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Robust coupled tensor decomposition and feature extraction for multimodal
medical data

Meng Zhaoa, Mostafa Reisi Gahrooeia , and Nathan Gawb

aDepartment of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA; bDepartment of Operational Sciences,
Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA

ABSTRACT
High-dimensional and multimodal data to describe various aspects of a patient’s clinical condition
have become increasingly abundant in the medical field across a variety of domains. For example,
in neuroimaging applications, electroencephalography (EEG) and functional magnetic resonance
imaging (fMRI) can be collected simultaneously (i.e., EEG-fMRI) to provide high spatial and tem-
poral resolution of a patient’s brain function. Additionally, in telemonitoring applications, a smart-
phone can be used to record various aspects of a patient’s condition using its built-in
microphone, accelerometer, touch screen, etc. Coupled CANDECOMP/PARAFAC decomposition
(CCPD) is a powerful approach to simultaneously extract common structures and features from
multiple tensors and can be applied to these high-dimensional, multi-modal data. However, the
existing CCPD models are inadequate to handle outliers, which are highly present in both applica-
tions. For EEG-fMRI, outliers are common due to fluctuations in the electromagnetic field resulting
from interference between the EEG electrodes and the fMRI machine. For telemonitoring, outliers
can result from patients not properly following instructions while performing smartphone-guided
exercises at home. This motivates us to propose a robust CCPD (RCCPD) method for robust feature
extraction. The proposed method utilizes the Alternating Direction Method of Multipliers (ADMM)
to minimize an objective function that simultaneously decomposes a pair of coupled tensors and
isolates outliers. We compare the proposed RCCPD method with the classical CP decomposition,
the coupled matrix-tensor/tensor-tensor factorization (CMTF/CTTF), and the tensor robust CP
decomposition (TRCPD). Experiments on both synthetic and real-world data demonstrate that the
proposed RCCPD effectively handles outliers and outperforms the benchmarks in terms of accuracy.
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1. Introduction

In many real-world applications, high-dimensional (HD)
data such as multi-channel waveforms, images, and videos
are available and can naturally be represented by tensors,
i.e., multi-dimensional or higher-order arrays. Tensors pro-
vide a unified framework to represent various data forms to
design more generic data analysis techniques. For example, a
vector can be considered as a one-dimensional (or first-
order) tensor and a matrix as a two-dimensional (or second-
order) tensor. Higher-order tensors are the ones with more
than two modes. Traditional data analysis methods that are
vector-based are becoming insufficient due to their limita-
tions in capturing the inherent correlations and interactions
within the tensor data. To capture the correlation structure
of HD data, multi-linear algebra has been studied and
applied in diverse domains, including systems monitoring
and control (Khanzadeh et al., 2018; H. Yan et al., 2019;
Miao et al., 2022), prognostics (Fang et al., 2019), and
healthcare (He et al., 2019).

At the core of multi-linear algebra lies tensor decompos-
ition, which is an essential tool to exploit the correlation
structure of higher-dimensional data and decompose a

tensor into more basic and interpretable components (Kolda
& Bader, 2009). For example, CP decomposition, among
others, is one of the most widely used methods, which fac-
torizes a tensor into a sum of rank-one tensors (Kolda &
Bader, 2009). These decomposition techniques, however, are
not designed to handle the presence of outliers within a ten-
sor and therefore may result in extracting factors and fea-
tures that are biased and misleading. To address this issue,
several robust tensor decomposition approaches have been
developed to remove the influence of outliers. These techni-
ques decompose a tensor into a summation of three tensors:
a smooth low-rank tensor, a sparse tensor, and an error ten-
sor (Anandkumar et al., 2016; Gu et al., 2014; Xue et al.,
2017), among which the sparse tensor contains outliers. To
estimate these tensors, Anandkumar et al. (2016) propose a
non-convex iterative algorithm that alternates between low-
rank CP decomposition through gradient ascent and hard
thresholding of residuals. Xue et al. (2017) develop two
robust low-rank tensor recovery algorithms: tensor ortho-
normal robust PCA (TORPCA) and tensor robust CP
decomposition (TRCPD), using Tucker and CP decompos-
ition respectively with lp norm regularization.
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These decomposition approaches, however, cannot be
applied to situations where multiple sources of data (modal-
ities), with potentially different structures (e.g., images
versus waveform signals), are available. For instance, electro-
encephalography (EEG) and functional Magnetic Resonance
Imaging (fMRI) data are often collected simultaneously for a
more accurate analysis of brain activities. These two modes
of data cannot be represented by a single tensor due to their
differences in resolution, dimension, and scale. EEG signals
(usually represented by a channel� time matrix) measure
electric oscillations on the scalp surface with excellent tem-
poral resolution but lower spatial resolution, while fMRI
(usually represented by a 4D tensor with 3D spatial dimen-
sions� time) helps analyze brain activities with higher spa-
tial but poor temporal resolution.

Due to the complementary properties of the individual
modalities (e.g., each tensor), coupled data analysis has the
potential to improve the understanding of the underlying
structures, and to extract more informative and comprehen-
sive features, used for accurate systems modeling and deci-
sion making (Gaw et al., 2022). Coupled decomposition
approaches have been proposed for this purpose to extract
common information from multiple sources of data. For
example, Acar et al. (2011) and Acar et al. (2014) formulate
a coupled matrix and tensor factorization (CMTF) problem
where a tensor and a matrix that share a common mode are
decomposed together. Chatzichristos et al. (2018) present a
coupled tensor-tensor decomposition model which is applied
to coupled third-order fMRI tensor and fourth-order EEG
tensor analysis. Similarly, Jonmohamadi et al. (2020) develop
a coupled tensor-tensor decomposition model for extraction
of common features in EEG-fMRI tensors. Coupled tensor
decomposition techniques have benefited many applications,
including signal processing (Sørensen & De Lathauwer,
2013), chemistry (Acar et al., 2014), and bioinformatics
(Mosayebi & Hossein-Zadeh, 2020; Naskovska et al., 2017).
Several algorithms have been developed to solve the coupled
decomposition problems. Acar et al. (2011); Acar et al.
(2014) develop an all-at-once optimization method named
CMTF-OPT to solve the CCPD problem. Farias et al. (2016)
demonstrate the detailed analysis of the Alternating Least
Squares (ALS) method to solve the coupled CP decompos-
ition problem. Naskovska and Haardt (2016) propose a
coupled Semi-Algebraic CP decomposition via the simultan-
eous matrix diagonalizations (C-SECSI) framework, which is
an extension of the SECSI framework (Roemer & Haardt,
2013). Their proposed model can efficiently decompose two
tensors coupled in one or more modes under different
noise variances.

Unfortunately, however, the available coupled tensor
decomposition methods are not robust to the presence of
outliers in one or multiple modalities, as they generally
assume global Gaussian noise, which is not sufficient for
most multimodality data sets, in practice. As an example,
simultaneous EEG-fMRI data has been widely used to com-
bine the best of both techniques and discern various aspects
of functional networks across the brain (Bridwell &
Calhoun, 2019; Dizaji & Soltanian-Zadeh, 2017; Soon et al.,

2021). However, it is known that the simultaneous EEG-
fMRI data is often contaminated by outliers for example due
to magnetic field gradients and subjects’ motion (Bullock
et al., 2021). Another example is telemonitoring of
Parkinson’s Disease in which patients’ data are collected
over time by a smartphone application and used to predict
the severity of the patient’s condition. Specifically, the
smartphone application asks patients to perform pre-
designed activities such as speaking and tapping (see Figure
1). Often the collected data contains outliers due to a lack of
professional monitoring while patients perform the activities
at home. Even with clear instructions on how to perform
the activities, some patients still exhibit issues with perform-
ing each task properly on their own (which creates outliers
in the data). Therefore, an approach that can integrate dif-
ferent modalities (speaking and tapping) and handle the
presence of outliers is necessary.

To address the foregoing limitations and challenges, this
paper proposes a robust coupled CP decomposition
(RCCPD) framework to jointly analyze heterogeneous HD
data that contains outliers. In this framework, an objective
function that isolates the outliers and simultaneously decom-
poses tensors to obtain factor matrices and joint features is
formulated. The ADMM algorithm is then used to minimize
an augmented Lagrangian of the objective function.

The rest of this article is organized as follows: In Section
2, we briefly introduce multi-linear algebra and tensor nota-
tions used in the paper, and then we summarize the related
work. Section 3 discusses the proposed RCCPD framework
and the algorithmic approach to model estimation. We
describe the simulation studies in Section 4. Two case stud-
ies related to Parkinson’s Disease (PD) telemonitoring and
functional brain analysis are then provided in Section 5. In
the first case study, we evaluate the efficacy of our approach
in predicting a PD severity index based on features collected
from exercises performed by PD patients on smartphones;
in the second case study, we evaluate the performance of the
proposed method in extracting informative features from
simultaneous EEG-fMRI data to perform a trial classification
task. Section 6 provides some practical notes about the pro-
posed method. Section 7 provides final remarks and con-
cludes the article.

2. Tensor algebra and related work in data fusion

In this section, we first introduce notations and basic multi-
linear algebra used throughout this article. More details on
tensor algebra can be found in (Kolda & Bader, 2009). Next,
we present several studies related to tensor data analysis for
handling multimodal data. A multimodal dataset is organ-
ized in such a way that data can be grouped into multiple
perspectives, for which each perspective consists of at least
one feature (Gaw et al., 2022).

2.1. Notations and tensor algebra

We denote scalars, vectors, and matrices by lowercase or
capital letters (a or A), boldface lowercase letters (a), and
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boldface capital letters ðAÞ, respectively. Higher-order ten-
sors are denoted by calligraphic letters. For example, an
Nth-order tensor is denoted as X 2 R

I1�I2�����IN , where In
ðn 2 f1, :::,NgÞ is the dimension of the nth mode of the
tensor X : Tensor fibers are defined by fixing all but one
index of a tensor. The mode-n matricization of the tensor
X 2 R

I1�I2�����IN that reorders the elements of the N-way
array into a matrix, is denoted by XðnÞ: This matricization is
obtained by augmenting the nth mode fibers as the columns
of the matrix. The element (i, j) of a matrix A is denoted by
aij and the ith column vector of matrix A is denoted by ai:
The symbols � and � denote the Kronecker and Khatri-
Rao products, respectively. A� B, where A 2 R

I�J , B 2
R

K�L is defined as:

A� B ¼

a11B a12B � � � a1JB

a21B a22B a2JB

..

. ..
. . .

. ..
.

aI1B aI2B � � � aIJB

2
666664

3
777775,

and if J¼ L, A� B is defined as A� B ¼ ½a1 � b1
a2 � b2 � � � aJ � bJ �:

The CP decomposition of an Nth-order tensor X 2
R

I1�I2�����IN factorizes the tensor into a sum of rank-one ten-
sors. In general, the CP decomposition can be presented as:

X � vAð1Þ,Að2Þ, � � � ,AðNÞb �
XR
r¼1

að1Þr 	 að2Þr 	 � � � 	 aðNÞ
r ,

where AðnÞ 2 R
In�R (n 2 f1, :::,Ng) denotes the nth factor

matrix of the tensor X , and R is a positive integer denoting

the decomposition rank; aðnÞr 2 R
In ðr 2 f1, � � � ,RgÞ denotes

the rth column of the jth factor matrix. The symbol 	 repre-
sents the outer product of vectors. It is often useful to
assume that the columns of AðnÞ are normalized to length
one with the weights absorbed into the vector k 2 R

R

(Kolda & Bader, 2009) so that

X � vk;Að1Þ,Að2Þ, � � � ,AðNÞb �
XR
r¼1

kra
ð1Þ
r 	 að2Þr 	 � � � 	 aðNÞ

r ,

where kr > 0 is a singular value and kaðnÞr k2 ¼ 1: The mode-
n matricized version of the tensor X is expressed as:

XðnÞ � AðnÞKðAðNÞ � � � � � Aðnþ1Þ � Aðn
1Þ � � � � � Að1ÞÞ>,

where K ¼ diagðkÞ is a diagonal matrix.
The Frobenius norm is denoted as k � kF: For a tensor X ,

its Frobenius norm is written as kXkF , which can be calcu-
lated by kXkF ¼ kXð1ÞkF: The l1 norm of a tensor X is
denoted by kXk1 and is computed as the sum of the abso-
lute value of its entries. The operation hA,Bi represents the
trace of the product of two matrices A> (transpose of A)
and B, also denoted as TrðA>BÞ:

2.2. Related work

Data fusion models, which aim to capture common variations
in two or more datasets, have been developed for several deca-
des (Gaw et al., 2022; Hotelling, 1992). Early research on data
fusion mainly solved the problems of joint factorization of
multiple matrices (Badea, 2008). Singh and Gordon (2008) pro-
pose a collective matrix factorization (CMF) to utilize correla-
tions between different data and simultaneously factorize
coupled matrices. Their proposed CMF model is formulated as
follows: Given two matrices X 2 R

I�J and Y 2 R
I�K coupled

in the first mode, the objective function is given as:

f ðU,V,WÞ ¼ kX
 UV>k2 þ kY
 UW>k2, (1)

where V 2 R
J�R and W 2 R

K�R are specific factor matrices,
U 2 R

I�R is the shared factor matrix, and R is the rank. The
above model can be extended to the factorization of matri-
ces coupled in any mode. As an extension of problem (??),
joint factorization of a third-order tensor X 2 R

I�J�K

coupled with a matrix Y 2 R
I�M is proposed (Harshman &

Lundy, 1994; Smilde et al., 2000). In this approach, a tensor
and a matrix are decomposed simultaneously by minimizing
the following objective function:

f ðA,B,C,VÞ ¼ kX 
 vA,B,Cbk2 þ kY
 AV>k2, (2)

where A 2 R
I�R is the shared factor matrix of X and Y,

B 2 R
J�R and C 2 R

K�R are factor matrices corresponding
to the second and third modes of X ; and V 2 R

M�R is a
factor matrix of Y. Other variations of CMTF have also
been proposed (Acar et al., 2014). A more general form of
CMTF factorizes an Nth order tensor X 2 R

I1�I2�����IN

Figure 1. Telemonitoring workflow: first a patient performs exercises on a smartphone. The information from the exercises is then recorded by the smartphone,
which can output signals from which features can be extracted and used for predictive modeling of disease conditions (shown to the right are example plots of
one of the speaking and tapping features recorded over the course of a patient’s monitoring period). Due to patients not being monitored at home, there is poten-
tial for outliers to occur (highlighted by the circles).
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coupled with a matrix Y 2 R
In�M in the nth mode (n 2

f1, :::,Ng) by minimizing an objective function as follows:

f ðAð1Þ,Að2Þ, � � � ,AðNÞ,VÞ ¼ kX 
 vAð1Þ,Að2Þ, � � � ,AðNÞbk2

þ kY
 AðnÞV>k2,
(3)

CMTF is also extended to coupled tensor and tensor factor-
ization (Zhao et al., 2013), which simultaneously decomposes
multiple coupled tensors into common and uncommon factor
matrices. For example, if the matrix Y 2 R

In�M is replaced by
a higher-order tensor Y 2 R

I1�J2�����JM in (??), the coupled CP
decomposition of tensors X and Y is obtained by minimizing
the modified objective function as follows:

f ðA,Vð2Þ, :::,VðMÞÞ ¼ kX 
 vAð1Þ, :::,AðNÞbk2

þ kY 
 vAð1Þ,Vð2Þ, :::,VðMÞbk2:
(4)

Unfortunately, none of the proposed coupled decompos-
ition methods can handle tensor data contaminated by arbi-
trary outliers. In the next section, we will propose a
formulation of robust coupled tensor decomposition to
extract robust factors and features.

3. Robust coupled CP decomposition framework

In this section, we introduce the robust coupled CP decom-
position (RCCPD) model to jointly factorize tensors that are
contaminated by arbitrary outliers. We decompose coupled
tensors by extracting the outliers and fitting the CP decom-
position model, simultaneously. We first consider a specific
case of robust coupled tensor and matrix decomposition,
where tensor X 2 R

I1�I2�����IN and matrix Y 2 R
I1�J are

coupled in their first mode and both contain outliers. We
decompose X as the sum of three tensors, i.e., X ¼
L þ S þ E, where L 2 R

I1�I2�����IN is a smooth low-rank
tensor without outliers, S 2 R

I1�I2�����IN is a sparse tensor
that captures outliers, and E 2 R

I1�I2�����IN represents the
tensor of errors. We consider similar decomposition of
matrix Y ¼ Lþ Sþ E, where L 2 R

I1�J , S 2 R
I1�J , and E 2

R
I1�J are smooth, sparse, and error matrices, respectively.

Assuming that L and L are coupled in their first mode and
have the decomposition forms L ¼ vk;Að1Þ, :::,AðNÞb and
L ¼ Að1ÞV>, the robust coupled CP decomposition of X
and Y can be estimated by minimizing the following object-
ive function f ðAð1Þ, :::,AðNÞ,V,S, SÞ, denoted as f:

f ¼ 1
2
kX 
 S 
 vk;Að1Þ, :::,AðNÞbk2F þ akSk1 þ

1
2
kY
 S


 Að1ÞVTk2F þ bkSk1,
(5)

where a and b are hyperparameters.
Next, we extend (5) to a robust coupled tensor-tensor

decomposition form, by replacing matrix Y 2 R
I1�J with a

higher dimensional tensor Y 2 R
I1�J2�����JM : Hereafter, we

use subscript 1 for tensor X and subscript 2 for tensor Y,
i.e., X ¼ L1 þ S1 þ E1 and Y ¼ L2 þ S2 þ E2: Similar to
the previous representation, L2, S2, and E2 represent a

smooth tensor, a sparse tensor, and tensor of errors, respect-
ively. Assuming (without loss of generality) that L1 and L2

are coupled in their first mode, Equation (5) can be
extended as follows:

f ¼ 1
2
kX 
 S1 
 vk1;Að1Þ, :::,AðNÞbk2F þ akS1k1

þ 1
2
kY 
 S2 
 vk2;Að1Þ,Vð2Þ, :::,VðMÞbk2F þ bkS2k1,

(6)

where k1 2 R
R and k2 2 R

R are vectors that absorb weights
obtained by normalizing factor matrices AðnÞ 2 R

In�R and
VðmÞ 2 R

Jm�R ðn ¼ 1, :::,N;m¼1, :::,MÞ, respectively. Vectors
k1 and k2 are the joint robust features extracted from the data.
These vectors identify how to linearly combine the factor
matrices (basis vectors) to span the space of data. Therefore,
for a fixed set of bases, these coefficients contain approximately
all information within the data (analogous to coefficients of
Fourier transformation). The first and third terms penalize the
reconstruction error and the second and fourth terms enforce
the sparsity of S1 and S2:

3.1. Alternating direction method of multipliers (ADMM)
for model estimation

We aim to minimize the loss function in Equation (6) to
estimate the factor matrices and sparse tensors. Specifically,
we apply the alternating direction method of multipliers
(ADMM) approach to solve this optimization problem.
ADMM requires the differentiable and non-differentiable
parts of the objective function to be separable (in terms of
their variables), which is not the case in our original object-
ive function. For example, S1 is in both the first (differenti-
able) and second (non-differentiable) terms of the objective
function. To address this issue, we introduce two new auxil-
iary variables F and M and replace them with S1 and S2

in the second and fourth terms. This substitution requires
adding two equality constraints F ¼ S1 and M ¼ S2 and
produces the following formulation:

f ¼ 1
2
kX 
 S1 
 vk1;Að1Þ, :::,AðNÞbk2F þ akFk1

þ 1
2
kY 
 S2 
 vk2;Að1Þ,Vð2Þ, :::,VðMÞbk2F þ bkMk1,

s:t: F ¼ S1; M ¼ S2:

(7)

The corresponding augmented Lagrangian function
LqðAð1:NÞ, Vð2:MÞ,F ,S1,M,S2,D1,D2Þ for problem (7), is
constructed as:

Lq ¼ 1
2
kX 
 S1 
 vk1;Að1Þ, :::,AðNÞbk2F

þ 1
2
kY 
 S2 
 vk2;Að1Þ,Vð2Þ, :::,VðMÞbk2F

þ akFk1 þ bkMk1 þ hD1,F 
 S1i
þ q

2
kF 
 S1k2F þ hD2,M
S2i þ q

2
kM
 S2k2F ,

(8)
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where Að1:NÞ ¼ fAðiÞgNi¼1, V
ð2:MÞ ¼ fVðjÞgMj¼2 are all factor

matrices, D1 and D2 are the dual variables (or Lagrange
multipliers) with the same dimensions as tensors X and Y,
respectively. Here, h:, :i indicates the inner product of two
tensors and q > 0 is a penalty parameter.

The ADMM algorithm iteratively updates the eight sets
of variables by computing the partial (sub) derivative of the
augmented Lagrangian function with respect to each vari-

able. Specifically, to estimate AðnÞ, we fix all other variables

and solve AðnÞ by minimizing LqðAðnÞÞ, which is:

argmin
AðnÞ

1
2
fkX 
 S1 
 vk1;Að1Þ, :::,AðNÞbk2F

þ kY 
 S2 
 vk2;Að1Þ,Vð2Þ, :::,VðMÞbk2Fg:
(9)

We derive the solution for problem (9) as follows:

ðAðnÞK1Þ

¼
ððX 
 S1Þð1Þð�Að
1ÞÞ þ ðY 
 S2Þð1Þð�Vð
1ÞÞÞQ>ðQQ>Þ
1, n ¼ 1

ðX 
 S1ÞðnÞð�Að
nÞÞðCðnÞÞ>ðCðnÞðCðnÞÞ>Þ
1, n � 1

8<
:

(10)

where K1 is a diagonal matrix whose (j, j)th element is the

jth element of k1; Q ¼ Xð1Þ þ Cð1Þ; ð�Að
nÞÞ ¼ AðNÞ � � � � �
Aðnþ1ÞAðn
1Þ � � � � � Að1Þ; ð�Vð
mÞÞ ¼ VðMÞ � � � � � Vðmþ1Þ

Vðm
1Þ� � � � � Að1Þ; CðnÞ ¼ðAð1Þ>Að1ÞÞ � � � � � ðAðn
1Þ>Aðn
1ÞÞ
ðAðnþ1Þ>Aðnþ1ÞÞ � � � � � ðAðNÞ>AðNÞÞ; XðnÞ ¼ ðAð1Þ>Að1ÞÞ �
� � � � ðVðm
1Þ>Vðm
1ÞÞ ðVðmþ1Þ>Vðmþ1ÞÞ � � � � � ðVðMÞ>VðMÞÞ:
Here, A � B denotes elementwise multiplication of two
matrices with the same dimensions.

Next, assuming all other variables are known, we update

VðmÞ by minimizing LqðVðmÞÞ :

argmin
VðmÞ

1
2
kY 
 St

2 
 vk2;Að1Þ,Vð2Þ, :::,VðMÞbk2F
� �

, (11)

which results in,

ðVðmÞK2Þ ¼ ðY 
 S2ÞðmÞð�Vð
mÞÞðXðmÞÞ>ðXðmÞðXðmÞÞ>Þ
1,

(12)

where K2 is a diagonal matrix obtained from k2:

Let us denote gAðnÞ ¼ AðnÞK1 and gVðmÞ ¼ VðmÞK2: The

original factor matrices AðnÞ and VðmÞ are obtained by nor-

malizing the columns of gAðnÞ and gVðmÞ , respectively. Then
we take the norms of their ith column as the ith element of
vectors k1 and k2:

Next, the variable F is updated by minimizing LqðFÞ,
the solution of F is:

F ¼ argmin
F

akFk1 þ hD1,F 
 S1i þ q
2
kF 
 S1k2F

� �
¼ signðS1 
 q
1D1Þ � ðjS1 
 q
1D1j 
 aq
1Þþ,

(13)

where signðxÞ ¼ 0 if x ¼ 0 and signðxÞ ¼ x
jxj if x 6¼ 0, and

ðxÞþ ¼ maxf0, xg, which is applied element-wise to a

tensor. The notation � is the element-wise tensor product,
and scalar subtraction is for each element of a tensor.

Next, we update S1 by minimizing LqðS1Þ as follows:

argmin
S1

�
1
2
kX 
 S1 
 vk1;Að1Þ

, :::,AðNÞbk2F þ hD1,F 
 S1i

þ q
2
kF 
 S1k2F

�
,

(14)

which results in,

S1 ¼ ðX 
 vk1;Að1Þ, :::,AðNÞbþD1 þ qFÞð1þ qÞ
1: (15)

By solving the problem LqðMÞ, we can obtain the solu-
tion of M as follows:

M ¼ argmin
M

bkMk1 þ hD2,M
S2i þ q
2
kM
 S2k2F

� �
¼ signðS2 
 q
1D2Þ � ðjS2 
 q
1D2j 
 bq
1Þþ:

(16)

Derivations of soft-thresholding operations for updating
F and M are shown in Appendix A.

Then, we update S2 by solving LqðS2Þ as follows:

argmin
S2

�
1
2
kY 
 S2 
 vk2;Að1Þ,Vð2Þ, :::,VðMÞbk2F

þ hD2,M
S2i þ q
2
kM
 S2k2F

�
, (17)

which results in,

S2 ¼ ðY 
 Að1Þð�Vð
1ÞÞ> þ D2 þ qMÞð1þ qÞ
1: (18)

Finally, we update the dual variables D1 and D2 using
the following formulas:

D1 ¼ D1 þ qðF 
 S1Þ, D2 ¼ D2 þ qðM
 S2Þ: (19)

In these update equations, the most updated estimates of
the variables are used. The procedure for the proposed
RCCPD model is summarized in Algorithm 1.

Algorithm 1. ADMM Solver for Robust Coupled CP Tensor
Decomposition

1: Input: Coupled tensors X and Y, hyperparameters a
and b, rank R, and Scaling k> 1

2: Initialization:
3: AðnÞ, V, F ¼ S1 ¼ Y1 ¼ 0; M ¼ S2 ¼ Y2 ¼ 0, q > 0
4: while not converged do
5: for n 2 f1, :::,Ng do

6: Update gAðnÞ based on Equation (10)
7: for j 2 f1, :::,Rg do

8: Normalize columns of gAðnÞ , k1j ¼ kgAðnÞ ð: , jÞk
9: AðnÞð: , jÞ ¼ gAðnÞ ð: , jÞk1j
10: end for
11: end for
12: for m 2 f1, :::,Mg do

13: gVmÞ based on Equation (12)
14: for j 2 f1, :::,Rg do
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15: Normalize columns of gVðmÞ , k2j ¼ kgVðmÞ ð: , jÞk
16: VðmÞð: , jÞ ¼ gVðmÞ ð: , jÞk2j
17: end for
18: end for
19: Update F based on Equation (13)
20: Update S1 based on Equation (15)
21: Update M based on Equation (16)
22: Update S2 based on Equation (18)
23: Update D1,D2 based on Equation (19)
24: q ¼ q� k
25: end while

26: return AðnÞ,VðmÞ,S1,S2, k1, k2

3.2. General settings and tuning parameter selection

We use the primal and dual stopping criteria of ADMM
algorithms. More specifically, the primal criteria ensure the

feasibility of the solution by evaluating kF tþ1
Stþ1
1 kF

kStþ1
1 kF

and

kMtþ1
Stþ1
2 kF

kStþ1
2 kF

: The dual criteria ensure the convergance of the

algorithm by assessing q�kF tþ1
F tkF
kF tþ1kF and q�kMtþ1
MtkF

kMtþ1kF
: Here,

tþ 1 denotes the current iteration and t denotes the previ-
ous iteration. We stop the algorithm if the above values are
smaller than a threshold (d) or a maximum number of itera-
tions is reached. We have set d ¼ 10
6 and the maximum
number of iterations to 1000. The initial value of q is set to
10
3, which is geometrically increased by a constant k¼ 1.2
up to 108.

Setting the hyperparameters a, b and the tensor rank R
depends on the goal of the problem at hand. If the goal is
to accurately decompose the coupled tensors (unsupervised
model), then a set of hyperparameters that minimize the
tensor reconstruction error is of interest. This is achieved by
using Bayesian optimization (BO), which internally main-
tains a Gaussian process regression to train the model. At
each search iteration in the BO (i.e., for each set of selected
parameters), the ADMM method is executed and returns
the reconstructed tensor and the reconstruction error. In
this work, the built-in function “bayesopt” in MATLAB is
applied with the appropriate ranges of the parameters to
select the set of parameters with the smallest tensor recon-
struction error. The reconstruction error is defined as:

TRS ¼ kX 
 Ŝ 
 L̂kF
kXkF

: (20)

where L̂ represents the smooth reconstruction of tensor X
based on the estimated factor matrices, e.g., L̂ ¼ vÂ, B̂, Ĉb,
and Ŝ is the estimated sparse tensor of outliers.

The simulation studies in this paper follow the BO
method for selecting the parameters, where the range of a, b
and R are set as: a 2 ½0:05, 1�, b 2 ½0:05, 1� and R 2
f2, 3, 4, 5, 6, 7, 8, 9, 10g in the BO algorithm. The rank values
larger than 10 resulted in singularity issues and are
not considered.

In the cases where the extracted features are used for pre-
diction purposes, the hyperparameters are selected to maxi-
mize the performances of the predictive models. For this
purpose, the data is divided into the training and testing
sets. Next, several models for various combinations of
hyperparameters are constructed. The performance of these
models are then evaluated on the testing data set to select
the model with the highest prediction performance. Our
case studies follow this approach and use a grid search over
a 2 ½0:1, 1�, b 2 ½0:1, 1�, and R 2 f2, 3, 4, :::, 16g: Similar
approaches are used for tuning the hyperparameters of the
benchmarks. The hyperparameters of each benchmark are
identified in the next section.

4. Performance evaluation using simulations

In this Section, we evaluate the effectiveness of the proposed
method using two simulated experiments. In the first simu-
lation, we consider a coupled tensor and matrix scenario.
The second simulation evaluates the performance of RCCPD
in decomposing two coupled higher-order tensors. In both
simulations (and case studies), we compare the proposed
method to the following three benchmarks.

(a) CPD: This benchmark is the basic CP decomposition
model, which factorizes each tensor individually. The
CP model for higher order tensors is a generalization
of the matrix singular value decomposition (SVD) to
higher order tensors. Please note that while CPD has
a uniqueness property under the Kruskal condition for
higher order tensors (Kolda & Bader, 2009), it does
not produce unique decomposition for matrices.
Particularly, it only achieves unique singular values.
CPD is implemented in the Tensorlab 3.0 toolbox
(Vervliet et al., 2016) in MATLAB. The tensor rank R
is the only hyperparameter to be determined in
this benchmark.

(b) CMTF/CTTF: This benchmark is the coupled matrix-
tensor/tensor-tensor factorization, which decomposes
coupled tensors (or matrices) simultaneously. It solves
the objective functions in equation (1) (2) (3), and (4).
CMTF is implemented in the CMTF toolbox in
MATLAB (Acar et al., 2011); CTTF is implemented
by setting the updates of the two outliers S1 and S2

in our proposed approach to zeroes. The tensor rank
R is the only hyperparameter to be determined in
this benchmark.

(c) TRCPD: This benchmark is the robust CP decompos-
ition of a tensor (Xue et al., 2017) that decomposes a
tensor into a low-rank tensor and a sparse tensor,
which contains the outliers. TRCPD is implemented
by following this work (Xue et al., 2017). This bench-
mark has two hyperparameters, i.e., the parameter k
for imposing the sparsity of the outlier tensor and the
tensor rank R, to be determined. The parameter k is
tuned as suggested in their work.
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In order to compare the proposed method to bench-
marks, the above-defined tensor reconstruction score (TRS)
is used.

4.1. Simulation I: coupled tensor and matrix
decomposition

We first simulate a third-order tensor L 2 R
I�J�K and a

matrix L 2 R
I�M by generating factor matrices A 2

R
I�R,B 2 R

J�R,C 2 R
K�R, and V 2 R

M�R, whose entries
are randomly drawn from a standard normal distribution.
The factor matrices are used to construct a third-order ten-
sor L ¼ vA,B,Cb coupled with a matrix L ¼ AVT : Then, a
sparse tensor S 2 R

I�J�K and a sparse matrix S 2 R
I�M are

generated as follows. First, we simulate all the entries from a
normal distribution with mean zero and variance r21: Next,
we randomly set 1
 q of their entries to zero. These sparse
tensors are added to the initial ones (L and L) to represent
q percent of outliers. Then, the small Gaussian noise E 2
R

I�J�K and E 2 R
I�M, with mean zero and variance r22 are

separately added to the generated data. Finally, the tensors
with outliers are denoted as X ¼ Lþ S þ E and Y ¼
Lþ Sþ E: Since the outlier ratio q, the outlier variance r21,
and the noise variance r22 are important to the performance
of models, different values of each of them are considered.
In this simulation, the above parameters are set as follows:
I ¼ J ¼ K ¼ 10, M¼ 20, R¼ 4, q 2 f5%, 10%, 20%g, r21 2
f1, 4, 9g, and r22 2 f0:04, 0:16, 0:25, 0:36g:

Once the coupled data are generated, they are (jointly)
factorized using the benchmarks CPD, CMTF, TRCPD, and
the proposed RCCPD. Note that the benchmarks CPD and
TRCPD decompose tensor X and matrix Y separately while
CMTF and RCCPD factorize them simultaneously. Figure 2
demonstrates the average TRS (over 50 runs) achieved by
each method at different values of r21, r

2
2 and q. The

reported results are computed based on the minimum TRS
values of each method achieved by tuning their correspond-
ing hyperparameters. For the proposed RCCPD, the average
of a, b, and rank R are found by BO as 0.0512, 0.0531, and

9, respectively. For the benchmark CMTF, R¼ 10 is selected.
The ranks for tensor X and matrix Y are selected to be 9
and 8 for the benchmark CPD, and 8 and 6 for the bench-
mark TRCPD. The parameter k in TRCPD is set as 0.0509.
As it is illustrated, the proposed RCCPD (in red line) out-
performs all benchmarks at all levels of the outlier ratios
and variances. In other words, the results demonstrate the
limitations of the CPD and CMTF models in identifying
outliers within tensors and the limitation of TRCPD in uti-
lizing the information from multimodal data, which result
in higher reconstruction errors of the tensor compared to
the proposed method. Since our robust coupled tensor
decomposition method is able to identify outliers, it gener-
ates a more accurate decomposition. For example, when
r21 ¼ 9, q ¼ 10%, and r22 ¼ 0:25, the TRS of the proposed
method is 0.2375, which is significantly smaller than the
TRS achieved by TRCPD(0.2667), CPD(0.5104), and
CMTF(0.4662). Please note that the higher the outlier vari-
ance and ratio are, the higher the TRS for CPD, CMTF, and
TRCPD while the proposed RCCPD maintains similar
performance.

4.2. Simulation II: coupled tensor and tensor
decomposition

In simulation II, we generate two third-order tensors L1 2
R

10�20�30 and L2 2 R
10�20�10 using the same steps described

in simulation I, i.e., generate factor matrices A 2 R
10�4,B 2

R
20�4,C 2 R

30�4, D 2 R
20�4 and V 2 R

10�4, with entries
from the standard normal distribution. The two tensors are
constructed by L1 ¼ vA,B,Cb and L2 ¼ vA,D,Vb: Similarly,
two sparse tensors S1 2 R

10�20�30, S2 2 R
10�20�10 and two

Gaussian noise E1 2 R
10�20�30, E2 2 R

10�20�10 are generated
as before and added to L1 and L2, respectively. Finally, the
two tensors X and Y with outliers are generated by X ¼
L1 þ S1 þ E1 and Y ¼ L2 þ S2 þ L2: The variances of
added outliers and noise are set as r21 2 f1, 4, 9g and r22 2
f0:04, 0:16, 0:25, 0:36g: The ratio of outliers is set
to q ¼ 10%:

Figure 2. Comparison of the proposed method with benchmarks in terms of tensor reconstruction scores (TRS) for different r21,r
2
2, and q.
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The experiments are repeated 50 times and the averages
and standard deviations of tensor reconstruction scores
(TRS) are computed for both tensors. For RCCPD, the aver-
age of a, b, and rank R are found by BO as 0.0542, 0.0568,
and 8, respectively. The parameters for TRCPD are R¼ 9
(for both tensors X and Y) and k ¼ 0:0564, the ranks for
CTTF and CPD are set as 8 and 10 (for both tensors X and
Y), respectively. Results are reported in Table 1.

The results show the superior performance of our pro-
posed method compared to benchmarks in terms of TRS
corresponding to each tensor, under all settings of r21 and
r22: For example, when r21 ¼ 9 and r22 ¼ 0:16, the TRS of
tensor X achieved by RCCPD is 0.143, which is smaller
than 0.157, 0.409 and 0.413 achieved by TRCPD, CTTF and
CPD. The distinguished performance of RCCPD is due to
its capability in isolating outliers from the initial data.

Finally, the average execution times of each method across
50 replications are reported in Table 2. This execution time is
acquired for a given set of hyperparameters (as reported above)
and the outlier ratio of q ¼ 10%, the outlier variance of r21 ¼
4, and the noise variance of r22 ¼ 0:04: As it is reported in
Table 2, all methods show a comparable running time when
applied to decomposing two tensors. More specifically, TRCPD
requires around 0.2856 seconds to perform robust decompos-
ition of two tensors separately. The proposed approach
requires 0.3103 seconds on average to simultaneously perform
robust decomposition of both tensors. CTTF and CP require
less computational time. This is expected as they are not robust
and do not require estimating the tensor of outliers. It should
also be noted that the proposed method and TRCPD have
larger number of hyperparameters and may require more com-
putational effort for tuning the algorithm. Nevertheless, this
step is often performed offline with massive computational
power and therefore it is not restrictive.

5. Case studies

In this Section, we evaluate the performance of the proposed
method in two real-world case studies. In the first case study
(i.e., PD telemonitoring) coupled features are extracted from
the participants’ voice and tapping data and used for health
condition estimation. In this case study, we organize the
data into two coupled second-order tensors and extract

features using the proposed method and benchmarks. Next,
we apply support vector regression (SVR) and random forest
regression (RFR) to create the prediction models. The
second case study analyzes coupled third-order EEG and
second-order fMRI tensors to classify the trials of an oddball
auditory experiment. First, each method is applied to extract
features and then support vector machine (SVM) and ran-
dom forest classifier (RFC) are used to construct the classifi-
cation models. In both cases, the three tensor-based
methods (CPD, CMTF, and TRCPD) and two general SVR/
SVM and RFR/RFC models are implemented as bench-
marks. In the case studies, we apply TRCPD to individual
tensors as well as to coupled tensors. That is, we first
remove outliers and then extract features using the coupled
decomposition. The random forest model was trained in
MATLAB using the “TreeBagger” function in the Statistics
and Machine Learning Toolbox (setting the number of trees
to 100). For the SVR/SVM model, we employed the
LIBSVM toolbox in MATLAB developed by Chang and
Lin (2011).

5.1. Case study I: Parkinson’s disease telemonitoring

Telemonitoring is a form of mobile health that uses elec-
tronic devices to monitor patients remotely. In recent years,
there has been a surge in smartphone usage for telemonitor-
ing. In fact, 85% of American adults own a smartphone
according to a 2021 Pew Research Survey (Pew Research
Center, 2021). A smartphone is equipped with various sen-
sors, such as an accelerometer, gyroscope, camera, and
microphone. Using custom-designed apps, smartphones can
collect abundant health data from the users. For this case
study, we focus on smartphone-based telemonitoring of
Parkinson’s Disease (PD). PD affects 7-10 million people
worldwide and is the second most common neurodegenera-
tive disorder (after Alzheimer’s Disease) (Parkinsons News
Today, 2020). PD patients suffer from tremors, voice impair-
ment, and movement disorders. Although there is currently

Table 1. Comparison of four methods in terms of averages and standard deviations of tensor reconstruction scores (TRS) of each tensor for different r21,r
2
2 with

the outlier ratio q ¼ 10%.

r21 r22

X Y
RCCPD TRCPD CTTF CPD RCCPD TRCPD CTTF CPD

1 0.04 0.091 0.01 0.104 0.01 0.183 0.02 0.187 0.02 0.089 0.01 0.107 0.01 0.179 0.01 0.183 0.02
0.16 0.131 0.01 0.147 0.02 0.234 0.03 0.238 0.02 0.128 0.01 0.145 0.01 0.216 0.03 0.227 0.02
0.25 0.148 0.01 0.155 0.02 0.275 0.03 0.278 0.02 0.144 0.01 0.152 0.02 0.238 0.04 0.257 0.02
0.36 0.155 0.02 0.162 0.02 0.287 0.02 0.292 0.02 0.152 0.02 0.163 0.02 0.273 0.04 0.289 0.03

4 0.04 0.095 0.01 0.113 0.01 0.277 0.03 0.287 0.01 0.104 0.01 0.112 0.01 0.262 0.03 0.268 0.02
0.16 0.129 0.01 0.138 0.01 0.321 0.04 0.323 0.02 0.126 0.01 0.137 0.01 0.307 0.03 0.318 0.02
0.25 0.144 0.01 0.151 0.03 0.352 0.04 0.357 0.02 0.143 0.01 0.153 0.01 0.335 0.03 0.344 0.03
0.36 0.146 0.01 0.162 0.02 0.369 0.03 0.375 0.03 0.147 0.02 0.165 0.02 0.358 0.04 0.362 0.03

9 0.04 0.114 0.02 0.129 0.02 0.386 0.02 0.392 0.03 0.119 0.01 0.128 0.01 0.370 0.04 0.375 0.03
0.16 0.143 0.01 0.157 0.01 0.409 0.02 0.413 0.03 0.140 0.01 0.154 0.01 0.382 0.03 0.391 0.03
0.25 0.147 0.01 0.168 0.02 0.425 0.04 0.429 0.04 0.148 0.02 0.167 0.02 0.408 0.03 0.417 0.04
0.36 0.152 0.02 0.181 0.02 0.449 0.03 0.455 0.04 0.153 0.02 0.179 0.02 0.422 0.03 0.432 0.04

Table 2. Average execution time of each method applied to one specific
simulated data.

RCCPD TRCPD CTTF CP

Time (s) 0.3103 0.2856 0.2018 0.0735
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no cure for PD, the progression of PD can be significantly
reduced with effective treatment, for which timely monitor-
ing and assessment is key. One common clinical score to
measure PD severity is the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
(Goetz et al., 2008; Yoon & Gaw, 2021). MDS-UPDRS is
obtained from a 65-question survey that is administered to
patients at a specialized clinic. It is difficult to maintain the
most up-to-date information on the patient’s disease sever-
ity, as this would require the patient’s physical presence in
the clinic on a frequent basis. Most commonly, patients
make clinical visits only every 4-6months. This scenario is
even more difficult for patients living in remote areas, which
have limited availability for specialized care. Fortunately,
there is a great opportunity to improve this situation with
emerging smartphone-enabled telemonitoring technologies.

The ultimate goal of this research area is to build a model
that can predict the MDS-UDPRS score using smartphone-
collected activity data. The predicted score could then be
used for clinical assessment to measure PD severity without
requiring the patient’s physical presence at a clinic. Having
such a model would allow for significantly improved patient
convenience, while also providing frequent monitoring and
assessment of the disease. mPower is prominent among the
smartphone apps created for telemonitoring of PD (Bot
et al., 2016). This is largely due to mPower’s broad use of
many smartphone sensors (e.g., microphone, accelerometer,
gyroscope, etc.) to collect patient data across different tasks.
mPower leads the user across several pre-designed activities
(such as speaking and tapping) to measure major symptoms
of PD. In order to best utilize the data collected from these
activities, a model is needed to connect the variation in
activity data to a disease severity score.

There are some challenging issues in building the afore-
mentioned predictive model. First, the data collected from
the various smartphone tasks is high-dimensional, and it is
difficult to condense the data into an accurate model for
MDS-UPDRS prediction. Additionally, there is a time com-
ponent associated with each of the patients that should be
taken into account. Lastly, each patient is unique, and most
smartphone tasks are not monitored by a clinician, so there
is a high chance that outliers can drastically reduce the per-
formance of a model trained on this data.

In this case study, we evaluate the performance of the
proposed method in extracting features for predicting MDS-
UDPRS. A subset of thirty patients’ tapping and voice data
collected from mPower is considered. These are the patients

who have MDS-UPDRS scores for at least three months and
completed tapping and speaking tasks at least once a day.
Each of the thirty patients has 137 to 470 records. Each record
includes 339 voice features and 43 tapping features. The voice
features were extracted from the speaking time series data (see
Tsanas et al. (2011); Tsanas (2012) and https://github.com/
ThanasisTsanas/VoiceAnalysisToolbox) and characterize amp-
litude (shimmer variants), frequency (jitter variants), increased
noise (signal-to-noise measures), etc. The tapping features
measure tapping speed, inter-tap interval, position, fatigue, etc.
(see Chaibub Neto et al. (2016) and https://github.com/Sage-
Bionetworks/personalized_hypothesis_tests). Numbers of
records collected from each patient are provided in Table 3.

To represent the data as two matrices (i.e., voice featur-
es� time and tapping features� time) coupled along their
time mode, we first randomly sample (keeping the time
order) 100 records of each of the 30 patients forty times.
This process results in 1200 pairs of coupled matrices with
sizes 100� 339 and 100� 43, for voice and tapping fea-
tures, respectively. While, the re-sampling step is not neces-
sary, it creates a large balanced set of samples from which
features are extracted. In addition, it serves as a demonstra-
tion that the proposed method can handle a large number
of samples that contain tensors with higher dimensions.
Note that coupling the matrices along the time mode is rea-
sonable since the two activities (tapping and speaking) are
often performed within a few seconds of each other.
Therefore, given that the time resolution of records is in the
order of hours, one can assume the two activities within a
record appeared simultaneously. Finally, we take the average
of MDS-UPDRS values over the 100 records and assign it as
an output to the coupled matrices. Since the measurements
are of different orders of magnitude, data normalization is
applied before evaluating the methods. Next, we apply the
proposed and benchmark methods to extract features used
for predicting the average MDS-UPDRS. Apart from the
benchmarks used in Section 4 that extract features from
data, we also implement two general regression models: sup-
port vector regression (SVR) and random forest regression
(RFR) as benchmarks in this case study. For the four tensor-
based methods RCCPD, TRCPD, CMTF, and CPD, we first
split the data by a K-fold technique and use one of the folds
to estimate the factor matrices of the decomposition. Next,
given the factor matrices, we estimate the features (e.g., k1
and k2) for each sample in the rest of the K
 1 folds. These
features are the inputs to the SVR and RFR models. In our
proposed method, if a new pair of coupled matrices is

denoted by Xnew and Ynew, their feature vectors knew1 ¼
½knew11 , :::, knew1R �> and knew2 ¼ ½knew21 , :::, knew2R �> can be obtained

by: knew1 ¼ argminkkvecðXnewÞ 
 ððA2 � A1Þk1Þ>k22; knew2 ¼
argminkkvecðYnewÞ 
 ððV2 � V1Þk2Þ>k22: Here, Ai and Vi

(i¼ 1, 2) are the estimated factor matrices. Finally, the
coupled feature knew ¼ ½knew1 , knew2 � ¼ ½knew11 , :::, knew1R , knew21 , :::,

knew2R �> is used as input to the SVR and RFR models.
These extracted features along with the corresponding

MDS-UPDRS form a new data for model training. First,
80% of the data are selected randomly to train the SVR and

Table 3. Information of patient ID and numbers of records of each patient.

Patient
ID

No. of
records

Patient
ID

No. of
records

Patient
ID

No. of
records

1 470 12 395 25 144
2 423 13 315 27 137
4 451 15 250 28 148
5 354 16 289 29 213
6 236 17 252 30 181
7 377 18 144 33 163
8 277 19 279 34 162
9 337 20 228 35 148
10 198 22 157 36 160
11 250 23 263 37 165
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RFR regression models and the remaining 20% of the data
are used for model testing. For the general SVR and RFR
benchmarks, we directly vectorize the coupled voice-tapping
matrices and use these vectors as model inputs. The value of
K is set to 40 and q is given as 0.01. When estimating the
factor matrices, hyperparameters are selected as discussed in
3.2. Specifically, the parameter a and b for RCCPD are
selected as 0.2 and 0.7, respectively. The penalty parameter
in TRCPD is set to be 0.5. The corresponding ranks for
RCCPD, TRCPD, CMTF and CPD are selected as: 3, 3, 4,
and 4 for both tensors.

We perform 50 times of the above-described methods,
and the average root mean squared error (RMSE), mean
absolute error (MAE), and squared correlation coefficient
(SCC) with their standard deviations are reported in Table
4. As it is reported, the performance of the proposed
RCCPD method is superior to benchmark methods in terms
of RMSE and MAE. For example, our proposed method
results in an RMSE of 0.1342 when SVR is applied and
0.1293 when RFR is used, while the CMTF approach results
in an RMSE of 0.2042 (SVR) and 0.1986 (RFR). Meanwhile,
the RCCPD achieves the highest SCC, which is 0.9681
(SVR). The superiority of the proposed method is due to its
capability in fuzing data and extracting features that are not
corrupted by outliers. These benefits of RCCPD are trans-
lated into a better regression estimation compared to
the benchmarks.

5.2. Case study II: neurosignal feature extraction and
classification

Multimodal neurosignal fusion has become an important
part of modern medicine to support clinical decision-making
and diagnosis of various diseases. Neurosignals can span
from neuroimaging to other data collection techniques, such
as electroencephalography (EEG) and electrocorticography
(ECoG). Because each neurosignal modality provides differ-
ent but complementary information, there is an opportunity
to enhance clinical decision support if the information can
be fused in a way to identify patterns that are not

discernable through a single image modality (Gaw et al.,
2018). Previous studies have shown strong potential in the
fusion of multimodal neurosignals across a variety of med-
ical domains (Gaw et al., 2019; Hu et al., 2017; Liu et al.,
2021). In particular, two of the most widely used modalities
in clinical applications are functional Magnetic Resonance
Imaging (fMRI) and EEG. EEG measures electrical activity
in the brain through electrodes placed on the scalp and col-
lects data at a high temporal resolution (on the magnitude
of milliseconds). However, EEG alone does not have a high
spatial resolution relative to neuroimaging techniques. fMRI
can measure blood oxygenation levels at a higher spatial
resolution (relative to EEG) but at the cost of a lower tem-
poral resolution. Simultaneous EEG-fMRI data has been
widely used to combine the best of both techniques and dis-
cern various aspects of functional networks across the brain
(Bridwell & Calhoun, 2019; Dizaji & Soltanian-Zadeh, 2017;
Soon et al., 2021). However, it is known that the simultan-
eous EEG-fMRI data is often contaminated by artifacts due
to magnetic field gradients, subjects’ motion, and the envir-
onment (Bullock et al., 2021).

In this case study, we evaluate the performance of the
proposed method in extracting robust features from simul-
taneously measured fMRI and EEG data for the purpose of
brain activity classification. The data is obtained from a
study by Walz et al. (2018) where 17 participants performed
an auditory and a visual task in three runs. During each
task, 375 stimuli were implemented with a 200ms duration
each and a 2-3 second inter-trial interval. A trial can be con-
sidered as a time window in which the brain receives stimuli
and then gives responses. For the auditory task, a 390Hz
pure tone was considered as a standard stimulus while a
broadband sound was the oddball/target stimulus. To test
the proposed method, EEG and fMRI data from this audi-
tory task are utilized to classify types of stimuli across trials.
The data source is available on the OpenNeuro website
(https://openneuro.org/datasets/ds000116/versions/00003).

We preprocess the EEG data with FieldTrip toolbox and
the fMRI data with SPM12 (Ashburner et al., 2014) and
DPABI (C.-G. Yan et al., 2016) in MATLAB R2020b. Details
of processing steps are provided in Appendix B. Subject 4 is
removed since its fMRI data are corrupted. Figure 3(a) dem-
onstrates one processed EEG trial example under standard
and target stimulus; Figure 3(b) shows the fMRI regions of
interest (ROI) acquired in a second level analysis. In each trial,
EEG data is represented as a tensor with modes of subjects� -
channels� time, and fMRI data is represented by a matrix
with modes of subjects� voxels. Each EEG-fMRI trial is then
labeled either by standard or target depending on the type of
stimulus. For simplicity, we represent a standard trial by label
1 and a target trial by label 2. Eventually, each constructed
coupled EEG-fMRI trial is denoted as ðXn,Yn, LnÞ, where
Xn 2 R

16�34�121, Yn 2 R
16�197 and Ln 2 f1, 2g:

To test the effectiveness of the proposed RCCPD, 60 tar-
get EEG-fMRI trials and 60 standard EEG-fMRI trials are
collected. For data analysis and model training, we first
implement data processing (details are provided in
Appendix B). Next, we apply the proposed and benchmark

Table 4. Comparative regression results of RCCPD versus benchmarks (Key:
RMSE-root mean squared error, MAE-mean absolute error, SCC-squared correl-
ation coefficient).

Method RMSE MAE SCC

RCCPDþ SVR 0.1342 0.01 0.1082 0.02 0.9681 0.02
TRCPDþ SVR 0.1564 0.03 0.1287 0.04 0.9552 0.02
TRCPD–Voiceþ SVR 0.1842 0.02 0.1428 0.02 0.9401 0.03
TRCPD–Tappingþ SVR 0.1754 0.03 0.1247 0.02 0.9514 0.02
CMTFþ SVR 0.2042 0.04 0.1533 0.03 0.9215 0.03
CP–Voiceþ SVR 0.2412 0.03 0.1465 0.04 0.9328 0.03
CP–Tappingþ SVR 0.2301 0.04 0.1562 0.03 0.9413 0.02
SVR 0.2358 0.05 0.1772 0.04 0.9273 0.02

Method RMSE MAE SCC

RCCPDþ RFR 0.1293 0.02 0.0742 0.01 0.9837 0.02
TRCPDþ RFR 0.1482 0.03 0.1233 0.03 0.9626 0.03
TRCPD–Voiceþ RFR 0.1885 0.01 0.1123 0.02 0.9545 0.01
TRCPD–Tappingþ RFR 0.1654 0.03 0.1043 0.01 0.9569 0.02
CMTFþ RFR 0.1986 0.02 0.1180 0.02 0.9475 0.03
CP–Voiceþ RFR 0.2246 0.04 0.1274 0.04 0.9468 0.02
CP–Tappingþ RFR 0.2120 0.03 0.1076 0.03 0.9502 0.02
RFR 0.2393 0.03 0.1357 0.03 0.9487 0.03
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methods to classify the trials. For the tensor-based methods
RCCPD, TRCPD, CMTF, and CP, we first split the data
into K folds and take one of the folds to estimate the factor
matrices of decomposition. Next, we use the estimated factor
matrices (Ai ði ¼ 1, 2, 3Þ and Vj ðj ¼ 1, 2Þ) to calculate ki ði ¼
1, 2Þ for each sample in the rest of the K-1 folds. These fea-
tures are the inputs of the support vector machine (SVM)
and the Random Forest Classification (RFC) models. More
specifically, denote a new pair of coupled tensor and matrix
(EEG-fMRI) by Xnew and Ynew, then the feature vectors

obtained by our proposed method (i.e., knew1 ¼
½knew11 , :::, knew1R �> and knew2 ¼ ½knew21 , :::, knew2R �>) can be calculated

by: knew1 ¼ argminkkvecðXnewÞ 
 ððA3 � A2 � A1Þk1Þ>k22 and

knew2 ¼ argminkkvecðYnewÞ 
 ððV2 � V1Þk2Þ>k22: Finally,

knew ¼ ½knew1 , knew2 � ¼ ½knew11 , :::, knew1R , knew21 , :::, knew2R �> is used as
inputs to the classification models.

These extracted features along with their corresponding
label form a new data for model training. First, 80% of the
samples are selected randomly for model training and the
remaining 20% are used for model testing. In this case
study, we also use the general SVM and RFC models as add-
itional benchmarks. The inputs to SVM and RFC models
are the vectorization of the tensor Xn 2 R

16�34�121 and
Yn 2 R

16�197: The successful application of each method
requires careful tuning of parameters. The number of folds
K in the K-fold method is set to be 3. The penalty parameter
q is set as 0.01. For the proposed RCCPD, the parameters
are selected as a ¼ 0:3 and b ¼ 0:2: The penalty parameter
for TRCPD is set as 0.5. The rank for each tensor-based
method is set to 16.

The average accuracy, precision, recall, and F1 score with
their standard deviations of each method under 50 runs is
reported in Table 5. It can be seen that the proposed
RCCPD achieves the highest classification accuracy under
both SVM and RFC models, which are 0.9102 and 0.9208,
respectively. The results demonstrate that features with more
discrimination ability are extracted by RCCPD, which is
translated into a higher classification accuracy compared to
the benchmarks. Note that the general SVM and RFC mod-
els, applied as baselines achieve better model accuracy than
the CPD model. The inferior performance of CPD could be
due its lack of robustness that may result in lower-quality
features. This reasoning is verified given that the robust ver-
sion of CPD (TRCPD) outperforms the plain SVM
and RFC.

Since the hyperparameters a and b affect the performance
of the proposed method, we investigate the performance
sensitivity of our method with respect to a and b. We vary
the parameters a and b from 0.1 to 1, respectively. Figure 4
shows the accuracy of the RFC model for various values of
hyperparameters.

Figure 3. A sample of (a) electroencephalography (EEG) and (b) functional magnetic resonance imaging (fMRI) ROI from the auditory task. For each trial, patients
will either hear a standard stimulus (390 Hz pure tones) or a target stimulus (broadband sounds), while EEG and fMRI data are collected. The onset of the stimulus
is represented by the red line in (a) at the 0ms mark; (b) shows the location of regions of interest (ROI) of fMRI, i.e., activation in response to the trials, identified in
the second-level analysis.

Table 5. Comparative classification results of RCCPD versus benchmarks.

Method Accuracy Precision Recall F1 score

RCCPDþ SVM 0.9102 0.02 0.9045 0.03 0.9121 0.03 0.9125 0.02
TRCPDþ SVM 0.8833 0.02 0.8915 0.02 0.8520 0.03 0.8810 0.02
TRCPD-EEGþ SVM 0.8458 0.03 0.8460 0.04 0.8739 0.04 0.8480 0.03
TRCPD-fMRIþ SVM 0.8583 0.03 0.8822 0.04 0.8385 0.04 0.8417 0.03
CMTFþ SVM 0.8190 0.04 0.8365 0.04 0.8053 0.05 0.8123 0.02
CP-EEGþ SVM 0.7358 0.05 0.7354 0.05 0.7492 0.04 0.7403 0.05
CP-fMRIþ SVM 0.7875 0.07 0.8228 0.06 0.7717 0.08 0.7681 0.06
SVM-EEG 0.8396 0.06 0.8459 0.06 0.8452 0.07 0.8455 0.08
SVM-fMRI 0.8294 0.07 0.8850 0.07 0.8323 0.06 0.8254 0.08

Method Accuracy Precision Recall F1 score

RCCPDþ RFC 0.9208 0.02 0.9294 0.02 0.9100 0.02 0.9108 0.02
TRCPDþ RFC 0.8917 0.02 0.8959 0.02 0.8920 0.02 0.8885 0.02
TRCPD-EEGþ RFC 0.8583 0.02 0.8478 0.03 0.8555 0.04 0.8349 0.03
TRCPD-fMRIþ RFC 0.8750 0.03 0.8532 0.04 0.8568 0.03 0.8782 0.02
CMTFþ RFC 0.8327 0.03 0.8459 0.04 0.8161 0.04 0.8267 0.02
CP-EEGþ RFC 0.7500 0.04 0.7694 0.05 0.7672 0.06 0.7458 0.05
CP-fMRIþ RFC 0.7833 0.06 0.8583 0.05 0.7287 0.09 0.7435 0.08
RFC-EEG 0.8550 0.06 0.8790 0.06 0.8693 0.07 0.8578 0.06
RFC-fMRI 0.8333 0.08 0.8667 0.05 0.8092 0.08 0.8080 0.10

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 11



6. Discussion

This Section discusses a few important and practical notes
related to various aspects of the paper. First, the focus of
this paper is on extracting features from coupled tensors
that are contaminated by outliers. Outliers are different
from global noise. In tensor data, some of the observations
within a tensor may not completely follow the underlying
stochastic behavior (or correlation structure) of the tensor.
This deviation could be due to various reasons such as sen-
sor errors or differences in data sources. For example, in
our second case study, not only could the source of outliers
be due to patient motion but it could also be due to simple
differences between a few subjects. Our approach isolates
abnormal patterns and focuses on finding the underlying
patterns that is shared among all observations. This may
resemble the soft and flexible tensor decomposition
approaches (Chatzichristos et al., 2022; Van Eyndhoven
et al., 2017). However, while these methods relax the equal-
ity assumption of the shared modes to similarity and allow
for finding common and uncommon patterns between the
two tensors, they are prone to the impacts of outliers as
their underlying optimization algorithm does not have an
explicit mechanism for isolating outliers. Our approach can
be integrated with these methods to allow explicit outlier
separation. Similar to (Acar et al., 2014; 2017), our approach
can also be extended to capture common and uncommon
factors by imposing sparsity-inducing penalties on the fea-
ture vectors k1 and k2: This approach may improve the
results as it also alleviates the assumption that the factors of
the common mode are fully shared between the two tensors.
This extension is considered as a future work. Another note
related to our second case study is that the preprocessing
steps that we take are not necessary. Our proposed approach
is generic as long as the data can be represented as coupled
tensors. Our approach is an early fusion technique that
extracts features from the data and uses them for model
generation (as opposed to late fusion in which models are

first built for each data source and then model decisions are
fused (Gaw et al., 2022)).

7. Conclusions

Due to recent technological improvements in collecting
multimodal high-dimensional medical data, including med-
ical imaging and physiological signals, it has become
increasingly important to develop statistical methods that
can effectively fuze this data and extract informative fea-
tures. Additional consideration should be used to handle
outlying instances that may result from undesired interac-
tions between data collection instruments (i.e., EEG and
fMRI), or improper data collection (i.e., patients self-collect-
ing data using telemonitoring devices). To address these
challenges (high-dimensionality, multimodality, and presence
of outliers), this paper proposes a robust coupled CP
decomposition method (RCCPD) to fuze and reduce the
dimension of different modes of data when they are conta-
minated with outliers. This decomposition approach results
in the extraction of robust patterns and features. The
extracted features can then be used for prediction (regres-
sion & classification) and decision-making purposes. A novel
objective function to extract robust patterns and features is
proposed. To minimize the objective function, an ADMM
algorithm is developed for solving the Lagrangian of the
objective function. Multiple simulation experiments and real
case studies (i.e., EEG-fMRI and telemonitoring of PD
patients) demonstrate the superiority of the proposed
method in comparison to several benchmarks. The results of
the case studies indicate the capacity of the proposed
method in extracting features from multimodal medical
data. For example, when the proposed method is used to
extract features from the telemonitoring data, higher predic-
tion accuracy of PD patient condition is achieved. In conclu-
sion, the proposed model is a robust and powerful tool for
feature extraction from multiple sources of potentially conta-
minated data. Future work may consider tensors with miss-
ing values and supervised robust feature extraction.
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Appendix A. Derivations of Equation 13 and
Equation 16

In this appendix, derivations of Equation 13 and Equation 16
are provided.

(i) The update of variable F is derived by minimizing the follow-
ing function:

F tþ1 ¼ argmin
F
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Putting the above cases together, we have the update of F in a soft-
threshold form as follows:
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The update of variable M is derived by minimizing the func-
tion below:
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Appendix B. EEG-fMRI data processing for
Section 5.2

Details of EEG-fMRI data preprocessing and fMRI data extraction are
demonstrated in this appendix. For most processing procedures, we
referred the work from Ashburner et al. (2014).

B.1. EEG data

The EEG data is recorded by a custom-built MR-compatible EEG system,
using 49 bipolar electrode pairs. In this article, the re-referenced EEG data
with 34 channels provided by Walz et al. (2018) is used. This version of
EEG data is originally sampled at 1,000Hz, which is then down-sampled
to 200Hz in our work. This down-sampling step is not necessary and is
merely performed to smoothen the data and reduce the noise and the
dimensions of the corresponding tensors. A function named
0ftpreprocresample0 in Field Trip toolbox is used for data down-sampling.
Next, the band-pass filter with cutoff frequencies of 1Hz and 100Hz is
used to remove direct current drift and high frequency artifacts not related
to neuronal oscillations. Finally, we split EEG trials with a time window
which begins 100ms before the stimulus onset and ends 500ms after the
stimulus onset. We did not perform further preprocessing steps to remove
the ballistocardiac artifact or other noise.

B.2. fMRI data

The fMRI data is collected by a 3 T Philips Achieva MRI scanner,
which results in 170 volumes in each run. Its repetition time (TR) is
2 s, the number of slices is 34 with no slice gap and the resolution is
3� 3� 4 mm. We preprocess the fMRI images in SPM12 toolbox by
performing the following steps: slice timing, realignment, co-registra-
tion, segmentation, normalization, and smoothing.

(i) Slice timing. Due to the nature of the fMRI acquisition princi-
ples, slices cannot be simultaneously obtained, in other words,

they are temporally misaligned from each other. To correct dif-
ferences in acquisition time, slice timing preprocessing is neces-
sary. This procedure generates a file with prefix 0a0:

(ii) Realignment. This step is used to align the time-series of 3D
BOLD volumes from the same subject to remove the influence
caused by head motions. In the auditory task, total 510 fMRI
scans are acquired from each subject in three runs. These scans
are realigned to the average of these 510 scans and the mean
scan is generated in this step for co-registration.

(iii) Co-registration. Since all of the fMRI scans have been aligned
to the mean scan in the realignment step, the T1 weighted ana-
tomical scan needs to be transformed to match their orientation
as well. In this step, the mean fMRI scan is stationary, and the
T1 anatomical scan is moved to match it, meanwhile, a re-
sliced T1 weighted scan is created.

(iv) Segmentation. In this procedure, a deformation transformation
is estimated to map data into MNI 152 template space. A for-
ward deformation field is generated in this step.

(v) Normalization. This procedure consists of two components:
estimation and writing. In the estimation part, a deformation is
estimated through deforming the MNI template to match each
single fMRI scan. The voxel size in this step is 3� 3� 4 mm.
The writing part applies previously estimated warps to series of
images and then generate a file with prefix 0w0:

(vi) Smoothing. After normalization, all fMRI images are then
smoothed to suppress noise via a Gaussian kernel with 6� 6�
6 mm full width at half maximum (FWHM). This step creates
a smoothed image file with prefix 0s0: Finally, the smoothed
image data is normalized by a Z-score method in this work.

Once the preprocessing steps are completed, the first level analysis
and the second level analysis are implemented successively in SPM12
toolbox and DPABI toolbox, separately. The ROIs obtained after the
second level analysis are shown in Figure 3. Finally, we use the
extracted ROI voxel data for model estimation.
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