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Executive Summary 
The practice of implementing test run randomization techniques in the control of tests and experiments 

is often overlooked or downplayed significantly as a matter of course during test planning and design. 

Programs that do not pay attention to this key principle of design of experiments (DOE) (the key 

principles being 1) randomization, 2) replication, and 3) local control or blocking) run unknown risks 

associated with not adequately understanding the importance of assumptions within statistical tests and 

methods. This best practice addresses in detail why we randomize and the STAT COE approach to 

mitigating the randomization requirement when it is not feasible within a test or experiment. As a 

reference, you can find the more general STAT considerations enumerated within the document, “Guide 

to Developing an Effective STAT Test Strategy”, found on the STAT COE best practices webpage 

(https://www.afit.edu/STAT/statdocs.cfm?page=1126), which outlines the general STAT Process.  

The STAT COE recommends this best practice for every test planner and test manager. The material here 

reviews the principle of randomization, advocates the “why” of randomizing test runs, and considers the 

constraints to randomization that may lead a test planner/manager to seek a mitigating alternative to 

complete randomization that does not sacrifice rigor in the results.  

This paper also provides critical rationale to justify test plan changes to run randomization for 

communication to more senior test leaders within your organization when that is necessary, especially 

when your leadership is expecting randomization, but the test planning process indicates constraints 

restricting full implementation of the principle. 

Keywords: constraints, DOE, generalizability, randomization, rigor, statistics, split plot 

Introduction 
Randomization is the practice of using chance methods (such as flipping a coin) to assign treatments to 

experimental units in a manner that protects against unintended influences on the assignments (Stat 

Trek). For our purposes, a treatment is a one specific combination of conditions (several factors set at 

specific levels) controlled by the test team. These treatments are applied to a set of experimental units 

– a generic term which can refer to samples, test runs, individuals, etc. Randomization forms one of the 

core principles of DOE [Burke et al. (2019)]. It is a necessary step when planning a test to ensure valid 

statistical analysis is possible. Randomization safeguards experimenters against unforeseen and/or 

uncontrollable variables which might otherwise mask relationships between the factors and the 

response. While randomization may appear counterintuitive, difficult, and expensive, the costs of not 

randomizing are far greater. With proper planning, these perceived problems can be mitigated 

effectively without sacrificing rigor.  

https://www.afit.edu/STAT/statdocs.cfm?page=1126
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Why Randomize? 
Randomization is standard practice in DOE and in the Scientific Test and Analysis Techniques (STAT) 

process because it ensures that the statistical assumptions required for generalizable results are met. 

This safeguards against potential setbacks and produces designs which hold up under scrutiny.   

Statistical Assumptions and Generalizability 
A critical assumption of most statistical tests is that the experimental units being analyzed are a 

representative subset of the population from which they were drawn. When this assumption holds, 

statistical test results can be generalized to the population. If the assumption is violated (i.e., not 

actually true), the conclusions from the statistical test may not be true. Bias occurs when the selection 

process produces a non-representative subset. A randomized assignment strategy counters bias by 

assuming that (on average) individual differences in experimental units are balanced out. Alternatively, a 

methodical approach counters bias by explicitly representing all relevant aspects of the population 

proportionally. This generally requires a thorough understanding of the population under test and large 

sample sizes to represent all (relevant) features of the population. Random sampling is not the only way 

to prevent bias, but it is very often the simplest and most efficient. Thus, randomization is an integral 

step in DOE because it ensures that the experimental units are representative of the entire population.  

Another critical assumption of many statistical tests is that experimental observations are independent 

of each other; in other words, the response of one observation does not influence the responses of 

others. When the independence assumption does not hold, parameter estimates, specifically the 

variance, become inaccurate. Consequently, every common statistical test becomes suspect, including t-

tests, analysis of variance, and linear regression (NIST). In an experiment, the simplest way to meet the 

independence assumption is to run the experiment such that the treatments are assigned in a random 

order and to “reset” all factor levels between runs (e.g., set the switch to the “off” position between 

runs, even if the test design requires it to be set to “on” for two consecutive runs). This complete 

randomization minimizes the influence any single test run can have on the outcomes of future test runs. 

Example 

Consider a shipment consisting of 20 boxes with 100 items per box. A quality control analysis is to be 

performed on 40 items to determine whether or not to accept or reject the shipment. A convenience 

sample is just that: it involves sampling the most accessible items under the assumption that all items 

are effectively identical (at least with respect to the metrics of interest). In this case, this could produce 

40 items from the top of one easy-to-reach box. 

There is no way to be certain, however, that all the items are the same based on the convenience 

sample. Even if we ignore the possibility of an unethical supplier filling less-accessible positions with 

substandard items, small variations will likely exist across items due to minute changes in machine 

calibration, weather, material composition, and many other components of the production line process. 

Since these changes build over time, the convenience sample is not representative of the entire 

shipment; the items in the sample are more likely to be similar to one another, and less likely to be 
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similar to other items elsewhere in the shipment, than if a random sampling strategy was used. This is 

evidence of a lack of independence. 

Safeguarding Against “Unknown Unknowns” 
In most situations, even the most carefully constructed and monitored testing environment is subject to 

random fluctuations. These fluctuations – called noise – can heavily confound an experiment. Another 

common hazard is lurking variables, which are factors that are unaccounted for (and therefore 

uncontrolled) but have an impact on responses. Lurking variables are often correlated with time trends 

(for example, a new process can appear to become more efficient over time as the operator grows 

accustomed to it). If the runs of a designed experiment are executed in a systematic order as opposed to 

a random order, the effect of a factor of interest could be masked by potential noise and lurking 

variables. As if that weren’t frustrating enough, noise and lurking variables are often difficult to track or 

even notice. Even when we are aware that we are missing information, it is impossible to always know 

the extent of the information gap; this is the idea of “unknown unknowns.”  

Figures 1a, 1b, and 1c below provide an illustration of a lurking variable trend. Suppose we have an 

experiment with a factor set at two levels, +1 and -1 (high and low). The test team does not know what 

effect this factor has on the response – determining this effect is the purpose of the experiment, after 

all. Figure 1a shows the true effect of the factor. 

 

Figure 1a. True effect of example factor 

The response increases when the factor is set to +1 and decreases when the factor is set to -1. 

Unbeknownst to the test team, there is another factor unaccounted for that causes the response to 

increase over time (e.g., an increase in temperature over time or an operator’s efficiency increasing due 

to repeating the test procedure), represented by the dotted black line in Figures 1b and 1c. Suppose we 

run the experiment in a systematic order, with the factor held at the high level for the first half of the 

experiment and held at the low level for the second half. 
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Figure 1b. Non-randomized example experiment (+1 settings followed by -1) 

From these results, we see that the response is higher on average when the factor is set to -1. The 

obvious but erroneous conclusion here is that as the factor level increases, the response decreases. Due 

to the lurking variable’s influence, we reach a wrong and possibly dangerous conclusion. 

By contrast, suppose the same experiment is run in a randomized order: 

 

Figure 1c. Randomized example experiment 

This time, the effect of the lurking variable is averaged out across the test runs, allowing us to observe 

the true effect of the factor. The response increases over time regardless of the factor’s levels, but the 

runs with the factor set at -1 yield a lower average response than the runs at +1. By randomizing this 

experiment, we can correctly conclude that the response increases as the factor increases.  

The best defense against the potential effects of any variable we cannot control in the test (or did not 

think to control) is to randomize the order of the test runs. Doing so will spread any unknown effects of 
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those uncontrolled variables evenly across the test points. Randomizing allows us to still draw the 

correct conclusions regarding the system; we are able to determine the factors of interest that have an 

effect on the response.  

When Complete Randomization is Infeasible 
If complete randomization is easy and inexpensive, then experimenters should always randomize the 

runs in the test. However, it is not always possible or practical to randomize all test runs. Below are 

some common constraints to randomization and methods to mitigate them without sacrificing rigor.  

Hard-to-Change Factors and Cost/Scheduling Constraints 
A common roadblock to a fully randomized test design is hard-to-change factors. These are factors 

whose levels take a lot of time, effort, money, or resources to change, resulting in conflicts with cost and 

scheduling constraints when the test run order is fully randomized. A split-plot design can account for 

hard-to-change factors by restricting the randomization in the experiment. The process for this takes 

two steps. First, randomize with respect to the hard-to-change factors only. Use replicates – that is, run 

some or all of the hard-to-change factor combinations more than once. Second, for each combination of 

hard-to-change factors, hold that combination fixed and create a set of test runs randomized with 

respect to the remaining factors. This greatly reduces the number of times hard-to-change factor levels 

must be adjusted, potentially allowing an otherwise infeasible experiment to be completed within 

budget. Statistical software should be used to help choose the best combination of hard-to-change and 

easy-to-change factors in the design.  

Consider Figure 2 below, which illustrates this concept. Suppose there are three factors A, B, and C, to 

be tested for a total of eight runs. Suppose that factors B and C are reasonably easy-to-change, but 

factor A is hard-to-change. A traditional, fully randomized factorial experiment (shown on the left) 

would require factor A’s level to be changed randomly (i.e., often), which is undesirable. A split-plot 

design (shown on the right) divides the test runs into two groups: four runs where factor A is held at the 

low level, and then four runs where factor A is held at the high level. Within each half of the total test 

runs, factors B and C are still randomized.  
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Figure 2. Randomized and split-plot designs 

Note that this split-plot design leaves factor A vulnerable to “unknown unknowns.” Any lurking variables 

that are influenced by the passing of time will most likely be confounded with factor A, since all of factor 

A’s low level runs take place before its high level runs. In order to estimate the effect of Factor A, this 

experiment requires another one or two sets of runs (replicates) of Factor A. Note that we still benefit in 

terms of feasibility; even with the added runs, the split-plot design will reduce the number of changes 

Factor A requires overall. 

Split-plot designs come at the cost of lower power – the likelihood of discovering that a significant factor 

has a significant effect on the response – for the hard-to-change factors. Split-plot designs are 

intentionally not fully randomized, so they will always yield less information than their fully randomized 

counterparts. Therefore, a split-plot design should only be considered when complete randomization is 

truly infeasible. Consider whether the following actions can be taken to reduce the time or cost of a fully 

randomized design: 

 Adjust the way hard-to-change factors are controlled or measured in order to make them easy-

to-change. 

 Decide that a hard-to-change factor is not a factor of interest and hold it constant throughout 

the experiment. (This option requires careful consideration – it comes at the cost of losing the 

ability to estimate the effects of the factor.) 

 Implement a sequential testing strategy, including an initial screening. The screening will 

potentially rule out hard-to-change factors as significant so that they may be excluded or held 

constant in future tests. 

If a split-plot design is necessary, a STAT expert can assist in creating one that strikes the proper balance 

between feasibility and rigor. Another example of a split-plot design is provided in the references 

section (Minitab). 
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Uncontrollable Factors 
If a factor’s levels are impossible to control, then it is certainly impossible to fully randomize test runs 

that involve that factor. Simply record this factor’s levels instead of controlling them. Run the 

experiment, randomized with respect to the remaining factors. The recorded factor can still be analyzed 

as a covariate, which will yield information about correlation but not causation; consider consulting with 

an expert to accomplish this (Anderson & Whitcomb, 2010). 

If most or all of the factors of interest are uncontrollable, DOE may not be appropriate or even possible. 

It may be necessary to perform an observational study instead. For guidance on this, see Stone (2018), 

“Test Planning for Observational Studies”.  

Stability of the Test Conditions 
Even in a typical lab setting, variability and drift can be difficult to control with sufficient precision to 

justify ignoring their potential impact on experimental results. Lurking variables, time trends, and other 

unknown sources of variation (so-called “unknown unknowns”) can impact the system under test and 

the testing environment in ways that are unpredictable. Randomization makes it safe to assume that the 

net effect of these potential influencers balances out.  Consequently, even when there is a history of 

stability for a test, randomization is still recommended as standard practice. However, in the rare 

overlap between cases where the system and environment are highly stable and randomization is 

prohibitively expensive or difficult, it is acceptable to perform the experiment without randomization 

(Box, 1990). Evidence of these circumstances should be reported for credibility. 

Change in Test Plan 
There will be times when an experiment that is well-designed on paper is impractical or impossible to 

execute. For example, a factor that was thought to be easy-to-change may prove to be hard-to-change, 

or the number of allowed test runs may be significantly reduced after testing has begun. In such a 

situation, deviating from the original test design may be necessary. If a STAT expert assisted in designing 

the test, seek their input before proceeding with further testing. 

If the experiment was performed differently from the recommended design – the test runs were 

reordered or reduced, for instance – then this difference, along with analysis of the potential negative 

effects of it, must be reported. Explain the motivation for deviating from the test design. Analyze and 

present the experiment as it was actually performed. Consult with a STAT expert for analysis on the 

impact of incomplete randomization on the experiment’s conclusion. If the experiment has been 

weakened as a result of the deviation, acknowledge and take ownership of that fact. There could still be 

some value in analyzing a real experiment, even if it ultimately fails to answer the question it was 

designed to answer. There is no value in analyzing a perfect experiment that never took place.  

For further reading on analysis of an experiment that deviated from the recommended test design, see 

Harman (2018), “Lessons Learned from an Incompletely Randomized Test Design,” a case study which 

describes a test team’s effort to investigate potential causes of wide shot dispersion in vehicle weapon 
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testing. The original design was not executed in the intended random test order; the case study explores 

the resulting impact on analysis of the experiment’s findings. 

Impossible Randomization 
If randomization is extremely difficult or impossible, and test conditions are not sufficiently stable to 

justify not randomizing, then a designed experiment cannot be performed at this time. There are now 

three options moving forward: find a way to make randomization feasible, stabilize the test 

environment, or perform an observational study (Box, 1990).  

Figure 3 below summarizes the common recommendations for randomization when there may be 

uncontrollable or hard-to-change factors present. 
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Figure 3. Flowchart of randomization recommendations 
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Justification to Leadership 
Those in DoD leadership positions are likely to expect and advocate for rigorous test methods (Kensler 

et al., 2015). As a result, they should also expect randomized test designs. This section addresses how to 

justify the choice to randomize in the case that leadership does not see the merit in that choice; then, it 

discusses the alternative problem of how to justify the choice not to randomize when leadership expects 

randomization. 

The case for randomization has already been made in this paper. A similar (though much briefer) case 

can be made here: 

 The random order of test runs offers protection from the confounding effects of any lurking 

variables – any effects not accounted for or that are outside of the test team’s control. This is 

especially important because even the most thorough of non-randomized experiments can fall 

victim to “unknown unknowns.” 

 Statistical analysis performed on the data from this experiment depends on the assumption that 

the results of each test run are independent of the results of all other test runs. The best way to 

meet this assumption is to randomize the order in which the tests are run. Independence allows 

us to generalize the results of the experiment and make correct conclusions, and therefore, 

correct decisions. 

 If there are replicates, the random order of test runs will allow analysis to determine the 

amount of noise present in the system, which in turn will provide more information about the 

success of the current test and guide future testing. 

In the case where leadership expects randomization and the test run order has not been randomized, or 

not been completely randomized, some potential justifications for this follow: 

 Some of the factors in this experiment are difficult to change, making complete randomization 

infeasible. Therefore, we will partially randomize by using a split-plot design. 

 Many of the factors in this experiment are difficult to change, making both complete 

randomization and a split-plot design infeasible. We will be implementing a sequential test 

design approach, with some of these factors held constant during the first test to allow the rest 

to be completely or partially randomized. It is likely that most of the factors we are considering 

will be proven insignificant and can therefore be excluded from future testing; we will 

reexamine the ability to randomize after we have ruled those factors out. 

 Some of the factors in this experiment are impossible to control. We will observe these factors, 

randomize with respect to the remaining factors, and analyze the uncontrollable factors as 

covariates after the fact. 

 Many of the factors in this experiment are impossible to control. Therefore, we cannot perform 

an experiment at this time. We will perform an observational study instead. (Note: in 
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observational studies, unlike experiments, factors are not controlled. However, analysis of an 

observational study will not allow us to show causative effects of factors on the responses.)  

 Randomization, even with a split-plot design, is prohibitively expensive or time-consuming. 

However, we have compelling evidence (such as subject matter expertise and historical data) 

that test conditions are sufficiently stable to minimize the risk of non-randomization. (Note: this 

option is rarely viable and should be used with utmost caution.) 

Whenever randomization is not implemented, the issues of lurking variables, “unknown unknowns,” 

independence between test runs, and potentially weaker statistical analysis must be addressed. 

Consider consulting with a STAT expert for analysis of the consequences of non-randomization in a 

particular experiment. 

Conclusion 
The practice of randomization is crucial to DOE because it facilitates statistical analysis, accounts for the 

bias introduced by “unknown unknowns,” and allows conclusions derived from test data to stand up 

under scrutiny. Test runs should always be completely randomized unless doing so makes the 

experiment too difficult or expensive to perform. If it does, alternative methods, such as split-plot 

designs, offer a compromise between rigor and feasibility. Without some degree of randomization, and 

without a strong reason to believe that the test environment is stable, a valid experiment cannot be 

performed. 
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