
5692 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 11, NOVEMBER 2009

Algorithms and Bounds for Estimating Location,
Directionality, and Environmental Parameters of

Primary Spectrum Users
Richard K. Martin, Member, IEEE, and Ryan Thomas, Member, IEEE

Abstract—Most existing work on dynamic spectrum access
deals with creating a spectral and temporal map of spectrum
white space, and then filling it. The spectrum can be better
utilized by increasing the spatial awareness of secondary users
to include knowledge of the locations of all primary and
secondary users, as well as the orientations and parameters
of their directional or omni-directional antennas. This paper
derives a Maximum Likelihood (ML) algorithm, an approximate
ML algorithm, and associated performance bounds for jointly
estimating a transmitter’s position, orientation, beam width, and
transmit power, as well as the environment’s path loss exponent,
using received signal strength measurements. The methods can
be used for either a primary or secondary user. Simulations are
used to determine what types of sensor geometries lead to good
estimates of each parameter, to evaluate the performance of the
estimators, and to determine spectrum availability as a function
of spatial coordinates.

Index Terms—Cognitive networks, Cramer-Rao lower bounds,
dynamic spectrum access, received signal strength, sensor net-
works.

I. INTRODUCTION

THE Cognitive Radio (CR) concept shows great promise
in providing intelligent multifunction, multi-domain

communication devices. Particularly for the Dynamic Spec-
trum Access (DSA) problem of allowing the re-use of spec-
trum allocated to primary users (users with primary license
to a frequency band) by secondary users (users without a
full license or priority in a frequency band), CRs are a
potentially powerful solution. However, CRs are not suited
to accomplishing network objectives due to their limited,
localized viewpoint of the Radio Frequency (RF) environment.
Their focus on optimizing local radio parameters may come
at the expense of users of the RF environment that are
participating in achieving the same network objectives. This
can directly degrade the network’s multi-hop performance
by compromising the available bandwidth and signal-to-noise
ratio on links of the network topology.

Manuscript received April 8, 2009; revised July 6, 2009 and September 29,
2009; accepted October 2, 2009. The associate editor coordinating the review
of this paper and approving it for publication was G. Colavolpe.

R. Martin (corresponding author) and R. Thomas are with the Dept. of Elec-
trical and Computer Engineering, The Air Force Inst. of Technology (AFIT),
Wright-Patterson AFB, OH (e-mail: {richard.martin, ryan.thomas}@afit.edu).

R. Martin and R. Thomas are funded in part by the Air Force Research
Labs, Sensors Directorate. The views expressed in this paper are those of the
authors, and do not reflect the official policy or position of the United States
Air Force, Department of Defense, or the U.S. Government. This document
has been approved for public release; distribution unlimited.

Digital Object Identifier 10.1109/TWC.2009.090494

The concept of a Cognitive Radio Network (CRN) rather
than individual CRs is just beginning to receive attention;
perhaps the first serious investigation occurred in [1], where
the features, objectives, and challenges of Cognitive Networks
(CNs) (a superset of the CRN concept) were investigated. In
this paper, CNs, and by extension CRNs, are distinguished
from CRs by their end-to-end focus. Currently, most research
in the field focuses on CRN architectures for problems in the
mobility or DSA fields [2], [3]. Very little work has been done
on the foundational underpinnings of the CRN. Particularly
to achieve DSA objectives in a network environment, each
CR in the CRN needs a shared network-level view of the RF
environment.

Towards this end, recent advances have been made de-
termining the presence or absence of primary users in the
RF environment. By cooperatively sharing local estimates
on the presence of primary users, [4] and [5] have shown
the accuracy of these detection algorithms can be increased.
However, simply knowing whether or not there exists a user
in a particular frequency band is not enough information. To
make network-wide decisions that do not mis-estimate the
RF impact of a source, estimates of the spatial positioning
and antenna gain are also needed. When location and gain
pattern estimation are combined with signal classification and
identification estimates, the resulting “map” of spectrum usage
in space, time, frequency, and code forms what we call a “5.1
dimensional RF topography,” with the “5” representing the
five dimensions of time, frequency, and space, and the “.1”
representing additional supplementary information such as
modulation classification or under-use of available spreading
codes. An example of the topography estimation process by
a network of radios is visually illustrated in Fig. 1. A diverse
range of future CRN applications can use this topography to
perform such tasks as determining spectral-aware waveforms
for network communication; locating and observing other
radio entities (primary or secondary users) in the region; spec-
trum policing; and creating efficient connection topologies.

The 5.1 dimensional RF topography is similar to the Radio
Environment Map (REM) proposed in [6]. The REM is a
comprehensive multi-dimensional “map” that identifies the
location and geo-spatial properties of parameters such as
terrain, service availability, policy requirements, and hardware
type. However, the REM is envisioned as a centralized, a
priori database that is disseminated throughout the network
and occasionally updated or corrected, rather than created
in a distributed, near-real time fashion. The RF topography
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may fit into the REM as an Available Resource Map (ARM),
which the authors describe as a a real time map of all radio
activity in the network. An RF topogrophy scheme created
by RSS should be a significant improvement previous ARM
proposals [7], which required specializing positioning sensors
(such as GPS) and self-reporting by the transmitters of their
RF characteristics.

Spatial estimation of the location of signal sources, or
“source localization,” is currently an active area of research,
with many interesting non-CN applications. For example,
precision location of cell phones in an emergency has been
mandated in the United States [8]. Similarly, microphone
arrays can be used to determine the location of an acoustic
source [9], to aid automatic camera tracking [10] or determi-
nation of the source of sniper fire [11].

Measurements that can be taken to aid source localization
include the Angle of Arrival (AOA) [12], the Received Signal
Strength (RSS) [9], [13], or the Time Difference of Arrival
(TDOA) at multiple receivers [14]. The drawbacks of AOA
measurements are that the quality of the final position estimate
degrades rapidly as the receivers move away from the source,
and that determining the AOA requires a phased array of
antennae at each sensor rather than a single antenna. RSS
is frequently used due to its simplicity, despite the fact that
RSS measurements are not very accurate and a large, dense
sensor network is often required for precise location estimates.
RSS techniques typically assume that the transmitted power
and the path loss exponent are known (or are sometimes
included as additional parameters to be estimated [15]), that
there is no multipath or shadowing, and that the transmitter
is isotropic. TDOA methods do not make such assumptions,
but they require significantly higher communications overhead
than AOA or RSS. We focus on RSS in this paper, although
RSS can be combined with TDOA measurements to improve
the accuracy of the estimator [16].

One major drawback of most existing work is the as-
sumption of isotropic (omni-directional) transmission. Since
most modern communications devices exploit spatial diver-
sity through non-uniform antenna gain patterns, the isotropic
assumption is rarely valid. Cell phone handsets, for example,
attempt to direct radiation away from the head, resulting in
shadowing on one side of the phone; and base stations gener-
ally employ phased arrays of antennas to shape the transmit
gain pattern. Knowing the direction in which a transmitter
is transmitting can allow for more efficient use of spectrum.
This paper removes the isotropic assumption and considers
estimation of the directionality, position, and parameters of
an RF transmission via a sensor network. Note that if there
are many scatterers close to the transmitter, it will blur the
effects of the radiation pattern; however, we assume that a
variable beam width is to be estimated, which helps account
for such possible blurring. Moreover, scatterers close to the
sensors will have roughly the same angle to the transmitter
as the sensors, and will not be a problem. The fact that the
transmitter is using a directional antenna presupposes that it is
in an environment in which the effects of directionality would
be completely obscured.

To determine bounds on the variances of the parameter
estimates, we will use the Cramer-Rao Lower Bound (CRLB)

[17]. The CRLB is is a bound on the covariance matrix of
unbiased estimates of the parameter vector z, where z contains
parameters such as the spatial location (𝑥0, 𝑦0), beam orienta-
tion (𝜃0), beam half-width (𝜎𝑁 ), transmission power (𝑃0), or
path-loss exponent (𝑛𝑝). In particular, the diagonal elements of
the CRLB bound the variances of unbiased estimates of the
corresponding scalar parameters. By computing the CRLB,
we determine the lowest possible estimation variance we can
achieve, regardless of which algorithm or method is used in
the estimation process. A variance equal to the CRLB is not
necessarily achievable, but in practice it is usually possible to
get very close to the bound with some estimator. By computing
the CRLB for various sensor geometries, we will determine
which possible arrangements of sensors will potentially lead
to good estimates (i.e. low variance) of the source position,
orientation, and environmental parameters. Better estimates of
these parameters will allow us to better estimate the power
incident at any point in the RF topography, whether we have
a sensor there or not.

There is a large amount of existing work on localization
using RSS measurements, although for the case of omni-
directional antennas. In [18], a CRLB was derived for es-
timates of the source 2D coordinates and (omni-directional)
transmit power using RSS measurements. Similarly, in [19],
the CRLB and a Maximum Likelihood (ML) estimator were
derived under the same conditions for self-localization of a
network of sensors, in which a small subset of the sensors
were “anchor nodes” at known locations. In [20], the Barankin
bound was computed under the same assumptions. It was
shown that the Barankin bound is tighter than the CRLB,
although it is more difficult to compute. In [15], the estimation
problem was expanded to include the path loss exponent
(as suggested in [19]), although the estimator was not an
ML estimator and analytical performance bounds were not
considered.

In Section II, we present the system model, including both a
Gaussian-shaped radiation pattern and a more general model.
In Section III, we derive analytic expressions for the CRLBs
on estimates of the source position, orientation, beam half-
width, power, and path loss exponent, for the Gaussian-shaped
pattern. The derivation extends to the general case, but is
not very interesting without assuming a specific functional
form. In Section IV, we derive an ML estimation algorithm
for the unknown parameters, as well as an approximately ML
algorithm with significantly reduced complexity, for both the
Gaussian and general radiation patterns. Section V provides
examples of numerical evaluation of the bounds and estimator
performance for various sensor configurations, and Section VI
concludes the paper.

II. SYSTEM MODEL

Throughout, (⋅)∗, (⋅)𝑇 , (⋅)𝐻 , and ℰ {⋅} denote complex
conjugate, matrix transpose, conjugate (Hermitian) transpose,
and statistical expectation, respectively. A sample average is
denoted ⟨⋅⟩, i.e. sum up the arguments and divide by their
cardinality. The matrices 0, 1 contain all zeros or all ones
respectively, and when it is not clear from the context, they
will be subscripted with their dimensionality. A hat indicates
an estimate of its argument, e.g. 𝜃0 is an estimate of 𝜃0.
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Fig. 1. Creation of a 5.1D RF topography, to find spatial spectrum white space. (a) First, power levels are observed at each sensor ∇. (b) Next, the source
locations ∗, transmitted power levels, antenna orientations, antenna beam widths (not shown), and path loss exponent are estimated. (c) Finally, a topographical
map is created of (estimated) power incident on any point in space, not just points where there are sensors.

Directionality in transmissions can be created using a
phased array or via a single directional antenna, although we
focus on the latter case for simplicity. Consider a directional
antenna with a Gaussian-shaped radiation pattern,

∣𝐺𝑁 (𝜃)∣2 = Γ0 exp

(
− (ℳ (𝜃 − 𝜃0))

2

2𝜎2
𝑁

)
, (1)

where the antenna is located at (𝑥0, 𝑦0) with the main beam in
the direction 𝜃0, Γ0 is chosen to scale the transmitted power,
and the function ℳ (⋅) restricts the argument to [−𝜋, 𝜋] via

ℳ (𝜙) = mod2𝜋 (𝜙+ 𝜋)− 𝜋. (2)

Note that the term “Gaussian” here simply refers to the bell
curve shape of the radiation pattern, not to a random variable.

The Gaussian shape could be used to approximate the main
lobe of a more generic radiation pattern (such as from a phased
array). For the sake of generality, we also explicitly consider
a generic radiation pattern, written as

10 log10 ∣𝐺𝑔 (𝜃)∣2 = 10 log10 Γ0 − 𝛾 (ℳ (𝜃 − 𝜃0)) , (3)

where 𝛾 can be any function that satisfies both 𝛾 (0) = 0 and
𝛾 (𝑢) ≥ 0 ∀𝑢. As before, Γ0 scales the peak power. Equation
(1) is produced, for example, if 𝛾 (𝑢) =

(
𝑢2/𝜎2

𝑁

)
5 log10 𝑒.

For the sake of gaining intuition as to the functional depen-
dence of the CRLB on the various parameters, we will usually
use (1) rather than (3) in our derivations; however, the ML
estimation algorithms in Section IV will consider both the
specific and general cases.

The 𝑆 CR nodes (the sensors) are located at known posi-
tions (𝑥𝑠, 𝑦𝑠), for 𝑠 = 1, 2, ⋅ ⋅ ⋅ , 𝑆, thus they are at distances
and angles

𝑑𝑠 =

√
(𝑥𝑠 − 𝑥0)

2
+ (𝑦𝑠 − 𝑦0)

2
, (4)

𝜃𝑠 = arctan

(
𝑦𝑠 − 𝑦0
𝑥𝑠 − 𝑥0

)
, (5)

with respect to the source.
Assuming log-normal fading as in [15], [18], the received

power in the dB domain at each sensor is normally distributed
with variance 𝜎2, as per the Okumura-Hata model [21].
Typically, 𝜎 ranges from 4 dB to 12 dB [22], corresponding to
uncluttered environments (e.g. deserts) to environments rich in

shadowing and multipath (e.g. urban canyons). The value of
𝜎2 is usually approximated from controlled measurements in a
given environment; but it could be considered a quantity to be
estimated as well. In free space, power diminishes according to
an inverse square law, but due to multipath and shadowing the
path loss exponent 𝑛𝑝 need not be 2. Typically, 𝑛𝑝 ≈ 2 in free
space propagation and 𝑛𝑝 ≈ 5 in dense urban environments
[18], though some sources state that typical values of 𝑛𝑝 are in
the range 2 to 4. Since it is typical to work in the log domain,
we also define 𝑃0 as the dB version of Γ0. Thus, altogether,
our potential unknowns for a single directional antenna are
𝑥0, 𝑦0, 𝜃0, 𝑃0, 𝑛𝑝, and 𝜎𝑁 , though some may be known a
priori.

In the log domain, the received power is Gaussian, modelled
as

p = [𝑝1, ⋅ ⋅ ⋅ , 𝑝𝑆 ]𝑇 ∼ 𝒩 (m,C) , (6)

using the definitions

m = [𝑚1, ⋅ ⋅ ⋅ ,𝑚𝑆 ]
𝑇
, (7)

𝑚𝑠 = 10 log10

(
∣𝐺 (𝜃𝑠)∣2

)
− 𝑛𝑝10 log10

(
𝑑𝑠
𝑑0

)
,

= 𝑃0 − 𝑏

2
(ℳ (𝜃𝑠 − 𝜃0))

2 − 𝑛𝑝𝑑𝑠, (8)

𝑃0 = 10 log10 (Γ0) , (9)

𝑏 =
10 log10 (𝑒)

𝜎2
𝑁

, (10)

𝑑𝑠 = 10 log10 (𝑑𝑠/𝑑0) (11)

where the parameter 𝑑0 is a short reference distance from the
receiver (typically 1 m). In most of our simulations, we assume
C = 𝜎2I, which covers most cases of practical interest, but
the derivations are left in the general case whenever it is easy
to do so.

For the CRLB calculations and derivation of the ML esti-
mator, it is useful to explicitly state the log of the Probability
Density Function (PDF) associated with (6), known as the
log-likelihood:

𝐿 = ln 𝑓(p∣z)
= − 1

2
(p−m)

𝑇
C−1 (p−m) , (12)

ignoring a constant term that will cancel due to differentiation.
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III. PERFORMANCE BOUNDS

In this section, we derive CRLBs on the variances of unbi-
ased estimates of the various transmission parameters, given
the RSS at a collection of sensors at known locations. These
include transmitter location, transmitter orientation, transmit
power, the path loss exponent, and the beam half-width. We
first derive the general results, and then consider two special
cases in order to simplify the results and gain some intuition.

In its simplest form, the CRLB is a bound on unbiased
estimates of non-random parameters (or parameters whose
probability distributions are not known a priori) [17]. Specifi-
cally, the covariance of unbiased estimates of the 𝑀 unknowns
grouped into the vector z is lower-bounded (in the matrix
sense) by J−1, where the Fisher Information Matrix (FIM) J
is defined by:

𝐽𝑖,𝑗 = −ℰ
{

∂2𝐿

∂𝑧𝑖∂𝑧𝑗

}
, (13)

where 𝐿 is the log-likelihood given by (12). In particular, the
variances of the estimates of elements of z are bounded by the
diagonal of J−1. In the remainder of this section, we derive
the CRLB for the probability density given in Section II.

A. All six parameters unknown

The log-likelihood of the RSS vector p given the vector of
unknowns z is given by (12). The vector z contains some or
all of 𝑃0 (or Γ0), 𝑏 (or 𝜎𝑁 ), 𝑛𝑝, 𝑥0, 𝑦0, and 𝜃0, depending on
which parameters are already known. For the Gaussian case
of (12), the FIM simplifies to

𝐽𝑖,𝑗 = ℰ
{

∂

∂𝑧𝑖

[
(p−m)

𝑇
C−1 ∂

∂𝑧𝑗
(p−m)

]}
=

(
∂

∂𝑧𝑖
m

)𝑇

C−1 ∂

∂𝑧𝑗
m (14)

since ℰ {p} = m. For i.i.d. noise, (14) could further simplify
to

𝐽𝑖,𝑗 =
1

𝜎2

(
∂

∂𝑧𝑖
m

)𝑇
∂

∂𝑧𝑗
m. (15)

Depending on which parameters are assumed unknown, the
relevant partial derivatives are given by a subset of

∂𝑚𝑠

∂𝑃0
= 1 (16)

∂𝑚𝑠

∂𝑏
=

−1

2
(ℳ (𝜃𝑠 − 𝜃0))

2 (17)

∂𝑚𝑠

∂𝑛𝑝
= − 𝑑𝑠 (18)

∂𝑚𝑠

∂𝜃0
= 𝑏 ℳ (𝜃𝑠 − 𝜃0) (19)

∂𝑚𝑠

∂𝑥0
=

−𝑏

𝑑2𝑠
ℳ (𝜃𝑠 − 𝜃0) (𝑦𝑠 − 𝑦0) +

10𝑛𝑝

𝑑2𝑠
(𝑥𝑠 − 𝑥0) (20)

∂𝑚𝑠

∂𝑦0
=

−𝑏

𝑑2𝑠
ℳ (𝜃𝑠 − 𝜃0) (𝑥𝑠 − 𝑥0) +

10𝑛𝑝

𝑑2𝑠
(𝑦𝑠 − 𝑦0) (21)

which used the fact that ∂ℳ(𝜙)
∂𝜙 = 1 (ignoring the single point

of discontinuity in the mod function). To cast the bounds for
𝑃0 and 𝑏 into the form of bounds for Γ0 and 𝜎𝑁 , we use the

CRLB of functions of parameters [17, p.229], given in this
case by

𝑉 𝐴𝑅
{
Γ̂0

}
≥

(
∂Γ0

∂𝑃0

)2

𝑉 𝐴𝑅
{
𝑃0

}
≥

(
Γ0 ln (10)

10

)2

𝑉 𝐴𝑅
{
𝑃0

}
, (22)

𝑉 𝐴𝑅 {𝜎𝑁} ≥
(
∂𝜎𝑁

∂𝑏

)2

𝑉 𝐴𝑅
{
𝑏̂
}

≥
(

𝜎3
𝑁

20 log10 (𝑒)

)2

𝑉 𝐴𝑅
{
𝑏̂
}
. (23)

Note that the results in this subsection are a generalization of
those in [18]. Specifically, [18] assumed 𝑛𝑝 was known and
implicitly used the model 𝑏 = 0 (i.e. 𝜎𝑁 = ∞), hence the
𝑏, 𝑛𝑝, and 𝜃0 terms were not included in the FIM, making it
3× 3 rather than 6× 6. Moreover, 𝑏 = 0 causes the first term
in (20) and (21) to drop out, further simplifying the FIM in
[18].

In principle, we can now numerically evaluate the CRLB
on Γ0, 𝜎𝑁 , 𝑛𝑝, 𝑥0, 𝑦0, and 𝜃0. However, the full 6 × 6 FIM
cannot be (concisely) inverted in closed form, so in order to
gain some intuition, we now consider two special cases that
allow the FIM to simplify somewhat.

B. Known location and beam width

Assume the source coordinates (𝑥0, 𝑦0) and the beam half-
width 𝜎𝑁 are known, so that z = [𝑃0, 𝑛𝑝, 𝜃0]

𝑇 . In most work
on source localization, the source coordinates are considered
the key parameters to be determined, hence it may seem odd
to assume they are known. However, what distinguishes this
paper is the estimation of the source’s RF footprint, rather
than simply its location. The coordinates may be available
from a TDOA method, or in the case where the primary user’s
location is fixed but the angle of transmission is not (e.g. cell
phone towers), or possibly by cooperation from the primary
user itself. Moreover, even if this assumption does not hold,
the simplified mathematical expressions derived in this section
may be used to gain some intuition even in the more general
case. We will also make the simplifying assumption C = 𝜎2I
(which holds true in most practical cases), and we adopt the
shorthand

ℳ𝑛 △
= (ℳ (𝜃𝑠 − 𝜃0))

𝑛 (24)

to condense some of the bulkier equations.
Using (15)–(21), the FIM is given by

J =
𝑆

𝜎2

⎡⎢⎣ 1 − 〈
𝑑𝑠

〉
𝑏 ⟨ℳ⟩

− 〈
𝑑𝑠

〉 〈
𝑑
2

𝑠

〉
−𝑏

〈ℳ 𝑑𝑠
〉

𝑏 ⟨ℳ⟩ −𝑏
〈ℳ 𝑑𝑠

〉
𝑏2

〈ℳ2
〉

⎤⎥⎦ (25)

Recall that the notation ⟨⋅⟩ means “sample average.” To gain
some intuition, assume the sensors are distributed roughly
symmetrically with respect to the direction of transmission,
so that ⟨(ℳ (𝜃𝑠 − 𝜃0))⟩ ≈ 0 and

〈
(ℳ (𝜃𝑠 − 𝜃0)) 𝑑𝑠

〉 ≈ 0.
This need not require the sensors to all be on the same radius.
This situation could occur, for example, in a very dense sensor
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network surrounding the source; and other examples are given
in Section V. Then

J ≈ 𝑆

𝜎2

⎡⎢⎢⎣
1 − 〈

𝑑𝑠
〉

0

− 〈
𝑑𝑠

〉 〈
𝑑
2

𝑠

〉
0

0 0 𝑏2
〈
(ℳ (𝜃𝑠 − 𝜃0))

2
〉
⎤⎥⎥⎦ , (26)

which is a block matrix and can be block-inverted. Performing
the block inverse and using (22),

𝑉 𝐴𝑅
{
𝑃0

}
≥ 𝜎2

𝑆

〈
𝑑
2

𝑠

〉
〈
𝑑
2

𝑠

〉
− 〈

𝑑𝑠
〉2 (27)

𝑉 𝐴𝑅
{
Γ̂0

}
≥

(
Γ0 ln (10)

10

)2
𝜎2

𝑆

〈
𝑑
2

𝑠

〉
〈
𝑑
2

𝑠

〉
− 〈

𝑑𝑠
〉2 (28)

𝑉 𝐴𝑅 {𝑛𝑝} ≥ 𝜎2

𝑆

1〈
𝑑
2

𝑠

〉
− 〈

𝑑𝑠
〉2 (29)

𝑉 𝐴𝑅
{
𝜃0

}
≥ 𝜎2

𝑆

(
𝜎2
𝑁

10 log10 (𝑒)

)2
1〈

(ℳ (𝜃𝑠 − 𝜃0))
2
〉
(30)

Note that since ⟨𝜃𝑠⟩ ≈ 𝜃0, the denominator terms are the sam-
ple variances of the distances (in dB) and the angles, measured
with respect to the transmitter position and orientation.

The transmitter’s antenna beam width 𝜎𝑁 and the measure-
ment noise variance 𝜎2 are beyond our control. The CRLB
can be reduced linearly for all three unknowns by increasing
the number of sensors 𝑆. The variances of estimates of the
path loss exponent 𝑛𝑝 and the orientation 𝜃0 can be reduced
by increasing the dispersion of the sensors in distance and
angle, respectively. The variance of the estimate of the transmit
power can be reduced by increasing the dispersion of the
sensors in distance with respect to their second moment, or
equivalently by holding the mean distance (in dB) constant
while increasing the dispersion. In Section V, the CRLB will
be numerically computed for different sensor geometries, to
show that this intuition still holds when all six parameters are
unknown.

C. Known location and path loss

Now assume the source coordinates (𝑥0, 𝑦0) and the path
loss exponent 𝑛𝑝 are known, so that z = [𝑃0, 𝑏, 𝜃0]

𝑇 . As be-
fore, the coordinates may be available from a TDOA method;
and the path loss exponent may be measured in advance for
a given environment. Again, C = 𝜎2I.

Using (15)–(21), the FIM is given by

J =
𝑆

𝜎2

⎡⎣ 1 −1
2

〈ℳ2
〉

𝑏 ⟨ℳ⟩
−1
2

〈ℳ2
〉

1
4

〈ℳ4
〉 −𝑏

2

〈ℳ3
〉

𝑏 ⟨ℳ⟩ −𝑏
2

〈ℳ3
〉

𝑏2
〈ℳ2

〉
⎤⎦ (31)

To gain some intuition, again assume the sensors are dis-
tributed roughly symmetrically with respect to the direc-
tion of transmission, so that ⟨ℳ (𝜃𝑠 − 𝜃0)⟩ ≈ 0 and〈
(ℳ (𝜃𝑠 − 𝜃0))

3
〉
≈ 0. Then

J ≈ 𝑆

𝜎2

⎡⎣ 1 −1
2

〈ℳ2
〉

0
−1
2

〈ℳ2
〉

1
4

〈ℳ4
〉

0
0 0 𝑏2

〈ℳ2
〉
⎤⎦ , (32)

which is a block matrix and can be block-inverted. Performing
the block inverse and using (22) and (23),

𝑉 𝐴𝑅
{
𝑃0

}
≥ 𝜎2

𝑆

〈ℳ4
〉

⟨ℳ4⟩ − ⟨ℳ2⟩2 (33)

𝑉 𝐴𝑅
{
Γ̂0

}
≥

(
Γ0 ln (10)

10

)2
𝜎2

𝑆

〈ℳ4
〉

⟨ℳ4⟩ − ⟨ℳ2⟩2 (34)

𝑉 𝐴𝑅 {𝜎𝑁} ≥
(

𝜎3
𝑁

20 log10 (𝑒)

)2
𝜎2

𝑆

4

⟨ℳ4⟩ − ⟨ℳ2⟩2 (35)

𝑉 𝐴𝑅
{
𝜃0

}
≥ 𝜎2

𝑆

(
𝜎2
𝑁

10 log10 (𝑒)

)2
1

⟨ℳ2⟩ (36)

All of the bounds considered in this section can be reduced by
maximizing the angular dispersion of the sensors, regardless
of distances. This makes sense, given that in this subsection
we are primarily attempting to determine the directionality
parameters of the transmitter.

It is also instructive to compare (28) and (34), which are
both bounds for the peak transmitted power. In the former
case, the beam width was known and the path loss was un-
known, hence the angular spread of the sensors was immaterial
but the variance in sensor distances was crucial. In the latter
case, the beam width was unknown and the path loss was
known, hence the angular spread governed the bound rather
than the spread in distances.

D. Bounds on the RF topography

The ultimate goal of estimating the source’s location and
transmission parameters is the creation of a 5.1D RF topogra-
phy. In this subsection, we derive the CRLB for the estimated
power that would be incident across the spatial region of
interest, as a function of the spatial coordinates.

The CRLB on a function of multiple parameters 𝑔(z) is
given by [17, p.229]

𝑉 𝐴𝑅
{
𝑔(z)

}
≥ (∇z𝑔)

𝑇 J−1∇z𝑔. (37)

In particular, let 𝑔(z) be the estimated mean power (in the log
domain) that would be received at a point (𝑥, 𝑦), at a distance
and angle of (𝑑, 𝜃) with respect to the source. The actual mean
power is given by

𝑔(z) = 𝑃0 − 𝑏

2
(ℳ (𝜃 − 𝜃0))

2 − 𝑛𝑝𝑑, (38)

𝑑 = 10 log10

√
(𝑥− 𝑥0)

2
+ (𝑦 − 𝑦0)

2
, (39)

𝜃 = arctan

(
𝑦 − 𝑦0
𝑥− 𝑥0

)
. (40)

The equations for the partial derivatives ∂𝑔
∂𝑧𝑖

are nearly iden-
tical to (16)–(21), with the exception that the subscripts “𝑠”
are removed, hence the equations are not repeated here. Using
(37), the variance of the estimated power can be determined
as a function of position, providing a measure of confidence
for each point in the topography.
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IV. ESTIMATION ALGORITHMS

In this section, we derive algorithms for estimating the pa-
rameters of z = [𝑃0, 𝑏, 𝑛𝑝, 𝜃0, 𝑥0, 𝑦0], using only observations
of the log-normal distributed received power at the 𝑆 sensors.
First, we derive an ML algorithm for estimating the parameters
when the source antenna has a Gaussian radiation pattern, in
which it is known that the shape is Gaussian but the beam
width is unknown. The algorithm reduces the search space
for z from six dimensions to three dimensions, but due to the
nonlinearity of the ℳ (⋅) function, a closed form solution for
𝑥0, 𝑦0, and 𝜃0 cannot be obtained, hence a three dimensional
search is unavoidable. (A nonlinear least squares approach
was considered as an alternative to a grid search over these
three parameters, but due to slow convergence of the resulting
algorithm, the results are not discussed here.) Second, we
derive an ML algorithm for estimating the parameters when
the radiation pattern of the source antenna has an arbitrary but
completely known shape, with an isotropic antenna as a special
case. Third, we create a hybrid, approximate ML algorithm
that combines the computational simplicity of an algorithm
based on the isotropic assumption with the accuracy of the
full ML estimate.

A. ML estimation of a Gaussian beam

The ML algorithm takes the generic form

ẑ𝑀𝐿 = arg max
z

ln 𝑓(p∣z)︸ ︷︷ ︸
𝐿

. (41)

In this case, the ML cost function 𝐿 is given by (12), and for
simplicity C = 𝜎2I in the remainder of this section. Typically,
(41) is solved by setting its gradient to zero and solving the
resulting set of equations. The gradient equations are given by

∂𝐿

∂𝑧𝑖
=

𝑆∑
𝑠=1

(𝑝𝑠 −𝑚𝑠)
∂𝑚𝑠

∂𝑧𝑖
, (42)

with the partial derivatives of 𝑚𝑠 given by (16)–(21). Sub-
stituting in for 𝑚𝑠 and simplifying, the first three gradient
equations are

∂𝐿

∂𝑃0
=

𝑆∑
𝑠=1

(
𝑝𝑠 −

[
𝑃0 − 𝑏

2
ℳ2 − 𝑛𝑝𝑑𝑠

])
(43)

∂𝐿

∂𝑏
=

−1

2

𝑆∑
𝑠=1

(
𝑝𝑠 −

[
𝑃0 − 𝑏

2
ℳ2 − 𝑛𝑝𝑑𝑠

])
ℳ2 (44)

∂𝐿

∂𝑛𝑝
= −

𝑆∑
𝑠=1

(
𝑝𝑠 −

[
𝑃0 − 𝑏

2
ℳ2 − 𝑛𝑝𝑑𝑠

])
𝑑𝑠. (45)

The equations for 𝑥0, 𝑦0, and 𝜃0 have been omitted since they
are highly nonlinear and as such, a grid search will ultimately
be necessary in order to solve them. Fortunately, 𝑃0, 𝑏, and
𝑛𝑝 are linearly dependent on the other three quantities, and
we now proceed to solve for them in terms of 𝑥0, 𝑦0, and 𝜃0.

Setting (43)–(45) to zero, dividing by 𝑆, and using the
“sample average” notation yields

⟨𝑝𝑠⟩ − 𝑃0 +
𝑏

2

〈ℳ2
〉
+ 𝑛𝑝

〈
𝑑𝑠

〉
= 0 (46)〈

𝑝𝑠ℳ2
〉− 𝑃0

〈ℳ2
〉
+

𝑏

2

〈ℳ4
〉
+ 𝑛𝑝

〈
𝑑𝑠ℳ2

〉
= 0 (47)

〈
𝑝𝑠𝑑𝑠

〉− 𝑃0

〈
𝑑𝑠

〉
+

𝑏

2

〈ℳ2𝑑𝑠
〉
+ 𝑛𝑝

〈
𝑑
2

𝑠

〉
= 0. (48)

Equations (46)–(48) can simultaneously be solved for 𝑃0, 𝑏,
and 𝑛𝑝 by casting them into matrix form and using a 3 × 3
matrix inverse,⎡⎣𝑃0

𝑏̂
𝑛𝑝

⎤⎦ =

⎡⎢⎣ 1 −1
2

〈ℳ2
〉 − 〈

𝑑𝑠
〉〈ℳ2

〉 −1
2

〈ℳ4
〉 − 〈

𝑑𝑠ℳ2
〉〈

𝑑𝑠
〉 −1

2

〈ℳ2𝑑𝑠
〉 −

〈
𝑑
2

𝑠

〉
⎤⎥⎦
−1 ⎡⎣ ⟨𝑝𝑠⟩〈

𝑝𝑠ℳ2
〉〈

𝑝𝑠𝑑𝑠
〉
⎤⎦

(49)
If one or more of 𝑃0, 𝑏, or 𝑛𝑝 is already known, then the
relevant row(s) and column(s) of (49) should be omitted.

In summary, the ML estimation of the six unknowns (or a
subset thereof) is accomplished by:

1) Pick a point in 𝑥0, 𝑦0, 𝜃0 space, chosen from a 3D grid.
2) Solve (49) for the ML estimates of 𝑃0, 𝑏, and 𝑛𝑝,

assuming the current 𝑥0, 𝑦0, and 𝜃0 are correct.
3) Evaluate the ML cost for the six tentative parameter

estimates, via (12).
4) Repeat steps (1)-(3) for all points in the 3D grid.
5) Choose the 𝑥0, 𝑦0, and 𝜃0 from the grid that maximize

(12), and retain the corresponding 𝑃0, 𝑏, and 𝑛𝑝 from
(49).

The performance of this algorithm will be compared to the
CRLB in Section V.

B. ML estimation of arbitrary, known radiation patterns

For the general class of radiation patterns of (3), the mean
power in the dB domain is

𝑚𝑠 = 10 log10

(
∣𝐺𝑔 (𝜃𝑠)∣2

)
− 𝑛𝑝𝑑𝑠, (50)

= 𝑃0 − 𝛾 (ℳ (𝜃𝑠 − 𝜃0))− 𝑛𝑝𝑑𝑠. (51)

Note that the shape of the radiation pattern is considered
completely known, i.e. there is no width-scaling parameter
analogous to 𝜎𝑁 in this subsection. Equation (42) still applies,
hence

∂𝐿

∂𝑃0
=

𝑆∑
𝑠=1

(
𝑝𝑠 −

[
𝑃0 − 𝛾 (ℳ (𝜃𝑠 − 𝜃0))− 𝑛𝑝𝑑𝑠

])
(52)

∂𝐿

∂𝑛𝑝
= −

𝑆∑
𝑠=1

(
𝑝𝑠 −

[
𝑃0 − 𝛾 (ℳ (𝜃𝑠 − 𝜃0))− 𝑛𝑝𝑑𝑠

])
𝑑𝑠.

(53)

Setting (52) and (53) to zero, dividing by 𝑆, and using the
“sample average” notation yields

⟨𝑝𝑠⟩ − 𝑃0 + ⟨𝛾 (ℳ (𝜃𝑠 − 𝜃0))⟩+ 𝑛𝑝

〈
𝑑𝑠

〉
= 0 (54)〈

𝑝𝑠𝑑𝑠
〉− 𝑃0

〈
𝑑𝑠

〉
+

〈
𝛾 (ℳ (𝜃𝑠 − 𝜃0)) 𝑑𝑠

〉
+ 𝑛𝑝

〈
𝑑
2

𝑠

〉
= 0.

(55)

These two equations can be solved in matrix-vector form, as
in (49). Since a 2× 2 matrix can be inverted in closed form,
the tentative estimates are

𝑃0 =

〈
𝑑
2

𝑠

〉
⟨𝑝𝑠⟩ −

〈
𝑑𝑠

〉 〈
𝑑𝑠𝑝𝑠

〉
+

〈
𝑑
2

𝑠

〉
⟨𝛾𝑠⟩ −

〈
𝑑𝑠

〉 〈
𝑑𝑠𝛾𝑠

〉〈
𝑑
2

𝑠

〉
− 〈

𝑑𝑠
〉2

(56)
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𝑛𝑝 =

〈
𝑑𝑠

〉 ⟨𝑝𝑠⟩ − 〈
𝑑𝑠𝑝𝑠

〉
+

〈
𝑑𝑠

〉 ⟨𝛾𝑠⟩ − 〈
𝑑𝑠𝛾𝑠

〉〈
𝑑
2

𝑠

〉
− 〈

𝑑𝑠
〉2 . (57)

where 𝛾𝑠 is shorthand for 𝛾 (ℳ (𝜃𝑠 − 𝜃0)). This leads to a
generic ML estimation algorithm for the case when the gain
pattern is arbitrary but known numerically:

1) Pick a point in 𝑥0, 𝑦0, 𝜃0 space, chosen from a 3D grid.
2) Solve (56) and (57) for the ML estimates of 𝑃0 and 𝑛𝑝,

assuming the current 𝑥0, 𝑦0, and 𝜃0 are correct.
3) Evaluate the ML cost for the five tentative parameter

estimates, via (12).
4) Repeat steps (1)-(3) for all points in the 3D grid.
5) Choose the 𝑥0, 𝑦0, and 𝜃0 from the grid that maximize

(12), and retain the corresponding 𝑃0 and 𝑛𝑝 from (56)
and (57).

This generic algorithm includes the special case of an omni-
directional antenna, for which 𝛾 (⋅) = 0. In that case, 𝜃0 is
omitted, and the grid search is only over 2D rather than 3D.

C. Approximate ML estimation

The main drawback of the ML estimator of Section IV-A
is that it requires a 3D search over 𝑥0, 𝑦0, and 𝜃0, which
is computationally cumbersome. In this section, we form a
hybrid algorithm that uses a heuristic to reduce the search
space to 2D, but is ML over the 2D search space.

A directional antenna will broadcast most of its power in
the direction in which it points. Consequently, a localization
algorithm that ignores the directionality of the source (i.e., one
that makes the omni-directional assumption) will tend estimate
the source location to be directly in front of the true source
location, i.e. in the direction pointed to by the true 𝜃0. (For
example, the reader may jump ahead to Fig. 8.) This fact
can be used to roughly estimate the transmitter orientation.
Specifically, the approximate ML algorithm is:
0) Estimate the location of the source assuming omni-

directional transmission, either by the algorithm in Sec-
tion IV-B, or by an algorithm that does not estimate
path loss and transmitted power. Call this estimate
(𝑥𝑜𝑚𝑛𝑖, 𝑦𝑜𝑚𝑛𝑖).

1) Pick a point in 𝑥0, 𝑦0 space, chosen from a 2D grid.
Choose 𝜃0 to point from (𝑥0, 𝑦0) to (𝑥𝑜𝑚𝑛𝑖, 𝑦𝑜𝑚𝑛𝑖).

2) Solve (49) for the ML estimates of 𝑃0, 𝑏, and 𝑛𝑝,
assuming the current 𝑥0, 𝑦0, and 𝜃0 are correct.

3) Evaluate the ML cost for the six tentative parameter
estimates, via (12).

4) Repeat steps (1)-(3) for all points in the 2D grid.
5) Choose the 𝑥0 and 𝑦0 from the grid that maximize (12),

and retain the corresponding 𝜃0, 𝑃0, 𝑏, and 𝑛𝑝.
6) (optional) In the vicinity of this solution, perform a local

ML search over 𝑥0, 𝑦0, and 𝜃0 to refine their estimates.
Step (0) adds very little complexity, since the search space has
few parameters compared to the full solution (no orientation
or beam width). The authors have observed that if step (6) is
omitted, 𝑥0 and 𝑦0 are generally almost identical to the ML
solution, and 𝜃0 is sometimes (but rarely) off by up to 10𝑜.
(These observations were made using the Gaussian radiation
pattern.) If step (6) is included with a small search space, the
accuracy of the full ML solution can be obtained with very
low complexity.
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Fig. 2. The four sensor geometries used in Section V. The ∗ is the
transmitter, which is oriented to transmit in the direction shown by the arrows.
There are 𝑆 = 64 sensors, regularly spaced along each of the four depicted
geometries (in turn). Geometries (a), (c), and (d) obey the assumptions made
in Section III-B.

V. SIMULATIONS AND NUMERICAL EVALUATION

In this section, we first numerically evaluate the CRLB from
Section III-A for four notional sensor geometries, in order to
gain insight as to what type of sensor geometry leads to a
good estimate of each parameter. Second, we test the three
estimation algorithms of Section IV using a randomly placed
array of a large number of sensors, including an evaluation
of the bias and variance of the parameter estimates and an
evaluation of how well each algorithm predicts the region in
which the spectrum is available for use by a secondary user.

Unless otherwise specified, the true values of the unknown
parameters are (𝑥0, 𝑦0) = (0, 0), 𝜃0 = 0, and 𝑛𝑝 = 3. The
noise standard deviation 𝜎 is allowed to range from 4 dB to
12 dB, and where it is not considered an independent variable,
it will be set to 5 dB. The directional antenna has beam half-
width 𝜎𝑁 = 𝜋/4, and the peak transmit power is 𝑃0 = 20
dBm at a reference distance of 𝑑0 = 1 m.

Experiment 1 consists of Figs. 2 to 7 and Table I. The four
sensor geometries shown in Fig. 2 are not quite perfect circles
or lines; small displacements were added, since in some cases
a perfect circle or line causes a singularity in the FIM. Adding
small displacements (which also adds to the realism of the
simulation) greatly enhances the numerical conditioning of the
FIM. These displacements were Gaussian distributed with a
standard deviation of 10 cm in each coordinate. Table I shows
the relevant statistics of these four geometries.

Figs. 3 to 7 show the square root of the CRLB (i.e. the
Root Mean Squared Error (RMSE)) on unbiased parameter
estimates for the case where all 6 parameters are unknown.

Authorized licensed use limited to: Air Force Institute of Technology. Downloaded on December 11, 2009 at 12:03 from IEEE Xplore.  Restrictions apply. 



MARTIN and THOMAS: ALGORITHMS AND BOUNDS FOR ESTIMATING LOCATION, DIRECTIONALITY, AND ENVIRONMENTAL PARAMETERS . . . 5699

TABLE I
STATISTICS OF THE FOUR SENSOR GEOMETRIES SHOWN IN FIG. 2.

Statistic (a) (b) (c) (d)〈
𝑑
2
𝑠

〉
290 290 169 295

〈
𝑑
2
𝑠

〉
−

〈
𝑑𝑠

〉2
1.57 1.57 0.0004 0.026〈

(𝜃𝑠 − 𝜃0) 𝑑𝑠
〉

0.004 26.7 0.008 0.004

⟨𝜃𝑠 − 𝜃0⟩ 0.0002 1.57 0.0006 0.0003〈
𝜃2𝑠

〉− ⟨𝜃𝑠⟩2 0.084 0.084 3.29 0.083
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Fig. 3. The CRLB on 𝑃0, for the four sensor geometries shown in Fig. 2.
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Fig. 4. The CRLB on 𝑛𝑝, for the four sensor geometries shown in Fig. 2.

In each geometry, 𝑆 = 64 sensors were employed, regularly
spaced along each circle or line. In general, the relative
rankings of the different geometries do not change for similar
experiments with fewer unknown parameters, but the bounds
would all decrease. Geometry (c) is clearly the best for
estimating the antenna location, orientation, and beam width,
whereas geometry (a) is best for estimating power and path
loss. In the case of known location and beam width (not
shown, due to figure count limitations), geometry (b) performs
as well as geometry (a). These relative rankings can be
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Fig. 5. The CRLB on 𝜃0, for the four sensor geometries shown in Fig. 2.
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Fig. 6. The CRLB on 𝜎𝑁 , for the four sensor geometries shown in Fig. 2.
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Fig. 7. The CRLB on 𝑥0, for the four sensor geometries shown in Fig. 2.
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Fig. 8. Results of the three estimation algorithms discussed in Section IV.
The contours indicate the true and estimated regions in which the received
power is above a pre-set threshold, meaning that the spectrum is unavailable
for use by a secondary user.

understood by considering the special case shown in (28),
(29), and (30), which applies to (a), (c), and (d), although
the resulting intuition appears to apply loosely to (b) as well.
Geometries (a) and (b) have the largest distance variances,
leading to good estimates of power and path loss; and (c) has
the largest angular variance, leading to a good estimate of
transmitter orientation. An optimal placement of sensors thus
should have large variances in both angle and distance.

Experiment 2 consists of Fig. 8 (a sample result) and
Table II (average results). Fig. 8 shows the results of the
three estimation methods discussed in Section IV. These
include ML estimation of all six unknowns, ML estimation
that incorrectly assumes that the source is omni-directional
with only four parameters to be estimated (𝑃0, 𝑛𝑝, 𝑥0, and
𝑦0), and approximate ML estimation that leverages the omni-
directional estimate (without step (6)). 𝑆 = 100 sensors were
randomly distributed in a 150 m × 150 m area, and all other
parameters were as above. The contours indicate the true and
estimated regions in which the received power is above a
threshold of −30 dBm (i.e. 50 dB below Γ0), meaning that the
spectrum is unavailable for use by a secondary user. Although
the proposed ML estimator is not perfect, it does a fairly
good job of estimating the spatial region in which spectrum
is unavailable. In contrast, the incorrect omni-directional as-
sumption leads to a poor estimate of spectrum unavailability,
although it does partially overlap with the correct region. If
the approximate ML estimator is used with step (6), it will
produce the same solution as the ML estimator.

Table II shows the statistics of the ML estimates. The
results were averaged over 1000 realizations of the additive
noise. The geometry was as shown in Fig. 8, and all other
parameters were as specified above. For each parameter, the
standard deviation of the estimate dominated the bias and
exceeded the square root of the CRLB. Thus, while the ML
estimators cannot analytically be guaranteed to be unbiased,
in practice the bias appears small compared to the estimator
standard deviation. It is known that the ML estimator is

TABLE II
COMPARISON OF THE BIAS AND STANDARD DEVIATION OF ML

PARAMETER ESTIMATES TO THE SQUARE ROOT OF THE CRLB AND THE
RESOLUTION OF THE SEARCH SPACE.

Variable value avg est bias std dev
√

CRLB res.

𝑥0 (m) -5 -5.76 -0.76 1.72 0.10 1.0
𝑦0 (m) -10 -10.42 -0.42 1.81 0.17 1.0
𝜃0 (deg) 60 59.82 -0.18 2.77 0.29 1.0
𝑃0 (dBm) 20 20.48 0.48 4.36 0.61 N/A
𝜎𝑁 (deg) 45 44.69 -0.31 1.59 0.22 N/A

𝑛𝑝 (unitless) 3 3.02 0.02 0.25 0.03 N/A

asymptotically unbiased and efficient; although it appears that
with six unknowns and 100 sensors, the ML estimator is not
quite within the asymptotic regime.

Additional simulations, not included here due to space limi-
tations, have shown that a modest amount of radiation pattern
distortion does not adversely affect the proposed approach.
The distortions considered include smearing out the beam
pattern angularly by 10% to 25%, and adding a floor on the
loss behind the antenna of -20 dB. This mimics the effects of
scatterers close to and directly in front of the antenna, which
may cause energy to fill in notches in the beam pattern. In the
limit of wider amounts of blurring and higher floors (i.e. a very
dense scattering environment immediately surrounding the
transmitter), the effective radiation pattern becomes isotropic
and the distinction between the proposed work and past work
diminishes.

Now consider computational complexity. In our simulations,
the numbers of grid points in the search space were 𝑁𝑥 = 121,
𝑁𝑦 = 121, and 𝑁𝜃 = 360, and there were 𝑆 = 100
sensors. All algorithms that assume directionality require
𝑆𝑁𝑥𝑁𝑦𝑁𝜃 = 5.3 × 108 logs, divisions, and arctangents to
compute angles and log-distances, which are inherent to the
problem. The algorithm in Section IV-A requires an additional
7𝑆𝑁𝑥𝑁𝑦𝑁𝜃 = 3.7× 109 multiply-adds. Assuming evaluation
of the 𝛾(⋅) function requires 2 multiply-adds, the algorithm
in Section IV-B uses 5𝑆𝑁𝑥𝑁𝑦𝑁𝜃 = 2.6 × 109 multiply-
adds. If this algorithm is used to localize an omni-directional
source, then it only requires 3𝑆𝑁𝑥𝑁𝑦 = 4.4 × 106 multiply-
adds. The fast algorithm in Section IV-C uses 10𝑆𝑁𝑥𝑁𝑦 =
1.5×107 multiply-adds, since it must perform omni-directional
localization for initialization before performing directional
localization.

On a 2.49 GHz desktop with a dual core processor, running
Matlab release R2009a, the ML estimate used 765 s of CPU
time, the approximate ML estimate used 5.1 s, and the omni-
directional estimate used 1.4 s, in order to generate the results
in Fig. 8.

VI. CONCLUSIONS

This paper derived performance bounds, an ML algorithm,
and an approximate ML algorithm for estimation of a trans-
mitter’s location, orientation, beam width, power, and path loss
exponent, using RSS measurements. As opposed to previous
related work, this paper considered a directional transmitter.
Power and path loss are best estimated when the distances
from the source to the sensors have a large variance; whereas
position, orientation, and beam width are best estimated when
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the the angular variance of the sensors is large with respect
to the direction of transmission. The proposed parameter
estimation algorithms can be used to improve decisions in
a dynamic spectrum access system by indicating where the
spectrum is available as a function of spatial coordinates,
rather just spectral and temporal. This work forms the first
step in our development of a 5.1D RF topography, which will
assist cognitive network decision making.
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