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Abstract

We study traveling waves for the vortex sheet with surface tension. We use the angle-
arclength description of the interface rather than Cartesian coordinates, and we utilize an ar-
clength parameterization as well. In this setting, we make a new formulation of the traveling
wave ansatz. For this problem, it should be possible for traveling waves to overturn, and no-
tably, our formulation does allow for waves with multi-valued height. We prove that there exist
traveling vortex sheets with surface tension bifurcating from equilibrium. We compute these
waves by means of a quasi-Newton iteration in Fourier space; we find continua of traveling waves
bifurcating from equilibrium and extending to include overturning waves, for a variety of values
of the mean vortex sheet strength.

1 Introduction

A fundamental question in the theory of free-surface fluid dynamics is the question of the existence
of traveling waves. We study this problem for the vortex sheet with surface tension. For water waves
(the case of a single fluid with vacuum above), the traveling wave problem has been extensively
studied. We cannot hope to list all the papers in the literature on the topic here, but some of the
fundamental contributions are [35], [39], [26], [17], [13], [37], [43], [52], [20], [21], [19], and [28].

The vortex sheet is the interface between two fluids, with a jump in tangential velocity across
the interface. The fluid velocities are given by the irrotational, incompressible Euler equations.
Throughout the present paper, for simplicity, we consider only the case in which the two fluids
have the same density. Without surface tension, the problem is known to be ill-posed, and this ill-
posedness can be seen to be caused by the Kelvin-Helmholtz instability. Even though the problem
is ill-posed, analytic solutions (including traveling waves) exist. In the presence of surface tension,
the Kelvin-Helmholtz instability is ameliorated, with growth in the linearization only for sufficiently
small wavenumbers (or, depending on the parameters, there may be no growth at all).

The surface tension force appears in the formulation of the vortex sheet problem through the
Laplace-Young jump condition for the pressure: [p] = τκ, where the brackets indicate the jump
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across the free surface, p is the pressure, τ is the constant coefficient of surface tension, and κ is
the curvature of the free surface. Historically, this caused trouble for both the analysis and the
computing of the initial value problem: curvature is nonlinear in terms of the Cartesian coordinates
of the free surface, and involves multiple derivatives.

A breakthrough for the numerical solution of the initial value problem for interfacial flow with
surface tension was made in the papers [31], [32]. In these papers, Hou, Lowengrub, and Shelley
(HLS) formulate the initial value problem by using geometric variables rather than the Cartesian
coordinates of the free surface. In particular, they describe the position of the free surface by
using the tangent angle formed with the horizontal and the arclength element. If the curve is
parameterized by the spatial parameter α, then the curvature can be expressed as κ = θα/sα, where
subscripts denote differentiation, θ is the tangent angle, and s is the arclength (measured from,
say, α = 0). Furthermore, the HLS formulation includes maintaining a (normalized) arclength
parameterization of the curve at all times; this is enforced by means of an artificial tangential
velocity. This choice of parameterization causes the curvature to become linear in terms of tangent
angle, and the system of evolution equations becomes semilinear. Hou, Lowengrub, and Shelley
then employ an implicit-explicit timestepping method [15], and this removes the stiffness from
the problem; instead of a 3/2-order CFL condition, there is only a first-order constraint. The
HLS formulation has subsequently been used analytically as well, with a proof of short-time well-
posedness in Sobolev spaces being established by the second author in [8].

The most common way to find traveling waves with repsect to a certain variable, say x, is to
seek functions of x− ct; that is, the profile of f(x− ct), for any f, simply translates at speed c. For
the vortex sheet with surface tension, if we seek waves at small amplitude, this would be sufficient:
we could parameterize the free surface by horizontal position, x, and proceed from there. However,
it should be possible to have overturning traveling waves. In the case of overturning waves, the
free surface can no longer be parameterized by horizontal position, and we need to formulate the
traveling wave ansatz in some other way. Our solution to this problem is straightforward and quite
general; we require that the parameterized curve (x(α, t), y(α, t)) evolve according to (x, y)t = (c, 0).
A full formulation of the traveling wave problem, based on this equation, will be presented below,
and we will then use this formulation as the basis of both an analytical and a computational study
of traveling periodic vortex sheets with surface tension.

There have been several analytical studies previously of traveling waves for the vortex sheet,
neglecting the effect of surface tension. Amick and Turner proved the existence of solitary interfacial
waves on finite depth [14]. On infinite depth, Sun studied the symmetry and asymptotic properties
of solitary waves [47]. Sun has also proved the existence of periodic traveling waves [48], [50]. The
formulation used in [50] is notable in that it allows overturning waves, and it does this by means
of a conformal mapping. The formulation of the present work also allows for overturning waves,
and does so without recourse to complex analysis; thus, the present formulation should readily
generalize to the case of three-dimensional fluids.

There have also been a number of previous computational studies for the vortex sheet without
surface tension. In particular, overturning traveling waves for the vortex sheet without surface
tension have been computed. Baker, Meiron, and Orszag made a formulation of the traveling wave
problem for interfacial waves, but implemented the method only for waves with single-valued height
[16]. (We note that one of the equations of the formulation of Baker, Meiron, and Orszag is the
same as our equation (6) below.) Meiron and Saffman subsequently implemented the formulation
of [16] to study traveling vortex sheets with multi-valued height; they additionally studied such
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waves with the formulation of Saffman and Yuen as well [45], [38]. Grimshaw and Pullin as well
as Turner and Vanden-Broeck computed traveling vortex sheets without surface tension, making
studies of the extreme behavior of the waves [27], [53].

For interfacial waves in the presence of surface tension, Sun and Shen have proved the existence
of solitary waves when the fluids are of finite extent in the vertical direction [51]. In the case of
infinite depth, Sun has proved decay properties of solitary interfacial waves [49]. We are not aware
of any studies, either analytical or computational, of spatially periodic interfacial traveling waves
accounting for surface tension in which the two fluids are of infinite depth. The closest articles
in the literature of which we are aware are [25], which concerns itself mainly with approximate
equations, and [33], which considers an interfacial system with two free surfaces (the lower fluid is
of infinite depth, and the upper fluid is bounded above and below by free surfaces).

Using our formulation, we prove the existence of small-amplitude periodic traveling waves. The
proof follows from the classical “bifurcation from a simple eigenvalue” results of Zeidler [59] or
Crandall & Rabinowitz [22]. Our solutions bifurcate from the flat equilibrium where the two flu-
ids are shearing past one another with a velocity jump equal to a parameter γ0 at the interface.
We use the wave’s speed c as the bifurcation parameter. As it happens, the space of solutions
of the linearization at candidate bifurcation points is two dimensional. By restricting our atten-
tion to solutions with a certain symmetry, the zero eigenvalue becomes simple and the Crandall-
Rabinowitz-Zeidler theory applies. Consequently our solutions are symmetric: the profile is even,
the tangent angle is odd, and the vortex sheet strength is even. Interestingly, for any choice of γ0
we are able to find traveling waves.

We prove this theorem both because it is not previously in the literature, as we have described
above, but also to demonstrate that our formulation of the traveling wave problem is amenable to
analytical studies. The formulation is appropriate for numerical studies as well, and we use it to
compute traveling periodic vortex sheets with surface tension.

The numerical solutions presented here are computed via a continuation scheme in which the
equations are discretized and the resulting algebraic system is solved with a quasi-Newton iteration,
similar to the method used repeatedly by Vanden-Broeck and collaborators [46], [53], [54]. Fourier
collocation is used to discretize the equations, as in other works by the first author and collaborators
[2], [5], [6]. The Birkhoff-Rott integral is computed in two parts: a Hilbert transform is computed
using its definition in Fourier space, and the remainder is computed with an alternating-point
trapezoidal rule, similarly to [11]. The quasi-Newton method of Broyden is then used to solve the
resulting algebraic system [18]; this method is faster than the similar secant-method based scheme
used by the first author in [3]. The linear solution is used as an initial guess for small amplitude,
and large amplitude solutions are computed via numerical continuation.

The traveling, spatially periodic waves that we find in the present work are an example of time-
periodic vortex sheets with surface tension, although the time-periodicity is in a sense trivial. Non-
traveling time-periodic vortex sheets with surface tension were computed previously by the second
author and Wilkening in [11]; there, nontrivially time-periodic solutions were found bifurcating
from the flat, still equilibrium. The work [11] used a numerical method which had previously
been developed for the Benjamin-Ono equation by the same authors in [12] and [10]; a version
of the method has also been applied for time-periodic water waves by Wilkening in [57]. For the
Benjamin-Ono equation, the authors found nontrivially time-periodic solutions bifurcating not only
from equilibrium, but also from a variety of periodic traveling waves. It would be of interest in the
future to study whether the periodic traveling waves we find in the present work can similarly be
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used as starting points of continua of nontrivially time-periodic vortex sheets with surface tension.
This question of bifurcation to nontrivially time-periodic solutions is closely related to the

question of spectral stability of these waves. Of course, determining the stability of the waves we
compute is a question of independent interest, and is a worthy subject of future research. The
authors intend to at least make a numerical study of stability; this has been done in other cases, for
instance by Nicholls and by Akers and Nicholls for water waves in [40], [7]. We remark that even if
these waves turn out to all be unstable, they may still be relevant to the dynamics of vortex sheets
with surface tension – see, for example, the literature on unstable coherent structures in turbulent
Couette flow [29], [56], [34].

Perhaps the most well-known traveling waves with multi-valued height are the waves of Crap-
per [23], [24]. These are pure capillary water waves, i.e., the density of the upper fluid can be
taken to be zero, and the lower fluid has unit density. For Crapper waves, the effect of surface
tension is accounted for, but the effect of gravity is neglected. These waves were shown to exist
as Crapper produced an exact, closed-form solution. Subsequently, Okamoto established unique-
ness of the Crapper waves (among solutions satisfying a positivity condition) [41], [42]. Another
future direction of the current research will be to use the formulation of the current work to study
capillary-gravity waves nearby to Crapper waves; that is, we will endeavor to perturb the Crapper
waves by adding gravity, and this could perhaps be done both analytically and numerically.

The plan of the paper is as follows: in Section 2, we give a description of the motion of a curve in
terms of its tangent angle and arclength. In Section 3, we then give our formulation of the traveling
wave ansatz; this comes via a detailed calculation in Section 3.1, or from a short calculation in
Section 3.2. In Section 4, we specialize our formulation of traveling waves to the case of the vortex
sheet with surface tension, and in Section 5 we use bifurcation theory to prove the existence of small
amplitude, spatially periodic, symmetric traveling vortex sheets with surface tension. In Section 6,
we give the results of computations of these waves, including waves with multi-valued height.

2 Description of a curve and its motion

We consider a parameterized curve, given by (x(α, t), y(α, t)). The curve has unit tangent and
normal vectors

t̂ =
(xα, yα)

sα
, n̂ =

(−yα, xα)

sα
,

where the arclength element, sα, is given by

s2α = x2α + y2α.

The curve is considered to evolve according to some normal velocity, U, and some tangential
velocity, V :

(x, y)t = U n̂ + V t̂.

If the curve is described by its tangent angle, θ, and by sα, then we use the definition

θ = tan−1
(
yα
xα

)
,

and we can infer the evolution equations

θt =
Uα + V θα

sα
, sαt = Vα − θαU.
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In the spatially periodic case, we consider solutions for which x(α + 2π, t) = x(α, t) + M, and
y(α+ 2π, t) = y(α, t). The length of one period of the curve, L, is given by

L =

∫ 2π

0
sα dα,

and the time derivative of this is

Lt =

∫ 2π

0
sαt dα = −

∫ 2π

0
θαU dα.

If we take the curve to be parameterized by (normalized) arclength, then we would have sα = L/2π,
and so we must have sαt = Lt/2π. This specifies the tangential velocity, up to a constant of
integration:

Vα = θαU −
Lt
2π

= θαU −
1

2π

∫ 2π

0
θαU dα.

Notice that the length L can be recovered from the periodicity:

M = x(α+ 2π)− x(α) =

∫ 2π

0
xα dα =

∫ 2π

0

L

2π
cos(θ) dα.

Therefore,

L =
2Mπ∫ 2π

0 cos(θ) dα
.

Of course, this could have been written as

sα =
M∫ 2π

0 cos(θ) dα
.

3 The traveling wave ansatz

In this section, we formulate the traveling wave problem for a parameterized curve, using the
normalized arclength parameterization. We give two versions of the calculation, one longer and one
shorter.

3.1 Detailed calculation of the traveling wave ansatz

We now look for conditions which would guarantee that such a moving curve is a traveling wave
with respect to the x variable. This would mean that we could take an arclength parameterization
of the curve for which

xt = c, yt = 0,

where c is the constant speed of the traveling wave.
From the equation (x, y)t = U n̂ + V t̂, we see that

yt =
Uxα + V yα

sα
.
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Therefore, setting yt = 0 implies
Uxα + V yα = 0. (1)

Furthermore, the traveling wave ansatz implies that the length of one period of the curve is not
changing, so Lt = 0. The expression for the tangential velocity from the above discussion on the
arclength parameterization is then the following:

Vα = θαU. (2)

We see, therefore, that we have two expressions relating the normal and tangential velocities. We
now solve (1) and (2) for U and V.

We begin by remarking that since θ = tan−1(yα/xα), we have tan(θ) = yα/xα. Combining this
observation with (1), we see that

U cot(θ) + V = 0.

We differentiate this:
Uα cot(θ)− Uθα csc2(θ) + Vα = 0.

We use (2) to substitute for Vα :

Uα cot(θ)− Uθα csc2(θ) + Uθα = 0.

Using the identity 1− csc2(θ) = − cot2(θ), this becomes

Uα cot(θ)− Uθα cot2(θ) = 0. (3)

Notice that this is a separable differential equation relating U and θ!
We rewrite (3), separating variables:

Uα
U

= θα cot θ.

Integrating this, we have ln |U | = ln | sin(θ)|+d, for some constant d. Solving for U, we finally arrive
at

U = A sin(θ), (4)

for some constant A.
Now that we have an expression for U, we seek an expression for V. We use the equation

Vα = θαU, finding now that Vα = Aθα sin(θ). We integrate, finding V = −A cos(θ) + β, for
some constant β. We also have the equation Uxα + V yα = 0, and we have xα = sα cos(θ) and
yα = sα sin(θ). Taken together, these formulas imply

sαA sin(θ) cos(θ)− sαA sin(θ) cos(θ) + βsα sin(θ) = 0,

and therefore (assuming the curve is not exactly flat), we see that β = 0. Our formula for V is then

V = −A cos(θ). (5)

Notice that so far, we have not used the equation xt = c. From the equation (x, y)α = U n̂+V t̂,
we see that

xt =
−Uyα + V xα

sα
= c.
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Substituting the formulas xα = sα cos(θ), yα = sα sin(θ), as well as (4) and (5), we find

xt =
−sαA sin2(θ)− sαA cos2(θ)

sα
= −A = c.

So, the constant A is equal to −c, where c is the speed of the traveling wave. Our final formulas
for U and V are

U = −c sin(θ), (6)

V = c cos(θ). (7)

Notice that what we have seen is that the equation U = −c sin(θ) together with the arclength
parameterization implies the equation for V.

3.2 Short calculation of the traveling wave ansatz

We have U n̂ + V t̂ = (c, 0). We can write t̂ = (cos(θ), sin(θ)), and n̂ = (− sin(θ), cos(θ)). This
implies the following system of equations:

−U sin(θ) + V cos(θ) = c,

U cos(θ) + V sin(θ) = 0.

The solution of this system is, as before, U = −c sin(θ) and V = c cos(θ). Note that the arclength
parameterization assumption implied that Vα = θαU and thus U = −c sin(θ) implies V = c cos(θ).
And so we only need to use the first of these.

3.3 Higher-order equations

The primary equation for our traveling wave formulation is U = −c sin(θ), and for evolution prob-
lems which are first-order in time, this would be sufficient to specify the wave. For evolutionary
systems, however, we will need to supplement this. In general, we expect that taking time deriva-
tives of the equation U = −c sin(θ) will be sufficient for this purpose. Note that if we take the time
derivative, we get

Ut = −cθt cos(θ).

Since θt = (Uα + V θα)/sα, we see that (6) and (7) imply θt = 0, and thus our second equation
becomes simply

Ut = 0. (8)

If there were a reason to have a system which is yet higher-order in time, then we would have higher
time-derivatives of U equal to zero as well.

4 Equations of motion for the vortex sheet with surface tension

For a vortex sheet, the normal velocity, U, is the normal component of the Birkhoff-Rott integral
(for a derivation of the Birkhoff-Rott integral from the incompressible, irrotational Euler equations,
the interested reader might consult [44]). We introduce a bit of notation: we define Φ : R2 → C to
be the complexification map,

Φ(a, b) = a+ ib.
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We also let the complex conjugate of a complex number, w, be denoted by w∗. Note that for
u,v ∈ R2 we have:

u · v = Re [Φ(u)Φ(v)∗] . (9)

We denote the image of the interface under Φ by z :

Φ(x(α, t), y(α, t)) = z(α, t).

Then, with the periodicity condition z(α+ 2π) = z(α) +M, the Birkhoff-Rott integral, W, is given
by

Φ(W)∗ =
1

2iM
PV

∫ 2π

0
γ(α′) cot

( π
M

(z(α)− z(α′))
)
dα′. (10)

Here, γ is the vortex sheet strength, which is related to the jump in tangential velocity across the
sheet. The formula (10) can be found, for instance, in [31], [32], or [8], for specific values of M. To
reiterate, the normal velocity is given by

U = W · n̂. (11)

We remark that the formula (10) for W is an integral over one period of the interface. The
Birkhoff-Rott integral is based upon the Biot-Savart integral for recovery of the velocity from
the vorticity; thus, another form of the Birkhoff-Rott integral is instead an integral over the real
line, since the interface (on which the vorticity is supported) is unbounded. The reduction of the
Birkhoff-Rott integral on the line to (10) uses a complex analysis theorem of Mittag-Leffler [1].
While we are using complex notation for the location of the interface, the only use of complex
analysis in the present work is the use of this theorem of Mittag-Leffler to arrive at (10); this
is convenient, but not essential. In the case of a doubly-periodic interface in three-dimensional
fluids, there is not a corresponding reduction available so that the Birkhoff-Rott integral may be
expressed as the integral over a single periodic cell of the interface. Instead, the integral over the
entire, unbounded interface must be used. For computational studies, the fast evaluation method
of [9] for this integral could be used.

For a vortex sheet, there is another point of view we can take on the traveling wave ansatz.
Namely, fluid flow away from the interface is likewise transported at the speed c. This implies
that the vortex sheet strength satisfies γ(α, t) = γ(α, 0). Therefore, making use of (11) and (6) the
following are the equations that we want to solve:

W · n̂ + c sin(θ) = 0, γt = 0. (12)

We have already observed that U = −c sin(θ) implies θt = 0; combined with the equation γt = 0
from (12), this implies (8).

All that remains in order to specify the system (12) is to give the equation for γt. This we get,
for instance, from [8]:

γt =
τθαα
sα

+

(
(V −W · t̂)γ

sα

)
α

.

We note that there would be several more terms on the right-hand side of this equation if we allowed
the two fluids to have different densities, but for simplicity, we are considering the density-matched
case at present.
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4.1 The traveling wave equations

By assumption sα is constant. Using this and (7) converts the equation γt = 0 to τθαα +(
(c cos(θ)−W · t̂)γ

)
α

= 0. Thus (12) is equivalent to solving the following system:

W · n̂ + c sin(θ) = 0, (13)

τθαα +
(
(c cos(θ)−W · t̂)γ

)
α

= 0. (14)

Noting that we can write the tangent and normal vectors as

Φ(̂t) = eiθ, Φ(n̂) = ieiθ,

allows us to express the normal and tangential components of W using (9) and (10) as

W · n̂ = Re

{
eiθ

2M
PV

∫ 2π

0
γ(α′) cot

( π
M

(z(α)− z(α′))
)
dα′
}
, (15)

and

W · t̂ = Re

{
eiθ

2iM
PV

∫ 2π

0
γ(α′) cot

( π
M

(z(α)− z(α′))
)
dα′
}
. (16)

Setting γ = γ0 = constant and θ = 0 gives a solution of these equations for any c. In light of
this we fix γ0 and let

γ(α) = γ0 + ω(α),

where we demand ∫ 2π

0
ω(α)dα = 0. (17)

That is to say, we are fixing the mean vortex strength to be γ0. (Below, we will be using c, the
wave speed, as a bifurcation parameter, but not γ0.)

Substituting this into (13) and (14), along with (15) and (16) gives:

Ψ1(θ, ω; c) := Re

{
eiθ

2M
PV

∫ 2π

0
(γ0 + ω(α′)) cot

( π
M

(z(α)− z(α′))
)
dα′
}

+ c sin(θ) = 0 (18)

and

Ψ2(θ, ω; c) :=

τθαα +

[(
c cos(θ)− Re

{
eiθ

2iM
PV

∫ 2π

0
(γ0 + ω(α′)) cot

( π
M

(z(α)− z(α′))
)
dα′
})

(γ0 + ω)

]
α

= 0.

(19)

We will sometimes write this more succinctly as

Ψ(u; c) = 0, (20)

where u := (θ, ω) and Ψ := (Ψ1,Ψ2).
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5 Small amplitude solutions via bifurcation

We will prove the existence of nontrivial solutions of (20) by means of classical bifurcation analysis.
In particular we will use this version of the Crandall-Rabinowitz-Zeidler theorem (see [60], p. 311):

Theorem 1 Let H′ and H be Hilbert spaces, and let u0 ∈ H′. Let U be an open neighborhood of
u0 in H′. Suppose that

(H1) ψ : U × R −→ H is C2.

(H2) For all c ∈ R, ψ(u0, c) = 0.

(H3) For some c0, L(c0) := ψu(u0, c0) has a one dimensional kernel and has Fredholm index equal
to zero.

(H4) If e ∈ H′ spans the kernel of L(c0) and f ∈ H spans the kernel of L†(c0), then 〈f, ψuc(0, c0)e〉H 6=
0.

If these four conditions hold, then there exists a sequence {(un, cn)}n∈N ⊂ H′ × R with

a. limn→∞(un, cn) = (u0, c0).

b. un 6= u0 for all n ∈ N and

c. ψ(un, cn) = 0.

We are able to apply this theorem more or less directly to (20), though there are a few minor
wrinkles. First we need to specify what are H′ and H. It happens that our analysis is greatly
simplified if we restrict attention to symmetric solutions. Specifically, let

H′ := H2
o ×H1

e,0

where
Hs
o := {f ∈ Hs : f is odd}

and

Hs
e,0 :=

{
f ∈ Hs : f is even and

∫ 2π

0
f(a) da = 0

}
.

That is to say, we are looking for solutions for which θ is odd, ω is even and for which ω has zero
average (as discussed above). Note that Hs refers to the usual L2-based Sobolev space of index s.

Next, we specify u0 and U. We can see that (20) is satisfied when the interface is perfectly flat
and the two fluids are shearing past one another, i.e., when

θ(α) ≡ 0 and ω(α) ≡ 0.

In this situation, it is straightforward to check that

z =
M

2π
α, V = c, sα =

M

2π
, W = 0, and t̂ = (1, 0).

Thus we have
Ψ(0, 0; c) = 0,
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for all c ∈ R. That is, we have (H2), with u0 = (0, 0).
The map Ψ is not defined on all of H′, because of the need to avoid self-intersections of the

interface. In studies of initial value problems, such as in [8] for the vortex sheet with surface tension
or in [58] for the water wave without surface tension, self-intersections are avoided by enforcing
a chord-arc condition. We could use a chord-arc condition here as well, or we could simply take
a sufficiently small ball around θ = 0. For simplicity, we choose the second option; clearly, there
exists c̄ > 0 such that if ‖θ‖H2 < c̄, then the interface cannot self-intersect, and Ψ is well-defined.
We then let U be the corresponding subset of H′, i.e.,

U = {θ ∈ H2
0 : ‖θ‖H2 < c̄} ×H1

e,0.

We have the following Lemma, which verifies that (H1) holds:

Lemma 1 The function Ψ(θ, γ; c) defined in (18), (19) and (20) is a C2 map from U × R into
H0
o ×H0

o .

Proof: This is proved directly from the definition of Ψ. To prove that Ψ maps functions with
the symmetry of H′ into those with the symmetry of H is not short, but neither is it interesting,
and so we omit it. To prove that the map is C2 is likewise direct from the definition of Ψ and, in
particular, is implied by results in [8]. �

Given this, we take
H := L2

o × L2
o,

where, of course, L2
o := H0

o . We conclude that (H1) is satisfied. To check (H3) and (H4) we must
compute

L(c) :=
∂Ψ

∂u

∣∣∣
(0,0;c)

.

We do so now.

5.1 Linearization about a flat surface

To linearize we set
θ = εθ1 and ω = εω1 (21)

and also

z =
M

2π
α+ εz1, V = c+ εV1, sα =

M

2π
+ εσ1, W = εW1, and t̂ = (1, 0) + εt1. (22)

Of course, z1, . . . , t1 are actually functions of θ and γ. We postpone more precise formulae for them
for the moment. Note here that ε is inserted purely for convenience. We will insert all of the above
into our system and keep terms of O(ε) only.

Making the substitutions into (18) we get

Re

{
eiεθ1

2M
PV

∫ 2π

0

(
γ0 + εω1(α

′)
)

cot

(
1

2
(α− α′) +

επ

M
(z1(α)− z1(α′))

)
dα′
}

= −c sin(εθ1).
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Expanding to O(ε):

Re

{
1

2M
PV

∫ 2π

0
ω1(α

′) cot

(
1

2
(α− α′)

)
dα′
}

− Re

{
π

2M2
PV

∫ 2π

0
γ0(z1(α)− z1(α′)) csc2

(
1

2
(α− α′)

)
dα′
}

= −cθ1.

Now, given θ, one recovers z from it via the relation zα = Φ(̂t)sα = eiθsα. Plugging in from

(21) and (22) we have: zα =

(
M

2π
+ εσ1

)
(1 + iεθ1) =

M

2π
+ ε(σ1 + iθ1) + O(ε2). Also, we saw in

Section 2 that sα =
M∫ 2π

0 cos(θ(α′))dα′
. So, using (21), we have sα =

M∫ 2π
0 1− ε2θ21(α′) +O(ε4)dα′

=

M

2π
+O(ε2). This implies that σ1 = 0. In turn, this implies that

∂αz1 = iθ1,

which is to say that z1 is a purely imaginary function plus a constant. Thus

Re

{
PV

∫ 2π

0
γ0(z1(α)− z1(α′)) csc2

(
1

2
(α− α′)

)
dα′
}

= 0

since the integrand is purely imaginary. So the linearization of (18) is

1

2M
PV

∫ 2π

0
ω1(α

′) cot

(
1

2
(α− α′)

)
dα′ = −cθ1. (23)

If we denote

Hf(α) :=
1

2π

∫ 2π

0
f(a) cot

(
1

2
(α− a)

)
da,

then we can write (23) succinctly:
Mc

π
θ1 +Hω1 = 0. (24)

H is, of course, the periodic Hilbert transform; background on the periodic Hilbert transform can
be found in [30]. It has the properties that H2 = −id when applied to functions with zero mean,
and H(β) = 0 for any constant, β.

Now we will linearize (19). At O(ε), after plugging (21) and (22) in, we have

τ∂2αθ1 + γ0 (V1 −W11)α + c∂αω1 = 0. (25)

We have introduced the notation W11 := W1 · (1, 0). We must answer the question, What are V1
and W11 in terms of θ1 and ω1? We have V = c cos(θ) = c cos(εθ1) = c+O(ε2). So V1 = 0.

Also, W · (1, 0) = Re (Φ(W)∗). So, we have

W · (1, 0) = Re

{
1

2iM

∫ 2π

0
(γ0 + εω1) cot

(
1

2
(α− α′) +

επ

M
(z1(α)− z1(α′))

)
dα′
}
.

12



Then

W · (1, 0) = εRe

{
1

2iM

∫ 2π

0
ω1 cot

(
1

2
(α− α′)

)
dα′
}

− εγ0Re

{
π

2iM2

∫ 2π

0
csc2

(
1

2
(α− α′)

)(
z1(α)− z1(α′)

)
dα′
}

+O(ε2).

The first term is zero, since the integrand is real and there is prefactor of i. The second term can
be rewritten using the following integration by parts:∫ 2π

0
csc2

(
1

2
(α− α′)

)(
z1(α)− z1(α′)

)
dα′

= 2

∫ 2π

0
∂α′

(
cot

(
1

2
(α− α′)

))(
z1(α)− z1(α′)

)
dα′

= 2

∫ 2π

0
cot

(
1

2
(α− α′)

)
∂αz1(α

′) dα′.

Recall that we showed above that ∂αz1 = iθ1. So we have

W · (1, 0) = −εγ0Re

{
π

M2

∫ 2π

0
cot

(
1

2
(α− α′)

)
θ1(α

′) dα′
}

+O(ε2).

Thus we have shown

W11 = −γ0π
M2

∫ 2π

0
cot

(
1

2
(α− α′)

)
θ1(α

′) dα′ = −2γ0π
2

M2
Hθ1.

We use this expression for W11 and the fact that V1 = 0 in (25) to get the linearization of (19):

τ∂2αθ1 +
2γ20π

2

M2
∂αHθ1 + c∂αω1 = 0. (26)

This, together with (24), gives the following formula for L(c) :=
∂Ψ

∂u

∣∣∣
(0,0;c)

:

L(c)u1 =

[
µc H

τ∂2α + 2(γ0/µ)2∂αH c∂α

]
u1, (27)

where u1 = (θ1, ω1) and
µ := M/π.

5.2 The kernels of L(c0) and L†(c0)

In this section, we check (H3) in Theorem 1. The functions θ and γ are 2π periodic, and so it is
our moral duty to represent them as Fourier series. That is, we have θ(α) =

∑
k∈Z θ̂(k)eikα and

γ(α) =
∑

k∈Z γ̂(k)eikα where f̂(k) :=
1

2π

∫ 2π

0
f(x)e−ikxdx. We have Ĥf(k) = −isgn(k)f̂(k). Using

the Fourier representation we can represent L(c) as the Fourier multiplier operator:

L̂(c) :=

[
µc −isgn(k)

−τk2 + 2(γ0/µ)2|k| cik

]
.

13



(That is, L̂(c)u = L̂(c)û.)
To apply Theorem 1, we must find c0 so that L(c0) has a nontrivial kernel. This occurs when

det L̂(c) = 0 for some k ∈ Z, or equivalently, when |k|
(
µc2 + 2(γ0/µ)2 − τ |k|

)
= 0. So either k = 0

or

c2 =
1

µ

(
τ |k| − 2

(
γ0
µ

)2
)

for some nonzero integer k.
Let

k0 := max

{
1,

⌊
2

τ

(
γ0
µ

)2
⌋}

.

The first possible bifurcation value for c is

c20 :=
1

µ

(
τ |k0| − 2

(
γ0
µ

)2
)
.

A routine calculation shows that the following functions are annihilated by L(c0):

e1(α) := κ

[
sin(k0α)

−µc0 cos(k0α)

]
, e2(α) := κ

[
cos(k0α)

µc0 sin(k0α)

]
and e3 :=

[
0
1

]
,

where κ ∈ R is taken so that the functions have unit length; these form an orthonormal basis of the
kernel. Note that (H3) in Theorem 1 requires the kernel to be one dimensional, and it appears that
this is not the case. However, note that by our selection of H′ above to be functions with a certain
symmetry and such that the second component has mean zero, we can eliminate two dimensions.
Specifically, only e1 is in H′. And so we have

ker L(c0) = span {e1} .

Thus we need only establish that the map has Fredholm index zero. That is to say, we need to
establish the fact that coker L(c0) is one dimensional when L(c0) is viewed as a map from H′ to H.

First, calculations completely analogous to those which led to the formulae for e1 and e2 show
that the following functions are annihilated by L†(c0) (the adjoint of L(c0)):

f1 :=

[
c0k0 sin(k0α)

sin(k0α)

]
, f2 :=

[
c0k0 cos(k0α)

cos(k0α)

]
and f3 :=

[
0
1

]
.

The adjoint is a map from the dual space of H into the dual space of H′. It is straightforward to
see that H is self-dual and thus we eliminate two directions as before. Specifically, we have:

ker L†(c0) = span {f1} .

A completely typical argument shows that for this operator, the dimension of the cokernel of
L(c0) agrees with the dimension of the kernel of L†(c0). Thus we have (H3).
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5.3 The final steps

Now we are in a position to check (H4). All we need to do is show that 〈f1, ∂cL(c0)e1〉 is non-zero.
Clearly,

∂cL(c0) =

[
µ 0
0 ∂α

]
Thus

∂cL(c0)e1 = κ

[
µ sin(k0α)

µc0k0 sin(k0α)

]
.

Then we have, after a quick computation:

〈f1, ∂cL(c0)e1〉 = 2µc0k0

∫ 2π

0
sin(k0α)2dα 6= 0.

Thus, we have solutions and the following is proven:

Theorem 2 For all γ0 ∈ R, there exists a non-zero sequence of functions {(θn(α, t), γn(α, t))}n∈N ⊂
H2 ×H1, and a sequence of real numbers {cn}n∈N, such that for all n ∈ N, (θn(α, t), γn(α, t)) is a
nontrivial traveling wave solution with speed c for the vortex sheet with surface tension. As n→∞
we have cn → c0 and (θn, γn) → (0, γ0). Moreover, θn is always an odd function of α and γn is a

always an even function of α. Lastly,
1

2π

∫ 2π

0
γn(a, t)da = γ0 for all t.

6 Numerical results

To complement the small-amplitude results of Section 5, we numerically compute branches of
traveling waves for a variety of amplitudes. Throughout this section, we specialize to the case
M = 2π. To compute solutions, we use a Fourier spectral decomposition of both the tangent angle
and the vortex sheet strength

θ(α, 0) =

N/2∑
n=−N/2

ane
iknα γ(α, 0) =

N/2∑
n=−N/2

bne
iknα.

We search for symmetric solutions, where the free surface y(α, 0) is a real even function, which
implies that an are pure imaginary and bn are real, as well as a−n = −an and b−n = bn. In addition
we consider waves where the tangent angle has zero mean and the mean of the vortex sheet strength
is specified, γ0. Thus to compute a traveling wave, we must determine N Fourier coefficients and
the speed c. We impose that the projection of (12) onto the same wavenumbers must vanish. When
θ is odd and γ is even, then γt is odd, thus the projection of γt = 0 into Fourier space gives N/2
coefficients which should vanish (the Fourier coefficients satisfy the same symmetry as θ). The
complementary equation, U = W · n̂, is also real and odd, resulting in another N/2 equations. We
close the system with an equation which specifies the solution amplitude.

The computation of the projection of (12) into Fourier space is straightforward, save perhaps
the computation of the Birkhoff-Rott integral,

Φ(W)∗ =
1

4πi
PV

∫ 2π

0
γ(β)cot

(
1

2
(z(α)− z(β))

)
dβ.
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Figure 1: The speed of computed traveling waves is plotted as a function of the maximum interface
displacement, |y|∞. Numerical continuation was used to compute branches of traveling waves for
a range of γ0 ∈ [0, 2). The lowest curve has γ0 = 1.9975, while the top curve has γ0 = 0. The
waves whose profiles appear in Figure 2 are marked with a solid square (γ0 = 0) and solid circle
(γ0 = 1). The amplitude at which the waves self-intersect is estimated with the dotted curve. We
do not observe self-intersection for γ0 = 0.

The integral is split into a Hilbert transform, which is computed using its definition in Fourier

space as Ĥ(f) = −isgn(k)f̂(k), and the remainder

Φ(W)∗ − 1

2
H

(
γ

zα

)
=

1

4πi
PV

∫ 2π

0
γ(β)

[
cot

(
1

2
(z(α)− z(β))

)
− 1

zα(β)
cot

(
1

2
(α− β)

)]
dβ.

The remainder integral, Φ(W)∗ − 1
2H( γzα ), is computed using the trapezoidal rule at alternating

grid points, similarly to the procedure of [11]. In the computations presented here, the free surface
height at x = 0 is used to specify amplitude. It is by varying this value that branches of waves
are computed. To solve the resulting algebraic system, the quasi-Newton iteration of Broyden
is applied [18]. We begin at small amplitude, using the linear solution as an initial guess for
fixed surface tension and vortex sheet strength, computing branches of waves via continuation in
amplitude. Similar quasi-Newton-Fourier-Continuation schemes have been applied in to compute
gravity-capillary waves in [54, 5, 6].

For fixed surface tension and vortex sheet strengths, linear solutions travel at speeds

c2 =

(
τ

2
|k| − 1

4
γ20

)
.

In our computations we set τ = 2 and compute solutions which bifurcate from k = 1. With these
choices, small amplitude traveling waves exist for |γ0| < 2 and |c| < 1. The speed-amplitude
curves for varying γ0 are presented in Figure 1. Worthy of note in Figure 1 is that many of the
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(b) Free Surface, γ0 = 1

−3 −2 −1 0 1 2 3
−15

−10

−5

0

5

10

15

x

a

(c) Vortex Sheet Strength, γ0 = 0
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Figure 2: The free surface displacement and vortex sheet strength of traveling waves at large
amplitude. In the left column, the wave has zero mean vortex sheet strength, γ0 = 0. This wave
is marked with a solid square in Figure 1. In the right column, the wave has γ0 = 1; this wave is
marked with a solid circle in Figure 1. Both waves were computed with N = 2048 Fourier modes,
with a spatial resolution of dx = π

1024 ≈ 0.003. Note that the vortex sheet strength is plotted here
as a (possibly multi-valued) function of x, rather than as a function of α.
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Figure 3: The overturned traveling wave with γ0 = 1, whose entire profile is in the right column of
Figure 2 and which is marked with a solid circle in Figure 1. Close-ups of the overturned interface
and vortex sheet strength are in the left and center panel respectively, with grid points labeled with
circles. Note that the vortex sheet strength is graphed as a multi-valued function of x, rather than
as a function of α. The amplitude of the Fourier coefficients is plotted in the right panel as a check
of solution smoothness, where the Fourier coefficients of the vortex sheet strength are marked with
circles (the upper curve) and the Fourier coefficients for the free surface displacement are marked
with stars (the lower curve).

speed-amplitude curves exhibit local maxima, hinting that the stability of these traveling waves
may change as a function of amplitude, [36, 4]. The spectral stability of such solutions will be
considered in a future paper, both to observe potential instabilities of these waves and as a starting
point for computations of nontrivially time periodic solutions using the method of [11].

Branches of traveling waves have been computed for a sampling of mean vortex sheet strengths.
When γ0 = 0, we do not observe overturning traveling waves. A large amplitude solution for γ0 = 0
is in the left column of Figure 2. For all sampled values of γ0 6= 0, overturning solutions were
computed at finite amplitude. An example of a large amplitude, overturned traveling wave with
γ0 = 1 is shown in the right column of Figure 2.

The curvature of the traveling wave profiles tends to increase with amplitude. As such it is
natural to be concerned regarding the smoothness of these solutions and the degree to which the
computations are resolved. As evidence of the resolution of the computations, close-ups of the
overturned section of a traveling solution are plotted in Figure 3 with the grid points labeled. In
addition, in the right panel of Figure 3, the Fourier coefficients of the solution are plotted, and these
are exponentially decaying until machine precision errors wash out the computation near 10−15.

In this section we have presented numerical computations of the traveling waves which bifurcate
from the linear solution. At large amplitude, many of the solutions overturn. We are able to
compute continuous solution branches up to the point where the solution self intersects, so that
the wave profile then includes an entrained bubble. In Figure 1, the amplitude where this pinch-off
occurs is estimated by the dotted line. The amplitude at which the wave self intersects is a simple
estimate of the largest traveling wave, as in [46]. Beyond this threshold the bifurcation structure
of the solution space is unclear - and may include multiply intersecting profiles, such as those in
[55], as well as regions where no traveling solutions exist.
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