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This study integrates artificial neural network (ANN) processingwithmicrobial fuel cell (MFC)-based biosensing
in the detection of three organic pollutants: aldicarb, dimethyl-methylphosphonate (DMMP), and bisphenol-A
(BPA). Overall, the use of the ANN proved to be more reliable than direct correlations for the determination of
both chemical concentration and type. The ANN output matched the appropriate chemical concentration and
type for three different concentrations and throughout a wide range of stepwise tests. Additionally, chemicals
dissolved in the acetate-based feedmedium (FM)were accurately identified by the ANN even though the acetate
masked the pollutants' effects on electrical current. The ANN also accurately revealed the identity of chemical
mixtures. This study is the first to incorporate ANN modeling with MFC-based biosensing for the detection and
quantification of organic pollutants that are not readily biodegradable. Furthermore, this work provides insight
into the flexibility of MFC-based biosensing as it pertains to limits of detection and its applicability to scenarios
where mixtures of pollutants and unique solvents are involved. This research effort is expected to serve as a
guide for future MFC-based biosensing efforts.

Published by Elsevier B.V.
1. Introduction

Microbial fuel cells (MFCs) are bioelectrochemical devices that have
been employed in water quality monitoring. MFCs consist of an anode
and cathode; the former is typically immersed in water and exposed
to an electron donor (e.g. an organic compound) while the latter is
exposed to a terminal electron acceptor like oxygen (Logan, 2007). A
permeable membrane separates the two chambers. Anode-respiring
bacteria (ARB) grow on the anode, oxidizing chemical substrates and
transferring electrons to the surface of the electrode. These electrons
then flow through a wire across an external resistor and to the cathode
where the terminal electron acceptor is reduced. This current can be
measured and then correlated to water quality because ARBs are
fax: +1 937 656 4699.
impacted by the constituents present in their growth environment. A
number of previous studies have demonstrated that MFCs can be used
to detect biodegradable chemicals dissolved in water (Kumlanghan
et al., 2007; Feng et al., 2013a; Tront et al., 2008). Feng et al. (2013a)
contributed to this literature by showing how MFCs can be used to
distinguish and identify specific chemicals present in water samples.
There is now a clear consensus supporting the idea thatMFCs can detect
biodegradable chemicals in water, and there is also a great wealth of
information now available about the construction, start-up, and long-
term operation of these devices (Logan, 2008). In principle, MFC-
based monitoring of water is now possible at any scale.

Many of the chemicals that are of great concern in the water quality
community are recalcitrant organics; chemicals that persist in the
aquatic environment because they are not readily degradable (Ciputra
et al., 2010; Maszenan et al., 2011). Notable examples include pesti-
cides, solvents, plasticizers, gasoline additives, flame retardants, phar-
maceuticals, and numerous other chemicals with properties (e.g. low
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solubility, highmolecularmasses) thatmake them resistant to degrada-
tion (Bhatt et al., 2007; Andreozzi et al., 2003; Focazio et al., 2008; Kit
Chan et al., 2012). Water should be monitored for these chemicals in
order to minimize or avoid exposing people to the associated toxicity.
MFC-based water monitoring has never been accomplished for organic
chemicals that are recalcitrant and this is especially challenging because
MFCswork by utilizing bacteria that generate current. It is not clear that
ARB can remain activewhile being exposed to chemicals thatmay cause
inhibition. The effect of recalcitrant chemicals on MFC operations must
be studied.

Correlating MFC outputs with the desired water quality
parameter(s) can be complicated by a two primary factors. First, the
output signals can vary due to changes in the composition of the
water samples. For example, the pH or ionic strength can change or
the target pollutant(s) may bemixed (and/or interact) with other com-
pounds. Second, theMFC outputsmay gradually change due to the evo-
lution of the microbial ecology, which may or may not favor ARB (Lee
et al., 2008; Lovley, 2008; Parameswaran et al., 2012; Rismani-Yazdi
et al., 2013). Temporal output variations like this complicate the task
of correlating MFC output with water quality. This is a key reason why
artificial neural networks (ANNs) are employed in this research. An
ANN is a network of computational models that resemble natural neu-
rons. ANNs are inspired by human biological neural networks and are
differentiated from other computer models for their ability to “learn”
like the human brain. ANNs map the relationship between input and
output data and can be adapted to changing patterns. Thesemodels cor-
relate input and output data with a series of hidden layers, are trained
with real data, and are then tested against a separate data subset. The
highly flexible nature of ANNs allows the user to correlate several pa-
rameters simultaneously. Feng et al. (2013a, 2013b) successfully
used MFC-generated electrical signals and ANN processing to
both distinguish between four separate, readily biodegradable,
simple organic substances and detect various chemical oxygen de-
mand (COD) concentrations.

The objectives of this study are to

• correlate MFC data with the concentration and identity of three
recalcitrant organic pollutants

• integrate ANNs into MFC-based biosensing for the identification and
quantification of three recalcitrant organic pollutants

• determine the effect of the solvent on chemical identification via the
ANN

• determine the effect of chemical mixtures on chemical identification
via the ANN.

The three chemicals used in this work are aldicarb, dimethyl-
methylphosphonate (DMMP), and bisphenol-A (BPA). These chemicals
are resistant to degradation andwould be unlikely to serve as substrates
for ARB (Khandaker and Young, 2000; Ike et al., 2000; McGrath et al.,
1997) (see Appendix A). The hypothesis of thiswork is that ANNmodel-
ing will enhance MFC-based detection of these three compounds.

2. Materials and methods

2.1. Experimental overview

The overall strategy involved the injections of aqueous solutions of
dissolved chemicals into the MFCs in order to generate a response in
the form of electrical current. Each injection resulted in a single electric
current profile (response peak) that was evaluated on the basis of six
separate metrics. Those metrics were: peak height (PH, i.e. maximum
charge), peak area (PA, i.e. area under the response charge), accelera-
tion rate (AR, i.e. rate of increasing charge), subsidence rate (SR, i.e.
rate of decreasing charge), 10-hour subsidence rate (10SR, i.e. rate of
decreasing charge over a 10 hour period), and first moment (FrM, i.e.
first moment about the y-axis). Supplemental information pertaining
to metrics can be found in Appendix B. For each set of experiments,
regressions were carried out. For example, each metric was plotted
against chemical concentration to evaluate the correlations. Then,
ANNs were trained and tested with the same data sets. Systematic
testingwas accomplished for the purpose of both quantifying the chem-
ical concentration and identifying the chemical. Appendix C contains
experimental results not shown in the main body of this paper.

2.2. Microbial fuel cell operation and configuration

Six single-chamber MFCs were operated as batch reactors in this
study (Fig. 1). These devices were inoculated with activated sludge ob-
tained from the FairbornWater Reclamation Center in Fairborn, Ohio. A
description of the materials used in the construction of these MFCs can
be found in previous work (Feng et al., 2013a). All MFCs had an anode
chamber volume of approximately 40 mL. Both 47 Ω (MFC #5, #6, #7
and #8) and 470 Ω (MFC #9 and #10) resistors were used. Electrodes
were connected via a copper wire to a Keithley meter (Model 2750,
Keithley Instruments) to monitor voltage outputs from the MFCs. Data
collected by the Keithley meter was converted into tabular format
via the ExceLINX program (Keithley Instruments) for analysis. The
operating temperature was 21 °C. The MFCs were initially operated on
acetate-based feed until stable current production was observed (see
Appendix C, Fig. C7 for an example of a peak generated from acetate
only).

2.3. Synthetic solutions

Four types of synthetic solutions were used for laboratory experi-
ments. An acetate-based feed medium (FM) was composed of the
following substrates: C2H3NaO2, 430 ppm; NH4Cl, 20 ppm; KH2PO4,
1360 ppm; K2HPO4, 200 ppm; MgCl2, 250 ppm; CoCl2, 20 ppm; ZnCl2,
10 ppm; CuCl2, 10 ppm; CaCl2, 4 ppm; andMnCl2, 10 ppm. Additionally,
aqueous solutions for each of the three chemicals used in experiments
(aldicarb, DMMP, and BPA) were created at different concentration
levels. Aldicarb was purchased from Ultra Scientific in a solvent matrix
form at a concentration of 100 μg/mL in acetonitrile. DMMP was
purchased from Sigma Aldrich in a purum (≥97%) liquid form. BPA
was purchased from Sigma Aldrich in a crystalline solid (97% purity)
form. All water used in the composition of solutions was purified
through reverse osmosis (RO).

2.4. Electrochemical testing

Systematic testingwas accomplishedwith the chemicals overmulti-
ple ranges of influent concentrations via three experiment sets. The
overall methodology involved the injection of the chemical solution
for eight consecutive injections, an intermittent injection of standard
FM, followed by eight consecutive injections of chemical solution for
the next stage of testing. The intermittent injection of FM was intro-
duced in order to supply the ARB with an adequate food source. This
pattern proceeded until the experiment was complete. Voltage data
was obtained from the Keithley Meter at two-minute intervals. Current
was calculated using Ohm's Law. Intervals between injections were
approximately 48 h. Two MFCs were used for each of the three
experiment sets.

2.4.1. Quantification and identification testing
Both aldicarb and BPA were introduced at the concentrations of

800 ppb, 400 ppb, and 200 ppb. DMMP was injected at concentrations
of 916 ppm, 458 ppm, and 229 ppm. Each chemical was tested at
varying concentration levels so that: (1) charge outputs from a wider
range of chemical concentrations could be observed; and (2) the
higher concentrations might better simulate a chemical spill event
where MFC-based biosensing could be used as a decision support tool.
During each experiment, the peak metrics were recorded for
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Fig. 1. (a) basic components of a single-chamber MFC; (b) view of anode chamber and carbon fiber anode; (c) configuration of electrode connections and external resistor.
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subsequent analysis and ANN development (see Appendix C, Table C1
for examples of metric values retrieved for each chemical).

2.4.2. Solvent effect testing
Solvent effect experiments were conducted to determine if the

presence of the FM as a solvent, as opposed to RO water as a solvent,
would affect how well chemicals could be identified. Since the FM
promotes microbial activity and the exogenous transfer of electrons, in-
creased microbial activity could either enhance the responses making
themmore easily discernible or serve tomask any effect that the chem-
ical had on the ARB. During these tests only one concentration per
chemical was used in both its aqueous and FM form. For consistency,
the maximum concentrations used in the quantification and identifica-
tion set was selected for use.

2.4.3. Mixture testing
These tests were carried out to determine how well chemical mix-

tures could be identified with MFCs and ANNs. For aldicarb and BPA
an aqueous concentration of 800 ppb was used and for DMMP an aque-
ous concentration of 916 ppm was used. These concentrations were
kept constant during the tests in order to simplify the scope of the ex-
periment. Mixtures used the same concentrations for each respective
chemical. The testing procedure involved eight consecutive injections
of each mixture (aldicarb/BPA, aldicarb/DMMP, and DMMP/BPA) with
an intermittent injection of the FM. Then, each chemical was introduced
individually for eight consecutive injections with an intermittent injec-
tion of the FM.

2.5. Artificial neural network development

The ANNwas developed to interpret the electrical signals generated
by the MFCs. In this study a customized, feed-forward network with
one-way connections between the input layer, hidden layer(s), and out-
put layer was developed and tested. The ANN functioned through a
three-step process of training, validation, and testing. First, the ANN
was trained with 80% (randomly selected) of the data obtained
during experiments described above. The Levenberg–Marquardt back-
propagation algorithm was used during network training (Marquardt,
1963). During training, a system-generated output is compared to a de-
sired output and the back-propagation algorithm corrects for errors in
the system. Corrections update both weight and bias values. Training
continues until the error is minimized. Second, the ANN used 10% of
the data (also randomly selected) for validation. In this step, the perfor-
mance of the network is estimated and stopping points for training are
established. Third, the final segment (i.e. 10%) of the data set is used to
test the ANN. During testing, the overall performance of the model is
evaluated. Five tests were accomplished during every ANN run to eval-
uate the use of 1 to 5 hidden layers of artificial neurons. Input matrices
for the ANN were arranged so that the utility of new metrics (10SR,
FrM) and metrics used in previous research (PH, PA, AR, SR) (Feng
et al., 2013a) could be evaluated. Supplemental information pertaining
to the ANN can be found in Appendix B. MATLAB R2012b (MathWorks,
Natick, MA) was the computational platform.

3. Results and discussion

3.1. Quantification and identification testing

3.1.1. Quantification
Fig. 2 displays the operatinghistory forMFC#10, oneof twoMFCsused

in this experiment set. The other biosensor, MFC #5 (see Appendix C,
Fig. C1), produced similar results. Intermediate feedings with the
standard FM are annotated in red. Intermediate use of the FMbetween
the DMMP concentrations of 916 ppm and 458 ppmwas not recorded

image of Fig.�1
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Fig. 2.MFC #10 operating history. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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due to a loss of communication between the Keithley Meter and the
computer. Most of the electrical signals begin with an initial region
showing negative current which may have been due to corrosion on
the alligator clips. Qualitatively, all response peaks generally display
an expected rise in current, but the peaks are highly dynamic, and the
size and shape of the electrical signals are influenced by the chemical
being added and its concentration. For example, when aldicarb was
injected the current rose sharply followed by a slow, gradual subsidence
Fig. 3. PH and PA correlations with Ald
rate. The aldicarb PH values were between 3.80E−2 to 1.05E−1 mA at
800 ppb, 4.30E−2 to 1.13E−1 mA at 400 ppb, and 8.30E−2 to
1.18E−1mA at 200 ppb. The aldicarb signals were qualitatively different
from DMMP signals, which had linear increases in current and were no-
ticeably small (i.e. PH values were less than 1.90E−2 mA). The BPA sig-
nals had a small increase in current followed by a longer horizontal
plateau and the PH values were less than 4.00E−3 mA. These results
show that the three chemicals being studied had electrical signatures
icarb concentrations in MFC #10.

image of Fig.�2
image of Fig.�3


200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000

A
N

N
-D

er
iv

ed
 D

M
M

P 
C

on
ce

nt
ra

ti
on

 (p
pm

)

A
N

N
-D

er
iv

ed
 B

PA
 &

 A
ld

ic
ar

b 
C

on
ce

nt
ra

ti
on

s 
(p

pb
)

Actual Chemical Concentration (ppb)

1 Hidden Layer 2 Hidden Layers 3 Hidden Layers 4 Hidden Layers 5 Hidden Layers

The ANN-derived concentra�on 
matched the actual concentra�ons 
for ANNs with 1-5 hidden layers. BPA & Aldicarb

DMMP

Fig. 4. ANN results for chemical quantification tests.

531S.T. King et al. / Science of the Total Environment 497–498 (2014) 527–533
that were distinguishable. Fig. 2 also shows the effect of the intermedi-
ate acetate feedings. Acetate boosted the current PH to 8.30E−2 mA or
more, and because electrical current is caused by ARB, these data show
that ARB colonies remained responsive throughout the experiment and
in spite of being affected by organics that are not readily biodegradable.
This result attests to the robustness of these ARB populations.

All recovered metrics in each category (PH, PA, SR, 10SR, AR, and
FrM) were plotted against themeasured concentrations of each respec-
tive chemical (e.g. Fig. 3). Overall, most regressions between metrics
and concentrations resulted in non-linear correlations with low coeffi-
cients of determination (R2) ranging from 0.02 to 0.90 (see Appendix C,
Table C2). This shows that most of the metrics were not well-correlated
to the chemical concentration present in the feed.

These data sets were used in the development of the ANN (see
Appendix C, Tables C3–C4). The ANN-derived chemical concentrations
were in agreement with the actual concentrations for each chemical
tested (Fig. 4). The ANNs with up to five hidden layers generated
model output that matched the actual chemical concentration. This re-
sult is a powerful illustration of the capabilities of ANNs. The trained
model converted a group ofmetrics intomeaningfulwater quality infor-
mation; even though the electrical signals were temporally dynamic
and each of the individual metrics did not directly correlate to chemical
concentration. This result is a key reason that ANNs are useful for detect-
ing recalcitrant chemicals. Furthermore, each of the inputmatrices ([PH,
PA, AR, SR], [PH, PA, AR, 10SR], and [PH, PA, AR, FrM]) produced identical
results, which shows the flexibility of ANNs, as well as the usefulness of
Differences in data ranges are not enough 
to allow for the distinction of chemical types. 
Example: A value of 0.007 mA/hr does not   
reveal the identity of the chemical type.  
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Fig. 5. The effect of chemical type on AR (mA/h) in MFC #5.
the 10SR and FrM as quantitative metrics. Collectively, these results
show that recalcitrant chemicals can be quantified using MFCs and
ANNs.

3.1.2. Identification
The effect of the chemical types on the values of response metrics

was evaluated to determine whether or not the raw data was suitable
for the identification of chemicals. Fig. 5 presents an example for MFC
#5 showing outlier box plots to help describe AR data ranges for all
three chemicals that were tested. The box plot graphically presents
the range of measured values. The central box line is the median value
and the whisker lines extend up to 3 standard deviations away from
the median. Outlaying data points lay outside of the range of the
whisker lines. Fig. 5 shows that the range of AR values associated with
aldicarb overlaps with the data ranges of DMMP and BPA. For example,
an AR value of 0.007 mA/h is not unique to a particular chemical. The
range of AR values for each of the three chemicals is not unique,
which shows that AR values cannot be used to identify the chemical
present in the MFC. We repeated this analysis for each metric for MFC
#5 and MFC #10 and we found that no single metric took on unique
values in the presence of the three chemicals (see Appendix C,
Table C1 for the ranges of metric values retrieved for each chemical).
No individual metric can be used to infer the identity of the chemical
present in the MFC. However, a revised ANN was created where the
specific chemical was the target of ANN prediction in the output layer
instead of chemical concentration. The ANN-derived chemical identities
matched the actual identities for 1–5 hidden layers and for every com-
bination of metric input tested for both MFC #5 and MFC #10 (see Ap-
pendix C, Fig. C6). This time the data set encompassed all metrics for
the three chemicals and over multiple concentration ranges. The fact
that the ANN was able to help identify chemicals across the entire
data set is particularly noteworthy in light of the diverse and overlap-
ping ranges of metric values. This provides evidence that multi-
parameter ANN modeling can differentiate between chemical types.
Furthermore, since theANNwas able to accurately sort out the chemical
type amongst the broad range of data inputs, it is conceivable that ANN
modeling can first be done to determine the chemical type and then
determine the concentration of the chemical within that type.

3.2. Solvent effect testing

It is important to try to understand how difficult it may be to detect
chemicals when they are in a more complex solvent. Therefore, we
carried out experiments in which the chemicals were dissolved in our
FM which included acetate, mineral salts, and trace metals, and we
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compared the experimental results to others in which we dissolved the
chemicals in water. The operating histories for the two MFCs (#6
and #7) used in this experiment set can be found at Appendix C
(Figs. C2–C3). Qualitatively, the response peaks showed the sharp rise
and gradual fall that were characteristic of the other experiments. We
found that the electrical signals generated in the presence of FM were
generally greater than those that were generated in the absence of
FM. For example, in MFC #7 the DMMP(aq) peaks had PH values
b3.30E−2 mA while DMMP(FM) peaks had PH values of up to 1.45E
−1 mA. BPA(aq) peaks had PH values of b1.90E−2 while BPA(FM)
had PH values up to 1.63E−1 mA. Aldicarb(aq) had PH values of up to
1.43E−1 mA while aldicarb(FM) had PH values of up to 2.59E−1 mA.
Similar results were observed for MFC #6. The charge profiles with FM
as the solvent show similarities in both size and shape (see Appendix C,
Fig. C7). The similarities between the electrical signals suggest that
current production is driven by the presence of the acetate-based FM
and not the presence of the three target chemicals. These results also
illustrate the potential difficulty of detecting industrial chemicals
when they are in the presence of a readily degradable substrate such
as acetate.

The ANN was used to attempt to distinguish the three target
chemicals when they were introduced as a solute in the FM. All metrics
(PH, PA, AR, 10SR, SR, and FrM) were used in the development of the
ANN. The data sets used for ANN development can be found at Appendix C
(Tables C5–C6) and it is important to note that the only data used to
develop this ANNwas retrieved from theMFCs used for solvent effects
testing (i.e. MFC#6 and MFC#7). Fig. 6 shows the results fromMFC #6
when the matrix [PH, PA, AR, FrM] was used as the input. As can be
seen in thefigure, theANN-derived chemical identitymatched the actu-
al chemical identity for all three chemicals when three, four, or five hid-
den layers were used in the ANN. The same result was obtained forMFC
#7 (data not shown). At least three hidden layers were needed to create
the correlations required to distinguish the response peaks in this ex-
periment. These results show that the ANN could be used to identify
chemicals that are present in a more complex water matrix.
3.3. Mixture testing

Experiments were carried out to determinewhethermixtures of the
three chemicals could be distinguished from individual chemicals. The
operating histories for the two MFCs (#8 and #9) used in this experi-
ment set can be found at Appendix C (Figs. C4–C5). Many of the
measured signals were highly dynamic and a several peaks lacked the
well-organized structure that is needed to facilitate the retrieval of re-
sponse metrics. In MFC #8 the aldicarb/BPA signals had PH values that
were between 2.60E−2 and 6.30E−2 mA. Only one aldicarb/DMMP
peak with a PH of 5.20E−2 mA was recovered due to a loss of
communication with the computer. The DMMP/BPA signals were
relatively stable in size and shape and had PH values that fluctuated
around 2.00E−2 mA. Three of the DMMP (only) peaks resembled
the DMMP/BPA peaks but not the aldicarb/DMMP peak. The aldicarb
(only) peaks were highly variable and had larger PH and PA values
than the aldicarb/BPA or aldicarb/DMMP peaks. The BPA (only) peaks
had relatively consistent size and shapewhile being qualitatively differ-
ent from aldicarb/BPA or DMMP/BPA peaks. An ANN was developed
using only the data collected with chemical mixtures, but since not all
peaks were useful for generatingmetric information, only 51% of the re-
sponse peaks for MFC #8 and 47% of the peaks fromMFC #9 were used
in theANN. A total of 25 peakswere evaluated in the data set forMFC#8
and 23 were in the data set for MFC #9. These data sets can be found at
Appendix C (Tables C7–C8). The ANN correctly matched all mixtures
and individual chemicals using all five hidden layers and for each set
of input matrices tested (Appendix C, Fig. C8). Chemicals can be identi-
fied with an ANN even when they are present in a mixture and when
the electrical signals are dynamic in nature. Future works should seek
to collect enough data with chemical mixtures to better understand
the effect of chemical mixtures on ARBs.

4. Conclusions

This study has provided an evaluation of the use of MFC-based
biosensing for the detection of three recalcitrant organic pollutants.
TheMFCs produced electrical signals thatwere parameterizedwith sev-
eral quantitative metrics, and these metrics could not be directly corre-
lated to the identity or concentration of the three target chemicals. ANN
processing of the signal metrics permitted accurate determination of
both the concentration and identity of the industrial chemicals. ANNs
were also useful in identifying chemicals that were dissolved in an
acetate-based FM and for samples in which the target chemicals were
mixed together. The ANN modeling approach was successful with well
established signal metrics (e.g. PH and PA), and it also worked when
trained with new signal metrics (i.e. 10SR and FrM) that had not been
used previously. This study proves that MFC-based biosensing, when
used in conjunction with ANNs, can successfully be applied to the
detection and quantification of organic pollutants that are not readily
degradable in MFCs.
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