occurrence matrix (GLCM)
and local binary patterns (LBPs). Transform-based method converts the images into new
forms using spatial frequency properties of the pixel/voxel intensity variation. For example,
wavelet transform analyzes the frequency content of an image within different scales and
frequency directions. Wavelet coefficients corresponding to the scales and directions can be
derived to describe the image properties as texture features. Some examples of transform-
based methods are Gabor wavelet transform, Fourier transform, and S-transform.

Since each type of texture feature reveals different aspects of the image, using a multitex-
tural approach has become an emerging research trend. The general multitextural approach
includes four steps. First, regions of interest (ROIs) are placed over the tissue area. To
address the intratumor and intertumor heterogeneity, ROI normalization is implemented to
bring the imaging intensity scales to the same level. Next, some commonly studied texture
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algorithms such as GLCMs, LBPs, and Gabor filters are parameterized based on the imag-
ing modality and disease type, and are applied to the normalized ROIs. Given that imaging
features are typically high dimensional, and some features are naturally highly correlated
because of their spatial proximity or functional similarity, dimension reduction techniques
such as principal component analysis (PCA) are applied as the third step. Finally, multi-
parametric predictive models are developed based on the principle components (PCs) to
assist with disease diagnosis.

Following the same workflow, we develop a multitexture pipeline, the imaging multitex-
ture disease diagnosis system, termed iMT-DDS. In this tutorial, we present the formulation
of iMT-DDS and demonstrate its clinical applications. Specifically, two case studies are con-
ducted. In the first study, we explore the applicability of iMT-DDS to breast cancer diagnosis
using contrast-enhanced digital mammography (CEDM) imaging. The data set includes 99
patients (21 benign and 78 malignant). The best-performing model from leave-one-out cross
validation (LOOCV) gives 91% sensitivity, 71% specificity, and 86% overall accuracy. In
the second study, we apply iMT-DDS to discover the associations between imaging features
with genome types (a more challenging problem in the area of radiogenomics). We study
cholangiocarcinoma using computed tomography (CT) imaging. The data set includes 33
patients (15 fibroblast growth factor receptor 2 positive (FGFR2+) and 18 FGFR2 negative
(FGFR2−)). The LOOCV classification performance gives 87% sensitivity, 94% specificity,
and 91% overall accuracy.

The rest of the paper is structured as follows: Section 2 provides a general overview of
different imaging modality and imaging research for cancer. Section 3 gives a detailed discus-
sion of imaging modalities and an imaging pipeline that consists of imaging preprocessing,
imaging feature extraction, feature selection, and classification. In Section 4, two clinical
case studies on breast cancer and cholangiocarcinoma, using our in-house-developed imaging
pipeline, iMT-DDS, are presented. The conclusion is then drawn in Section 5, followed by
a discussion on future directions.

2. Overview of Imaging Research for Cancer

Modern imaging technologies allow for visualization of multidimensional and multiparameter
data. Imaging is increasingly used to measure physical parameters such as tissue properties
and to glean temporal insight on biological function. CT, also commonly referred to as a CAT
scan, is an imaging technique that combines multiple x-ray projections taken from different
angles to produce detailed cross-sectional views of the body part of interest. CT has relatively
low soft tissue contrast for tumor and surrounding tissue. But with iodinated contrast agents,
organs and tumors can also be detected. Given CT’s fast imaging time and high spatial
resolution, it has been used to image lung tumors and bone metastasis. magnetic resonance
imaging (MRI) is performed by placing a subject in a strong magnetic field, typically 1.5
or 3 tesla for human scanners, which aligns the hydrogen nuclei spins in a direction parallel
to the field. Like CT, MRI traditionally creates a two-dimensional (2D) image of a thin
“slice” of the body and is therefore considered a tomographic imaging technique. These days,
advancements in magnetic resonance (MR) techniques enable a three-dimensional (3D) view
of the images. Since there is no use of ionizing radiation, MR has no health concern of dose
exposure, as opposed to CT. MRI has proven to be highly effective in diagnosing a number
of conditions by showing the difference between normal and diseased soft tissues of the
body such as breast, heart, and kidney. Positron emission tomography (PET) is a nuclear
imaging technique that incorporates radioactive tracers in the image acquisition. It provides
physicians with information about how tissues and organs function and is therefore called
a functional imaging technique. By using radioactive tracers, three-dimensional images can
be reconstructed to show the concentration and locations of metabolic molecules of interest.
PET is ideally suited for monitoring molecular events early in the course of a disease, as well

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

19
9.

18
.8

4.
40

] 
on

 1
4 

A
pr

il 
20

23
, a

t 0
9:

52
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Wu et al.: iMT-DDS: A Multitexture Disease Diagnosis System
156 Tutorials in Operations Research, c© 2017 INFORMS

Figure 1. Number of publications about cancer imaging over 2000–2017 (from PubMed).
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as during pharmacological or radiation therapy. Digital mammography (DM) is a specialized
modality for breast imaging. It uses low-dose x-rays to detect breast cancer early and has
been adopted as the technique in the breast cancer screening program.

As reviewed, each imaging modality has its own unique value to clinical applications,
and they all present the images in the form of two or three dimensions to the radiologists
for cancer diagnosis and staging. However, subtle heterogeneity of tissues and lesions may
not be perceptible to the human eye, even for experienced radiologists. Texture analysis, a
computational technique that quantifies the intrinsic nuances in the images, may address
this challenge. Texture features derived from imaging provide a quantitative analysis that
complements the molecular approaches for cancer detection, diagnosis, and prognosis (see
Angell et al. [1], Dunn et al. [15], Laurinavicius et al. [34, 35]). Diagnostic and prognostic
values of texture analysis have been experimentally established in a large number of studies
across different imaging modalities including CT, PET, MRI, and others. In this tutorial,
to provide a comprehensive review of the state-of-the-art research in this field, we first use
the keywords “texture,” “imaging,” and “cancer” to search the publications from this arena
through PubMed (https://www.ncbi.nlm.nih.gov/pubmed/). Since a new term, “radiomics,”
emerges in 2012, we also add “radiomics” to the search. As shown in Figure 1, the number
of publications has grown exponentially over the years. Even in the first quarter of the
year 2017, there have been 66 publications indicating a growing interest in this field. For
the remainder of this section, we provide a thorough review of clinical studies that employ
GLCM, LBP, and Gabor textures for classification.

2.1. Modeling with GLCM Features

One common application of GLCM is in CT imaging. Lo et al. [37] study 8 intensity-based
histogram features and 34 GLCM texture features to investigate the effects of dose level and
reconstruction method on density and texture features computed from CT lung nodules. It
is concluded that histogram mean is the most robust feature, followed by the summation of
products between intensities and probabilities, and finally the GLCM features, which vary
widely. Pham et al. [46] implement two complementary methods of texture analysis, GLCM
and experimental semivariogram, on CT imaging aiming to improve predictive power of
evaluating mediastinal lymph node in lung cancer. A sensitivity of 75% and specificity of
90% are achieved using a logistic regression model. In another lung cancer study using CT
imaging, Wu et al. [64] extract tumor shape, size, and intensity statistics, as well as texture
features from GLCM and gray level run-length matrices. They conclude multiple imaging
features are significantly associated with tumor histology. The authors also employ multiple
classifiers such as random forests, naive Bayes, and k-nearest neighbors to develop multi-
variate predictive models. The best-performing classifier is naive Bayes. Hanania et al. [22]
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investigate 360 imaging features including the intensity, shape, and textures of CT images to
evaluate malignant potentials of intraductal papillary mucinous neoplasms. The best clas-
sifier is the logistic regression model. Another interesting study by Yoon et al. [67] extracts
histogram features (kurtosis and skewness) and GLCM from CT images of human epidermal
growth factor receptor 2 (HER2)-positive patients to identify the association between the
imaging features with the survival rates after trastuzumab treatment.

GLCM has also been used with sonogram imaging. Song et al. [56] evaluate the use of
GLCM texture features from sonogram images to predict thyroid nodes. Six classifiers—
support vector machine (SVM), random tree, random forest, boost, logistic, and artificial
neural network—are developed. The logistic model shows the best performance with 79%
sensitivity and 79% specificity using 10-fold cross validation. Lashkari [33] studies the tex-
ture features from infrared breast thermography for early detection of breast cancer. Sim-
ilarly, with 23 features including statistical, morphological, frequency domain, histogram,
and GLCM texture, multiple feature selection algorithms are explored, including mini-
mum redundancy and maximum relevance, sequential forward selection, sequential backward
selection, and genetic algorithms. Based on the selected features, again, different classifiers
are implemented, such as AdaBoost, SVM, k-nearest neighbors, naive Bayes, and proba-
bilistic neural network.

PET imaging has been the focus of some studies since it captures the physiological infor-
mation of tumors. Using phantom data, Wang et al. [60] compare the performance of the
H index, a feature defined from the PET SUV value (imaging-specific feature) and GLCM
features. Interestingly enough, the authors conclude that the H index indeed outperforms
GLCM in characterizing SUV heterogeneities. Doumou et al. [14] study the tumor hetero-
geneities using PET imaging by exploring multiple texture algorithms including GLCM,
the gray level run length matrix, the neighborhood gray-tone difference matrix, the gray
level size zone matrix, and the fractal analysis method. They conclude that heterogeneity
measurement precision in PET is largely influenced by the image process and the texture
algorithms.

Chaddah et al. [7] study the applicability of multiple texture algorithms on multispectral
pathological images. After evaluating the Laplacian of the Gaussian (LoG), discrete wavelets
(DWs), and GLCM, the authors conclude that GLCM texture features outperform LoG
and DW. Yet the higher performance is achieved by combining all texture features. Zhang
et al. [71] study diffusion-weighted images and the apparent diffusion coefficient map to
distinguish between low-grade and high-grade bladder cancer. Specifically, histogram and
GLCM features are extracted on MR images that are then used to develop an SVM model
embedded with recursive feature selection strategy. Chen et al. [9], on the other hand,
study the use of GLCM on conventional MR methods—T1-weighted, T2-weighted, fluid-
attenuated inversion recovery, and contrast-enhanced T1 imaging—for glioblastoma. Five
GLCM texture features are extracted for each of the four MR protocols, and the best model
was found to achieve 75% sensitivity and 100% specificity.

2.2. Modeling with LBP Features

Reyad et al. [49] extract both statistical features and LBP features from each region taken
from mammogram images. SVM classifiers are developed based on these two sets of features,
and similar accuracy (98%) is achieved. A marginally improved accuracy of 99% is achieved
by taking both statistical and LBP features. Gangeh et al. [18] study the LBP features and
intensity-based features from ultrasound images to assess the breast cancer treatment effi-
cacy. Cai et al. [6] develop a phase congruency-based binary pattern, which is a combination
of phase congruency with LBP features. These novel integrated features are then used for a
SVM classifier to diagnose breast cancer, and a high 0.894 area under the receiver operating
characteristic curve (AUC) is achieved.
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2.3. Modeling with Gabor Features

Lu et al. [39] study various features including shape features and Gabor filters from MR images
for breast cancer diagnosis and achieve an AUC of 0.962. Suganthi and Ramakrishnan [57]
attempt to distinguish normal and abnormal tissue in breast thermal images using Gabor
wavelet transform. In a separate study, Han et al. [21] study the pulmonary nodules from
CT images. Three texture analysis algorithms, GLCM, Gabor, and LBP from 2D images to
3D space, are studied. GLCM textures achieve the highest AUC value of 0.927. Similarly,
Atupelage et al. [3] develop a bag-of-feature approach that incorporates Gabor, LBP, and
GLCM features from histopathological images for hepatocellular carcinoma grading.

2.4. Summary

Given the importance of imaging in cancer diagnosis, staging, and treatment assessment,
enormous research efforts have been devoted to extract meaningful imaging features from
which mathematical and statistical prediction models are developed. From this review, we
can draw three observations. First, texture analysis is a generalized technique with broad
applications in different imaging modalities. Second, features from different sources, such
as morphology, statistical, and texture, are of interest in most research. In the category
of texture, multiple texture algorithms have been jointly evaluated in a large number of
studies. Third, given the large number of features, some research has employed multiple
feature selection and multiple predictive modeling in an attempt to achieve the best possible
predictive power. This is probably due to the fundamental challenges in these types of
studies—that is, disease type differs, individual patient differs, and imaging modality differs.
As a result, to fully take advantage of a scientific data-driven approach, the study design
should be inclusive. In other words, the study should consider multiple types of features such
as intensity histogram and different textures. Additionally, as the “no free lunch” theorem by
Wolpert and Macready [63] states, no algorithm can outperform any other algorithm when
performance is amortized over all functions. So the study design should include multiple
predictive modeling methods as well.

In the next section, a four-stage imaging pipeline for cancer research is presented. This
pipeline starts with imaging preprocessing, followed by the imaging feature extraction, fea-
ture selection, and classification. This pipeline is essentially the core of quantitative imaging,
the emerging interdisciplinary research spanning medicine, engineering, computer science,
and mathematics.

3. Quantitative Imaging System for Disease Diagnosis

A quantitative imaging system involves a process that consists of five steps: imaging acqui-
sition, ROI definition/preprocessing, feature extraction, feature selection, and classification
(see Figure 2). For the audience of this tutorial, we focus on the last four steps. Note that
none of these steps is specific, and the methods have to be chosen according to the appli-
cation. The texture outcome can be considerably affected depending on the methodology
used throughout the process.

Figure 2. Workflow of a quantitative imaging system.
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Figure 3. Approaches for defining a ROI over a breast tumor: (a) a small square inside the tumor,
(b) a big square outside the tumor, and (c) delineation of the tumor.

(a) (b) (c)

3.1. ROI Definition and Preprocessing

Initially, texture featuresare extracted fromapredefinedsectionofa2Dor3Dimage.Theregion
of interest (for 2D images) or volume of interest (for 3D images) is usually placed over the tissue
area. Since manual segmentation of ROIs outperforms automatic methods, it is still considered
the gold standard clinically (Harrison et al. [24], Loizou et al. [38], Sanz-Cortez et al. [51], Shi
etal. [53]). In general, there are three approaches to define these ROIs. As seen in Figure 3(a),
we can place a square inside the area of tissue to be analyzed. While only information of
the tissue of interest is captured, some texture details may be lost because this ROI does
not cover the entire area. Alternatively, we can position a smallest bounding box enclosing
the tissue area; see Figure 3(b). But this method may introduce noise by including adjacent
image pieces outside the tissue area. The third approach, shown in Figure 3(c), delineates
the entire tissue area or lesion. Although it may be a better approach, since the whole area of
interest is included, it is time consuming and labor intensive. In addition, it requires precise
delineation to achieve the desired outcomes. In comparison, the first two approaches are
relatively easy to implement because of their use of common shapes. Note that a potential
issue facing all three approaches is border effect—that is, the neighborhood of border pixels
will include pixels outside the ROI when the texture features are derived. If the ROI is large
enough, the border effect may be negligible; otherwise, this issue needs to be addressed to
capture accurate texture information of the ROI.

Before applying texture algorithms on the defined ROIs, a necessary preprocessing step
is normalization. Some imaging features are not only dependent on local textures but also
dependent on ROI properties such as mean intensity and variance (Materka et al. [41]).
A number of clinical factors lead to the variations of these ROI properties. For instance, to
assess the treatment responses, one patient will have multiple follow-ups with imaging. The
imaging intensity is not homogeneously distributed over the course of multiple follow-ups.
This variation may be amplified over different patients because of the patient physiological
differences even if the imaging acquisition protocol is standardized. Collewet et al. [11]
study the effects of ROI normalization on MR images and recommend the ±3σ approach
where the image intensities are normalized between µ± 3σ, µ is the mean value of gray
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levels inside the ROI, and σ is the standard deviation, so that gray levels located outside
the range [µ− 3σ,µ+ 3σ] are not considered for further analysis. For simplicity, researchers
have also employed the min-max approach—that is, using the minimum and maximum
intensity values from the ROIs to normalize the intensity value of the ROI pixels. Depending
on the imaging modality, the minimum and maximum values may be taken from different
ROIs. Taking dynamic MR as an example, normalization is recommended to look into
at least two time points of the imaging, the first time point and the second time point.
The normalization is conducted over the ROIs from the two time points. The minimum
and maximum values of both ROIs are used for normalization (Michoux et al. [42]). To
address the patient physiological differences, researchers have also developed an approach
that obtains two ROIs from each patient, one from the tumor area and another from the
normal tissue area, and the overall minimum and maximum intensity values are used for
the normalization.

3.2. Texture Feature Extraction

Feature extraction is the main step in the texture analysis process and involves the com-
putation of texture features from predefined and normalized ROIs. Many algorithms have
been proposed to quantify the textures of an image allowing the computation of numerous
features. One observation from our literature review is that many studies implement multi-
ple texture feature algorithms with some of the main algorithms of interest being GLCM,
LBP, Gabor filters, and their extensions.

3.2.1. GLCM. In GLCM, the co-occurrence matrix is used to extract statistical informa-
tion about the distribution of pixel pairs in the image of a specific spatial relationship given
the direction (e.g., 45◦, 90◦) and the distance (e.g., 1-pixel separation). The column and row
number of GLCM are assigned to specific values, and the element shows the co-occurrence of
two corresponding values. Once the co-occurrence matrix is derived, 13 texture features are
calculated: angular second moment, contrast, correlation, sum of squares (variance), inverse
difference moment, sum of average, sum of variance, sum of entropy, entropy, difference vari-
ance, difference entropy, and two types of information measures of correlation (Haralick and
Shanmugam [23]). Since the GLCM features are centrosymmetric in terms of the directions,
it is recommended that only directions less than 180◦ from the positive x axis of the image
are used. The features from reversed direction will be covered as a result of centrosymmetry.
Four directions (0◦, 45◦, 90◦, and 135◦) are typically used in computing the features. The
pixel distance is chosen based on the application: a larger distance will allow the detection
of coarse areas, while a smaller distance is good for more granulized detections.

Given the separation distance and direction, a co-occurrence matrix can be derived. An
example of the co-occurrence matrix is shown in Figure 4. For all the co-occurrence matrices,

Figure 4. Example of computing a co-occurrence matrix in GLCM: (a) gray level images (three
levels: black, dark gray, and light gray), (b) gray level representation of the image (1 = black,
2: dark gray, 3: light gray), and (c) for 0◦, one-pixel separation, two occurrences of 1-2.
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Figure 5. Demonstration of GLCM difference variance average feature from contrast-enhanced
digital mammography of breast cancer: (a) benign case, (b) malignant case.

(a) (b)

the numbers of occurrences between each pixel pair are calculated. Taking grayscale images
as example, a black pixel has value 0 and a white pixel has value 255. The number of 0-255
(black-white) pairs across all co-occurrence matrices is derived.

From the co-occurrence matrix, 13 statistical features from these counts are calculated
(see Appendix A for the details of the features). As an illustration, we generate a feature
map on one of the GLCM texture features (difference variance average feature) from CEDM
breast imaging. Figure 5(a) shows the feature map on a benign case, and Figure 5(b) shows
the feature map on a malignant case.

3.2.2. LBP. LBP is a texture descriptor introduced by Ojala et al. [45]. It became popular
because of its simplicity and good discriminative power. For each pixel within an image, the
LBP algorithm compares the gray level of its neighborhood pixels. If the neighborhood pixel
has a greater value, 1 is assigned; otherwise, 0 is assigned. After labeling all the neighborhood
pixels, an LBP vector consisting of binary values is generated. An example of LBP on a
3× 3 patch is shown in Figure 6. As an illustration, Figure 7 shows the feature map on
a benign case (Figure 7(a)) and a malignant case (Figure 7(b)). For this 3× 3 patch, the
LBP vector will have eight digits. A histogram on 256 bins can be generated to describe the
image properties. But this number of bins can be adjusted based on the imaging modality
and disease type. If the bin size is too small, the size of each bin will be large, which may
lose some granularity of the estimated distribution; on the other hand, if the bin size is too
large, computational complexity issues arise. This trade-off leads to uniform LBP bin size,
which is usually determined from a series of empirical experiments. As a guideline, most
clinical research uses 10–20 bins, depending on the data set as well as the computational
power of the systems used to run the algorithms. The patch size can also be extended. If
the neighborhood size is 2, the surrounding pixels will be 24 pixels. Thus, the number of
bins and the bin sizes should be adjusted accordingly.

3.2.3. Gabor Filter Bank. The Gabor filter is a method based on image transformation
that produces an image in a space whose coordinate system is related to texture character-
istics, such as frequency content or spatial resolution. Commonly studied transform-based
methods are Gabor filters, Fourier, and S-transform, among which Gabor filters are known
to provide better spatial localization (Larroza et al. [32]). The Gabor filter is a band pass
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defined by a frequency and an orientation parameter. In particular, a 2D Gabor filter is
a Gaussian kernel function modulated by a sinusoidal wave. Since the Gabor filter shows
optimal localization properties in both spatial and frequency domains, it has proven its
advantages in edge detection and texture segmentation problems (Ratha et al. [48]). How-
ever, their usefulness may be limited because there is no single filter resolution at which a
spatial structure can be localized (Materka [40]). As a result, a Gabor filter bank, a set of
predefined Gabor filters with the combination of frequencies and orientations of the sinu-
soidal wave and the variances of the Gaussian kernels, is often constructed. The filtered
images with different Gabor filters are then convolved, and the mean value and standard
deviation of each filtered image are calculated as texture features. For a sinusoidal wave in a
2D space, the direction parameter describes the angle of the wave function; it is easy to see
that this parameter is also centrosymmetric on the original directions. Thus four directions
are commonly used in Gabor filters: 0◦, 45◦, 90◦, and 135◦. The frequency parameter decides
the location of a series of peaks on the sinusoidal wave. These peaks are the band-pass
position on the wave and should be selected based on the size of the image as well as the
potential textures embedded in the image. For the Gaussian kernel function in Gabor filters,
the variance also affects the width of the band pass. These two parameters are both related
to the image properties. In Figure 8, we show an example of a feature map on Gabor filters
with the standard deviation being 0.6 and frequency being 0.3.

As seen in Figures 5, 7, and 8, the color scales may reflect the subtle differences between
the benign case and the malignant case. Joining all the features together will enable the

Figure 6. Illustration of LBP algorithm on 3×3 patch, where center pixel x has a vector of 8 bits
[1 1 1 0 1 0 0 1 0] and the value is 87.
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Figure 7. Demonstration of LBP feature from contrast-enhanced digital mammography of breast
cancer: (a) benign case, (b) malignant case.
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Figure 8. Demonstration of Gabor standard deviation (sigma = 0.6, frequency = 0.3) from
contrast-enhanced digital mammography of breast cancer: (a) benign case, (b) malignant case.

(a) (b)

development of a predictive model that will have discriminative power for disease diagnosis.
However, these features may be highly correlated as a result of spatial adjacencies and func-
tional similarity. To reduce the dimensionality and decorrelate the features, some dimension
reduction techniques are applied such as principle component analysis (PCA).

3.3. Principle Component Analysis for Feature Dimension Reduction

PCA is a machine learning method that transforms the data into principal components
(PCs), linear combinations of the original features (Johnson and Wichern [28]). Using this
transformation, the original data set, which may involve many features with high correla-
tions, can often be interpreted by just a few uncorrelated PCs. The first task in PCA is
to identify a new coordinate axis that has the largest possible variance in the dataspace.
This forms the base axis for the first PC. Following a similar procedure, the feature that
is orthogonal to the first PC and has the largest possible variance is used to identify the
next direction, the second PC. Iteratively, this procedure continues until the original feature
space is transformed to the orthogonal PC space.

3.4. Predictive Modeling

The PCs produced from the previous step are then used to build a classification model.
There are many types of classification models that can be chosen. Popular classification
models include linear discriminant analysis (LDA; Hu et al. [26], Huang et al. [27]), quadratic
discriminant analysis (QDA; Chong et al. [10], Schwedt et al. [52], Zhang et al. [70]), and
SVMs (Fan et al. [16], Yang et al. [66], Zhang et al. [69]).

LDA creates a model with a linear classification boundary that optimally divides instances
in a binary classification problem. Given Y ∈ {0,1}, LDA takes the following form:

log
p(Y = 1 | z)

p(Y = 0 | z)
= (µ1−µ0)TΣ−1z− 1

2
µT1 Σ−1µ1 +

1

2
µT0 Σ−1µ0 + log

π

1−π
, (1)

where z represents the set of PCs, µ1 and µ0 are the means of z for the two classes, Σ is the
pooled covariance matrix for the two classes, and π = P (Y = 1). The classification rule of
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LDA is that if log(p(Y = 1 | z)/(p(Y = 0 | z))> 0, assign the sample to class 1 and to class 0
otherwise. Note that µ0, µ1, Σ, and π can be estimated from training data by maximum
likelihood estimation.

QDA is similar in formulation to LDA, except that it has a quadratic decision boundary.
Given Y ∈ {0,1}, QDA takes the following form:

log
p(Y = 1 | z)

p(Y = 0 | z)
=−1

2
zT (Σ−11 −Σ−10 )z + (µT1 Σ−11 −µT0 Σ−10 )T z− 1

2
µT1 Σ−11 µ1 (2)

+
1

2
µT0 Σ−10 µ0 + log

π

1−π
+ log

√
|Σ0|/|Σ1|, (3)

where Σ1 and Σ0 are the covariance matrices of the two classes (unlike LDA, QDA assumes
each class has a unique covariance matrix).

The SVM model has a linear decision boundary and takes the following form:

f(z) = sT z + s0, (4)

where s and s0 are estimated from the objective function min{s, s0, ξ}
1
2sT s +CΣiξi subject

to yif(zi)≥ 1− ξi and ξi ≥ 0 ∀ i, where C is the penalty parameter, ξi is the slack variable
for sample i in a training data set, yi is the class of sample i, andf(zi) is the predicted value
of sample i.

To select important features that build an accurate model, a wrapper method is employed.
The wrapper method is useful for developing an accurate model since it directly considers
the accuracy of the classifier in model development (Guyon and Elisseef [20]). Note that
wrapper method development itself is a growing research field. Because of space limitations,
we only briefly discuss two wrappers used in our studies. One is sequential forward selection
(SFS), which can be used to create a simple and accurate model (Whitney [62]). SFS starts
with an empty set of features and, in each step, adds a new PC such that the classification
accuracy is maximized. SFS stops when it cannot find a PC that will improve the accuracy
by a certain threshold chosen by the user (for example, stop adding PCs to the model when
the accuracy does not improve by >1%). The second method is the particle swarm optimizer
(PSO), a swarm intelligence algorithm that can be embedded in the predictive modeling
process for feature selection.

Once an optimal classifier with the selected features is found, the PCs in the models can
be reverse transformed to show the contribution of the original features (Gaw et al. [19]).
As a result, the contributing features can be identified for clinical interpretations. Interested
readers are referred to Hu et al. [25, 26] and Ramkumar et al. [47] for examples.

4. Imaging Multitexture Disease Diagnosis System and
Its Clinical Applications

Following the same workflow of the quantitative imaging system laid out in Section 3, we
develop iMT-DDS, an imaging multitexture disease diagnosis system. The technical details
of the iMT-DDS are as follows:

1. ROI definition and preprocessing: We adopt the approach shown in Figure 3(a) for
ROI definition to minimize the potential impact of border distortion. In addition, we adopt
a single ROI min-max approach for the CEDM breast cancer study and a bi-ROI min-max
approach for the CT cholangiocarcinoma study. Both case studies are presented later in this
section.

2. Texture feature extraction: We adopt three texture algorithms—namely, GLCM, LBP,
and Gabor filter. When applying these algorithms on a large image, the border pixels are
just a small proportion of all pixels in the image; thus the distortion is not critical. For
example, for a 100× 100 image, 396 out of 10000 pixels (4%) are on the edges or corners
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of the image so the impact of the border pixels may not be significant. However, when
the size of image is 10× 10 (like some ROIs in our study), 36 out of 100 pixels (36%) are
border pixels, which requires some techniques to ameliorate this issue. Here, to minimize
this border impact, we extend the ROI size to include real image pixels for texture feature
calculation at the border (in contrast with the commonly used zero-padding approach that
adds artificial all-dark pixels outside the window; this method would severely distort the
calculation at the border). Then, when summarizing the texture feature calculation results
into texture features, we only include the results on the pixels within the original image ROI.
This approach turns out to produce superior performance over other alternative approaches
in handling border distortion.

3. Feature dimension reduction: We use PCA to perform this function. To preserve clinical
interpretability, we choose to apply PCA on each of the three texture algorithms individ-
ually. This accounts for the fact that the different texture algorithms describe the image
from different perspectives, and so applying PCA on all the texture features together is
inappropriate.

4. Predictive modeling: We adopt SVM, LDA, and QDA as the classifiers. In selecting
features, the LOOCV is chosen as the objective function. SFS is applied for the breast cancer
study, and PSO is used in the cholangiocarcinoma study.

In the following sections, we present two case studies: breast cancer using CEDM imaging
and cholangiocarcinoma using CT imaging. The first case study demonstrates the application
of iMT-DDS to breast cancer diagnosis. The second case study shows that iMT-DDS is
able to identify the association between imaging biomarkers with genomic driver targeting
cholangiocarcinoma so that personalized treatment planning can be achieved.

4.1. Case Study I: Breast Cancer Diagnosis

Breast cancer is the second-leading cause of cancer death in women (Siegel et al. [54]) and
accounts for about 2̃9% of female cancer cases detected in the United States. But breast
cancer is also one of the most treatable malignancies if it can be detected early. Three
imaging techniques are commonly used clinically to diagnose breast cancer: ultrasound (US),
DM, and MRI. US suffers from a high number of false positives, leading to excessive biopsies.
MRI has good diagnosis performance but is costly. DM is much less expensive compared
with MR, and it has an overall sensitivity of 75%–85%. But in high-risk patients with BRCA
(breast cancer susceptibility gene) mutations or dense breasts, sensitivity decreases to the
range 30%–50% (Kriege et al. [30], Kuhl et al. [31], Leach et al. [36], Warner et al. [61]).
The lower sensitivity of mammography in women with dense breasts is most likely due to
a masking effect caused by the large amount of fibroglandular tissue (Boyd et al. [5]). As
a result, improved imaging techniques using contrast enhancement to detect breast cancer
have been developed and refined for these high-risk patients, including dedicated breast CT
(DBCT), breast MRI, and, more recently, CEDM. Efforts have also been spent on exploring
the utilities of imaging texture features in improving the diagnosis accuracy. Tan et al. [58]
propose the use of image features from four-view mammography for cancer diagnosis and
achieve an AUC of 0.79. do Nascimento et al. [13] study the discrete wavelet transform on
digital mammograms combined with a polynomial classifier and achieve a high accuracy,
with an AUC of 0.98. Muramastu et al. [43] extensively study the radial local ternary
patterns from mammograms for breast cancer diagnosis, and the highest performance model
achieves an AUC of 0.90.

In this tutorial, we demonstrate the applicability of our iMT-DDS for breast cancer
diagnosis using a novel imaging modality, CEDM. Note CEDM is an emerging technology
for breast cancer diagnosis, and Mayo Clinic is the first Food and Drug Administration
non-beta testing site to use this technology in clinical practice. CEDM generates a low-
energy mammography image along with a recombined contrast-enhanced image reflecting
contrast accumulation within a lesion (see Figure 9). Breast regions with increased and/or
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Figure 9. CEDM images on a malignant breast cancer case.
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Notes. Each lesion was captured in two views (CC versus MLO) with two images per view. One is a low-
energy image, and the other is a digital subtraction image. The green contours are the lesion contours marked
by the radiologist.

leaky vasculature, two common characteristics of neoplasms, can be identified using intra-

venously administered, iodinated contrast material. This additional information improves

lesion detection and characterization. As seen in Figure 9, there are two views (cranial-

caudal (CC) versus mediolateral oblique (MLO)) for the low-energy and contrast-enhanced

energy. As a result, each patient will have four images and thus four ROIs to be included in

the study.
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Table 1. Parameter setting for texture analysis algorithms for case study I.

Algorithm Parameter Description Guideline for selection

GLCM Direction In which direction the
co-occurrence should be
considered

[0◦,45◦,90◦,135◦]

Distance How far between two points the
co-occurrence should be
considered

1

LBP Direction Radius of the neighborhood 1, 3
Number of

surrounding
points

Number of points that should
be selected on the circle of
neighborhood

8, 24

Number of bins
of histogram

The granularity of the texture
spectrum

10, 26 (Ojala et al. [45])

Gabor Frequency The frequency of the sinusoidal
wave

Depends on the properties of
images (0.1, 0.3, and 0.5
are used in our case)

Direction The direction of the sinusoidal
wave

[0◦,45◦,90◦,135◦]

Variance The variance of the Gaussian
kernel

Depends on the properties of
images (1 and 2 are used)

4.1.1. Data. In an Institutional Review Board (IRB) exempt study, we retrospec-
tively reviewed contrast-enhanced spectral mammography examinations performed between
August 2014 and December 2015 (Hologic, Bedford, Massachusetts). Informed consent was
obtained from all patients having a BIRADS (Breast Imaging Reporting and Data Systems)
4 or 5 classification in a preexisting IRB-approved study determining whether CEDM could
lower the false-positive biopsy rates in mammography. The patient cohort included exami-
nations that met the following criteria: (1) diagnostic mammogram that received a BIRADS
rating of 4 or 5 and (2) studies that corresponded with available pathology results from sur-
gical or image-guided biopsy. We limited the cohort to BIRADS 4 and 5 lesions because the
analysis required the gold standard of lesion pathology. In total, 99 patients were identified
that met the above inclusion criteria (21 benign and 78 malignant biopsy-proven lesions);
since this is an imbalanced data set, SMOTE (Chawla et al. [8]), a commonly adopted
method for unbalanced data, was applied first before the experiments.

4.1.2. Experiments. Based on our previous exploration on various medical applications
(Hu et al. [25, 26], Ramkumar et al. [47]), we set the parameters of GLCM, LBP, and Gabor
as seen in Table 1. We apply the texture algorithm to each of the four views, resulting in 244
(61× 4) texture features (61 texture features = 13 GLCM features + 36 LBP features + 12
Gabor features) for each patient. In addition, we have four intensity-based features: mean,
standard deviation, skewness, and kurtosis.

We have two hypotheses in this study: (1) the texture features improve the diagnosis
accuracy when compared with intensity-based features alone, and (2) contrast-enhanced
imaging (from digital subtraction image (DES)) shows advantages over low-energy imag-
ing for breast cancer diagnosis. To test the hypotheses, we design three experiments using
LDA, QDA, and SVM methods. In the first experiment, we develop the classifiers from four
intensity features derived from low-energy images. In the second experiment, we develop the
classifiers on the intensity features and the 61 texture features, again from the low-energy
images. In the third experiment, the feature space is expanded to include both low-energy
and DES images, using both intensity and texture features. It is interesting to note that
when using only intensity features (see Table 2), the performance of SVM is comparable
to both LDA and QDA. However, its performance significantly deteriorates with texture
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Table 2. Experimental results for breast cancer case study.

Overall
accuracy (%) Sensitivity (%) Specificity (%)

Experiment I
LDA 74 73 76
QDA 77 73 90
SVM 77 74 86

Experiment II
LDA 78 78 76
QDA 82 94 33
SVM 75 85 38

Experiment III
LDA 82 82 81
QDA 87 91 71
SVM 78 96 10

features added into the model. Pending further investigation, we suspect the reason may
be that the oversampling by SMOTE on the benign class does not help shift the classi-
fication boundary in SVM, such that the boundary is still to the benefit of the majority
(i.e., malignant) class and makes the accuracy of minority class (i.e., specificity) low. This
impact becomes more obvious when the feature dimension is high such as in experiments II
and III when texture features are added. Nevertheless, LDA’s performance supports the
hypothesis well. Specifically, using the intensity-only feature gives an overall accuracy of
74% (sensitivity: 73%, specificity 76%); adding texture features from low energy improves
the performance to accuracy 78% (sensitivity: 78%, specificity 76%). This demonstrates the
value of texture features in cancer diagnosis. In addition, with added features (both intensity
and texture) from DES images, the performance is further improved to an accuracy of 82%
(sensitivity: 82%, specificity 81%).

4.2. Case Study II: Cholangiocarcinoma

Cholangiocarcinoma is an aggressive malignant tumor of the intrahepatic and extrahepatic
bile ducts. It is very difficult to be detected, and as a result, patients usually have more
advanced tumors by the time of diagnosis. The five-year survival rate only ranges from 2%
to 30%. Currently, surgical excision and liver transplantation offer the only chance for cura-
tive therapy. Systemic therapy with gemcitabine hydrochloride and cisplatin is the current
standard of care for patients with advanced disease. Unfortunately, this therapy provides
only modest benefit, with dismal prospects for long-term survival (Valle et al. [59]). Driven
by precision medicine, clinical researchers are looking into evaluation of particular genetic
aberrations that are targetable by novel chemotherapeutic regimens. Fibroblast growth fac-
tor receptors (FGFRs) control biologic functions relevant to oncology, including cell survival,
proliferation, migration, and differentiation. Several recent studies have implicated abnormal
FGFR2 gene fusions in intrahepatic cholangiocarcinoma (Arai et al. [2], Borad et al. [4], Wu
et al. [65]). While the identification of the FGFR2 has the potential of developing targeted
therapeutic agents, the genomic analysis for diagnosis is invasive and costly. As a result, the
use of imaging technology to noninvasively characterize tumors may have great potential
to transform clinical practices. As shown in Figure 10, even an experienced radiologist has
difficulty with differentiating FGFR2+ versus FGFR2− from the CT imaging. The central
hypothesis of this study is that imaging texture features may be able to capture the subtle
differences between FGFR2− and FGFR2+, and thus be able to differentiate between the
two cohorts. If this hypothesis is shown to be true, we will be one step closer to precision
medicine in this area.
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Figure 10. CT imaging on liver: (a) FGFR2+ and (b) FGFR2−.

(a) (b)

4.2.1. Data. Following institutional review board approval, a HIPAA–compliant retro-
spective study was performed. Thirty-three patients with advanced sporadic intrahepatic
cholangiocarcinoma who had previously undergone integrated tumor sample whole-genome
and whole-transcriptome analyses, as well as corresponding FGFR2 break-apart fluorescence
in situ hybridization (FISH) assay, were evaluated with CT. Fifteen patients were positive
for FGFR2 gene fusion, and the remaining 18 patients are FGFR2 negative.

4.2.2. Experiment. We set the parameters of GLCM, LBP, and Gabor as follows by
referencing the parameter settings of similar applications (see Table 3). A total of 37 texture
features (13, 12, and 12 from GLCM, LBP, and Gabor, respectively) are computed for each
ROI. Thirty-three subjects are included in this study, with 15 FGFR2+ and 18 FGFR2−
cases. The LOOCV classification accuracy is 91% (sensitivity = 87%, specificity = 94%; see
Table 4).

One interesting observation from this study is all three methods have comparable perfor-
mance similar to that from experiment I in the first case study, and SVM outperforms both

Table 3. Parameter setting for texture analysis algorithms for case study II.

Algorithm Parameter Description Guideline for selection

GLCM Direction In which direction the
co-occurrence should be
considered

[0◦,45◦,90◦,135◦]

Distance How far between two points the
co-occurrence should be
considered

1

LBP Direction Radius of the neighborhood 3
Number of

surrounding
points

Number of points that should
be selected on the circle of
neighborhood.

24

Number of bins
of histogram

The granularity of the texture
spectrum

12

Gabor Frequency The frequency of the sinusoidal
wave

Depends on the properties of
images (0.1, 0.3, and 0.5
are used in our case)

Direction The direction of the sinusoidal
wave

[0◦,45◦,90◦,135◦]

Variance The variance of the Gaussian
kernel

Depends on the properties of
images (1 and 2 are used)
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Table 4. Experimental results for cholangiocarcinoma case study.

Overall accuracy (%) Sensitivity (%) Specificity (%)

LDA 79 80 78
QDA 76 73 78
SVM 91 87 94

LDA and QDA in this case study. This may suggest that SVM is relatively more sensitive to
the data set (balanced versus imbalanced) and the number of features when developing the
model. In addition, these two case studies confirm that model performance varies depending
on the data set, which is dependent on both imaging modality and disease type. As a result,
it is recommended to have multiple classifiers included in the system such as our iMT-DDS
for clinical applications. We also want to note that the second case study has a relatively
small data set compared with the first one. PSO, an aggressive feature selection mechanism,
is used for this small data set. Although the results are cross validated, the robustness of
the model on a totally new data set for blind testing is yet to be explored.

5. Conclusions and Future Directions

Precision medicine is a nationwide initiative to uncover cancer pathways by taking into
account individual differences in lifestyle, environment, and biology. It is expected to accel-
erate biomedical research and provide clinicians new tools to improve diagnosis accuracy
and identify therapies that work best with individual patients. Recent studies have demon-
strated the success of using imaging features in disease diagnosis (introducing the concept
of radiomics) and identifying the associations between imaging features and genetics in var-
ious cancers (introducing the concept of radiogenomics). Aligning with these new concepts,
quantitative imaging is becoming an emerging research field. The cornerstone of quantitative
imaging research is a system that processes imaging for feature extraction in conjunction
with multiparametric model development. In this tutorial, we provide a detailed discussion
of the essential components of a quantitative imaging system. To illustrate the applicability
of the system to clinical application, we present iMT-DDS, our in-house-developed imaging
multitexture disease diagnosis system, on two clinical case studies. Since quantitative imag-
ing is a relatively new field, here we offer some insight of future directions on each step of
the overall process.

• Region of interest and normalization (step 1 of a quantitative imaging system): Manual
segmentation of ROI has been the traditional method, but it is time consuming, tedious, and
error-prone. In automated segmentation, some research focuses on intensity thresholding
based on the assumption that tissues from ROIs have significantly and consistently different
intensities than the background. These differences are either global, which only requires a
fixed threshold, or local, which requires adaptive thresholding. In practice, however, the
fundamental assumption of thresholding is often violated, and thresholding alone produces
poor segmentation results. If at all, most segmentation methods apply thresholding only
as a first step in the pipeline. Effort has also been devoted to developing a linear filter
based on intensity-derived features rather than by their absolute intensities. Similar to
thresholding, such feature-based filters alone usually do not produce definitive cell outlines
but may provide useful cues for subsequent steps in the pipeline. Another popular class of
filters includes those from the field of mathematical morphology. Being nonlinear, operators
such as erosion, dilation, opening, and closing allow for the examination and manipulation
of geometric and topological properties of objects in images, and they are often used in
connection with cell segmentation. One common approach is to start from selected seed
points in the image and to iteratively add connected points to form labeled regions. However,
the morphological-based filtering is known to lack robust performance for images with large
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noise and is infamous for producing oversegmentation. The fourth area is deformable model
fitting where the models are formulated either explicitly, as the parametric contour (2D)
or surface (3D), or implicitly, as the zero level of a function with dimensionality (nD)
one higher than the image to be segmented. One popular method is level set; however, it
requires computation of partial differential equations at each point on the iteratively evolving
surface and thus has been known to be computationally prohibitive for widespread clinical
use. Apparently, the challenging task in this step is the development of accurate, fast, and
automated segmentation so that the ROI can be precisely delineated. Next, as stated earlier,
normalization plays a significant role in the quality of the texture features to be extracted.
A thorough investigation on disease and imaging modality-dependent normalization should
be conducted so that a general principle on this procedure may be derived.
• Texture feature extraction (step 2 of a quantitative imaging system): Texture analysis

is significantly impacted by the imaging resolution and quality (e.g., signal-to-noise ratio
(SNR)). In MR imaging, the image resolution is defined by the field of view, slice thickness,
and matrix, while the SNR is defined as the ratio of signal power to noise power. The higher
the ratio, the stronger the signal compared to the noise. Apparently, texture feature dis-
criminative power increases for higher-resolution images with higher SNR values. However,
existing literature indicates that the texture application in clinical practice is far more com-
plicated as good reproducibility across multicenter studies has not yet been achieved. More
experimental studies on the quality of the texture features from different imaging are nec-
essary. Second, most research (including ours) focuses on extracting texture features from
2D ROI. Extracting 3D texture features may further improve the clinical utility.
• Feature dimension reduction (step 3 of a quantitative imaging system) and predictive

modeling (step 4 of a quantitative imaging system): Clinical data often have missing data.
Often the portion of the data with missing values is just discarded, resulting in valuable
clinical data not being fully utilized. Exploring ways of missing data imputation is becoming
a popular topic in machine learning, and it deserves special attention for clinical applications.
To avoid overfitting, research has separated the data into training and validation sets so that
results on new data can be reported. This should be strictly applied to feature dimension
reduction, feature selection, and predictive model development so that the results with
robust predictive performance can be reported. However, most clinical studies are large p and
small n problems—that is, the number of features (p) is much greater than the number of
samples (patients, n), leading to challenges in generalized model development. How to take
advantage of the larger existing publicly available data sets and develop/tune the predictive
models to have robust performance is the next immediate question from this field.
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Appendix. GLCM Features

Notation

To introduce the thirteen GLCM features, we need the following six basic notations.

p(i, j): (i, j)th entry in a normalized gray-tone spatial-dependence matrix, = P (i, j)/R.
px(i): ith entry in the marginal-probability matrix obtained by summing the rows of p(i, j),

=
∑Ng

j=1 P (i, j).
Ng: Number of distinct gray levels in the quantized image.

py(j) =

Ng∑
i=1

P (i, j).
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px+y(k) =

Ng∑
i=1

Ng∑
j=1

P (i, j), i+ j = k, for k= 2,3, . . . ,2Ng.

px−y(k) =

Ng∑
i=1

Ng∑
j=1

P (i, j), |i− j|= k, for k= 0,1, . . . ,Ng − 1.

The thirteen GLCM features are listed as follows.

(1) Angular second moment:

f1 =

Ng∑
i=1

Ng∑
j=1

{P (i, j)}2.

(2) Contrast:

f2 =

Ng−1∑
n=0

n2

{Ng∑
i=1

Ng∑
j=1

{P (i, j)}
}
, |i− j|= n.

(3) Correlation:

f3 =

∑Ng

i=1

∑Ng

j=1(ij)P (i, j)−µxµy

σxσy
,

where µx, µy, σx, and σy are the means and standard deviations of ρx and ρy.

(4) Sum of squares: Variance:

f4 =

Ng∑
i=1

Ng∑
j=1

(i−µ)P (i, j).

(5) Inverse difference moment:

f5 =

Ng∑
i=1

Ng∑
j=1

1

1 + (i− j)2P (i, j).

(6) Sum average:

f6 =

2Ng∑
i=2

ipx+y(i).

(7) Sum variance:

f7 =

2Ng∑
i=2

(i− fs)2px+y(i).

(8) Sum entropy:

f8 =−
2Ng∑
i=2

px+y(i) log{px+y(i)}.

(9) Entropy:

f9 =−
Ng∑
i=1

Ng∑
j=1

p(i, j) log{p(i, j)}.

(10) Difference variance:

f10 = variance of px−y.

(11) Difference entropy:

f11 =−
Ng−1∑
i=0

px−y(i) log{px−y(i)}.
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(12), (13) Information measures of correlation:

f12 =
HXY −HXY 1

max{HX,HY } .

f13 = (1− exp[−2.0(HXY 2−HXY )])1/2.

HXY =−
Ng∑
i=1

Ng∑
j=1

p(i, j) log{p(i, j)}.

HXY 1 =−
Ng∑
i=1

Ng∑
j=1

p(i, j) log{px(i)py(j)}.

HXY 2 =−
Ng∑
i=1

Ng∑
j=1

px(i)py(j) log{px(i)py(j)}.
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