
STAT COE-Report-01-2017

STAT Center of Excellence
2950 Hobson Way – Wright-Patterson AFB, OH 45433

Automated Software Testing
Implementation Guide

Authored by: Jim Simpson, PhD

Jim Wisnowski, PhD

April 2017

Revised 4 October 2018

The goal of the STAT COE is to assist in developing rigorous, defensible test

strategies to more effectively quantify and characterize system performance

and provide information that reduces risk. This and other COE products are

available at www.afit.edu/STAT.

This project is a result of sponsor funding from Office of the Chief of Naval Operations,

Innovation Technology Requirements, and Test and Evaluation (OPNAV-N94).

http://www.afit.edu/STAT

STAT COE-Report-01-2017

Table of Contents

Executive Summary ... 3

Use of the Guide ... 4

Introduction .. 5

Phase 0: Pre-Plan ... 6

Conduct Research on Test Program and Automated Software Test .. 7

Understand Your Environment ... 8

Assess Manpower and Skillset Requirements .. 8

Determine Potential Benefits from Automation .. 9

Quantify Costs of the Automation Effort .. 10

Decide Based on Expected Return on Investment.. 10

Phase 1: Plan .. 11

Identify Automation Requirements .. 12

Develop DEF-based Requirements Prioritization .. 13

Identify and Compare Tools .. 14

Determine Automation Needs .. 15

Outline Test Scripts ... 16

Publish Automated Software Test Plan .. 17

Phase 2: Design for Automation .. 17

Determine What to Automate .. 17

Select Tools ... 18

Build Automation Capability ... 19

Determine Automated Test Platform and Framework ... 19

Generate Scenarios and Test Cases .. 20

Determine Test Case Coverage ... 20

Decide Test Timing .. 21

Establish Data Acquisition and Processing Systems ... 21

Determine Approach to Test Oracle ... 21

Create Configuration Control Construct ... 23

Conduct Design Review... 23

Phase 3: Execute .. 24

STAT COE-Report-01-2017

Capture Operator’s Application of the System ... 24

Create Manual Tests ... 24

Decide Automated Test Environments ... 24

Integrate Tools within the Automated Test Framework .. 25

Develop and Refine Automation Scripts ... 25

Verify Automation Pilot Results .. 25

Execute the Automation ... 26

Execute Contingencies .. 26

Phase 4: Analyze .. 26

Establish Data Output Format .. 26

Analyze SUT Anomalies ... 27

Summarize Requirements Tested and Identify Possible Voids ... 27

Check Repeatability and Reproducibility .. 28

Compute and Update Automation Metrics .. 28

Compute ROIs and Consider Future AST Program .. 28

Phase 5: Maintain .. 29

Manage Automated Software Suite Configuration .. 29

Update Automation Code ... 29

Manage Scripts .. 30

Track Program Software Defects .. 30

Assess Defect Discovery Trends .. 30

References .. 31

Appendix A: Acronym List .. 33

Revision 1, 4 Oct 2018: Formatting and minor typographical/grammatical edits.

STAT COE-Report-01-2017

Page 3

Executive Summary
This guide is intended to serve those in the Department of Defense (DoD) interested in applying

automation to software testing. It applies a systems engineering process based on the scientific

method for the steps to conduct and to achieve an automation capability along with the important

need to perform a return on investment (ROI) analysis to make the business case for automation.

Who is the intended reader? Some organizations are considering automation for the first time. For that

audience, we recommend executing all phases proposed in the implementation guide. Outside

assistance from groups with automation experience is a must. Seek their guidance and benefit from

their experiences. In addition, there is a wealth of guidance readily available in texts and online. Some

software acquisition programs have had some exposure to, or experience in automation and are

interested in improving one or more aspects of their automation process. Common objectives are to

select additional system functions or capabilities to automate, to secure more automators, or to

change or expand the tools used. For those groups, perhaps only a portion of the guide is applicable.

The guide is organized around the phases of implementation listed below, which are intended

to encompass the life cycle of automated software testing within your test program.

 Pre-plan – research, invest time, and gather information for making an informed decision on

automation. Perform a cost benefit analysis and compute an ROI, and be sure to include any

long-term benefits, then decide whether or not to automate. Specific steps include research into

the program test plan, automation capabilities and opportunities, knowing manpower skillset

and resource needs, and quantifying costs and benefits from automation.

 Plan – develop an automated software test plan by identifying and prioritizing test requirements,

identifying and assessing appropriate automation tools with quantifiable and discernable

metrics, identifying barriers to automation implementation, drafting the test automation

framework, and outlining the test script needs.

 Design – take the automation plan another level deeper in detail and make decisions for how

best to execute automation. In this phase, automation tools are selected and made available,

test scenarios for automation are generated, test cases are determined, the output analysis

strategy is designed, and configuration control is established, all culminating in a design review.

 Execute – the activities and decisions that enable a test, otherwise to be conducted manually, to

be automated. It often starts by interviewing a system operator or capturing the manual tester’s

steps, then decide the best automated test environment, integrate the tools within the designed

test framework, develop and refine the automation scripts, and iteratively test out the execution

while refining the process.

 Analyze – the focus is on the output of each automated test, typically involving recording data

files or log files. The purpose is to combine, manipulate, and analyze the output data to learn

output errors and faults associated with the system under test (SUT) to include integration

issues. Individual steps include setting the data format, assessing the output data, ensuring

STAT COE-Report-01-2017

Page 4

anomalies are real and characterizing anomalies, revising automation metrics, and ROI.

 Maintain – this final phase is often the most time consuming and painful aspect of automation.

Once test scripts have been written, executed, and refined for optimal use, something (SUT, the

test environment including monitors or operating system versions and IT patches, automation

tool version, etc.) changes. The scripts now fail to execute properly unless revised, which is one

of the tasks in the maintenance phase.

Although the phases can be visualized and enacted in a chronological or linear fashion, we realize and

stress that there is significant connectivity between them such that moving in a less structured or

iterative direction can be advisable. The suggested approach also involves maturing several important

automation tasks across multiple phases. For example, automation tool selection is often considered a

primary and critical decision. This guide suggests tool selection and tool acquisition be a part of each of

the plan, design, and execute phases, where increased knowledge and topic maturity is obtained in

subsequent phases. Iteration and looping of the phases is a key to success.

If time is restricted and an automation decision must be made quickly, along with short-turn preparation

for automation, be sure to at least consider the following:

 Research automation opportunities and learn which automation tools are best. Know the costs.

 Obtain leadership support by presenting the ROI and quickly identify the barriers to success.

 Learn which parts of your testing are best for automation, design the automation framework,

and determine the suite of tools needed for your automation program.

 Find, hire, or grow the automation expertise. Growing can be easier than you think.

 Start with simple automation tasks and increase complexity as automation capability matures.

 Think carefully about how best to cover the input test space and how to get the most of the

output from automated tests.

 Decide the automation frequency based on the software development cycle and testing needs.

 Understand that maintenance can be most costly and require the most resources.

Use of the Guide
A useful feature of the Implementation Guide is the frequent placement of summaries, or Bottom Lines,

throughout to highlight various activities and concisely capture the essence of a step within a phase.

One can use the find function within the document to quickly locate all the bottom lines, which can

serve as a brief synopsis of the vital tasks to undertake when planning for or conducting software test

automation.

Going forward, the intent is to distribute this guide widely and solicit feedback so that the guide can be

continually improved. New revisions will be made available, and will eventually be posted on an

automated software testing (AST) knowledge center website. It is also hoped that this guide and others

like it (e.g. AST Practices and Pitfalls) may be of service to the AST community. Ultimately, we desire to

see improved communication and better collaboration among AST professionals and to connect like-

STAT COE-Report-01-2017

Page 5

minded people, projects, and interests.

The material herein comes not only from published material including peer-review journal articles,

conference material, and textbooks, but even more so from direct conversation with those of you in the

DoD taking advantage of automation for testing software intensive systems. The Scientific Test and

Analysis Techniques Center of Excellence (STAT COE) is available to assist you as needed and can put you

in touch with groups or experts willing to assist as you move towards automated software testing.

Introduction
Automated Software Testing (AST) has had significant impact across the Department of Defense (DoD)

and industry. The DoD has not taken full advantage of the efficiencies and improved performance

possible using automated approaches across the software development lifecycle. The failure to take full

advantage of AST methods is connected to the DoD’s lack of understanding of the AST process. The

purpose of this Implementation Guide is to provide management and practitioners a handbook that

outlines a reusable framework to employ AST methods across a variety of DoD systems.

This effort is part of the Office of the Secretary of Defense (OSD) Deputy Assistant Secretary of Defense,

Developmental Test and Evaluation (DASD(DT&E)) STAT COE initiative to better educate programs on

the benefits of automated test. The purpose of this manual is to describe the general flow of an AST

program from end-to-end and provide insights to activities that will lead to a successful automation

effort. The guide describes detailed tasks within the six primary AST phases: pre-plan, plan, design,

execute, analyze, and maintain. These phases allow programs to comply with the DoDI 5000.02

(Enclosure 4, paragraph 5.a.(12)) requirements for a test automation strategy. These phases are not

necessarily sequential as Figure 1 shows. The activities for successful AST require an iterative approach.

STAT COE-Report-01-2017

Page 6

Figure 1. Major phases and tasks for AST programs

The intended audience is leadership (both program and test), system engineers, software engineers,

software developers, software testers, and test automators. The tasks are described at a general level

and technical details are explained from the vantage point of someone with little knowledge of software

test and automation. The AST process flow was developed primarily from interviews with experts across

DoD and industry who have had success and failure automating test cases. Additional sources include

previous DoD studies, textbooks, technical journals, websites, blogs, and conference briefings. Though

every program has unique experiences in the automation journey, there are many common elements

that have formed the basis for this recommended methodology for DoD systems.

Phase 0: Pre-Plan
Automation can offer huge improvements in test efficiency and effectiveness but may require

substantial investment. Not all programs and requirements should be automated. Before launching into

an automated software test program, take the time to assess its value relative to the costs not only in

the short term, but especially in the long term. This ROI or business case analysis does not require highly

accurate and precise estimates, but does require a sound systems engineering and decision analysis

approach. It is essential to have either an operations analyst with these skills and experience or to seek

outside assistance or counsel. A rough order of magnitude (ROM) ROI estimate is needed in this pre-

planning phase in order to make a ‘Go/No-Go’ decision to pursue automation.

STAT COE-Report-01-2017

Page 7

The Pre-Planning phase will require some time; studying the facets of automation and learning about

automation efforts performed on similar or related systems to better understand how the automated

testing landscape applies to the specific system requirements. It will go considerably smoother if you

have personnel familiar with not only software testing but also automated software testing. If you do

not have these resources, fortunately there are organizations across the DoD enterprise that are willing

to help – often at no cost. This investment in understanding AST and how it pertains to your system will

be beneficial for the project team, particularly if the decision is to automate, but even if automation is

not the recommended direction.

Conduct Research on Test Program and Automated Software Test
The first step to determining if an automated approach makes sense is to take the goals, objectives, and

requirements for the system under test and look for logical opportunities to apply automation. If you

are in early unit testing, say developing software for components of a complex system, tests that would

need to be executed only once may not make sense to automate. Conversely, if the system undergoing

software development is further along, say undergoing integration testing with new capabilities added

repetitively, automation may be tremendously helpful, especially for regression testing to ensure core

functionality has not been impacted with the new updates. Many systems will not have access to the

software code so only black-box testing will be possible. Whether capable of white, gray, or black-box

testing, not all software requirements are testable and of those that can be tested, not all should be

automated. Realize that the program documentation (e.g. Capabilities Development Document or

System Requirements Document) of system and design requirements/specifications are key inputs, but

many other requirements exist and need to be tested based on the expected operational use and

operational environment.

You should have team members with some familiarity with AST or at least have reasonable access to

individuals with these skills. Some useful resources for a background in AST include the Scientific Test

and Analysis Techniques Center of Excellence (https://www.afit.edu/stat/), local organizations with AST

expertise such as the SPAWAR Rapid Integration and Test Environment (RITE), commercial vendors (e.g.,

http://www.idtus.com/; https://smartbear.com/; http://www8.hp.com/us/en/software-

solutions/unified-functional-automated-testing/index.html), industry experts, and textbooks such as

Implementing Automated Software Testing (Dustin et al.), Experiences of Test Automation (Graham and

Fewster), Introduction to Software Testing (Ammann & Offutt), Foundations of Software Testing

(Mathur), and Software Testing (Hambling). Know there is a difference between automation and testing;

automation supports testing. The goal is to understand AST at a high level, determine what types of

testing can be successfully automated, and generally recognize the value of applying automation.

An important aspect of your research is investigating what automation efforts have occurred (or

purposefully not occurred) on relevant systems, whether applied to previous versions of the system, or

subsystems, or to similar systems. Here it is essential to investigate broadly and aggressively across

organizations and across services. It is not uncommon for software development or acquisition teams

(especially in larger programs and in the joint environment) to not have visibility into automation efforts

https://www.afit.edu/stat/
http://www.idtus.com/
https://smartbear.com/
http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing/index.html
http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing/index.html

STAT COE-Report-01-2017

Page 8

in closely related programs. Where possible, try to leverage the previous and current automation work

(tools and scripts) to quickly gain as much understanding as possible in order to inform the business

decision to automate.

The system software development contractor may be conducting AST internally either as a standard

practice or contractual requirement. Try to get visibility into what they have done or are doing and

whether you can obtain access to their automation work either through deliverables (i.e., Contract Data

Requirement Lists or CDRLs) or by a site visit involving demonstrations and documentation.

Bottom line: Conduct research into automation opportunities for your program. Find the right people

that can perform a technical assessment, learn about ongoing automation for similar programs, and find

out what the contractor is doing with automation.

Understand Your Environment
Automation efforts have a better chance of success when there is not only sufficient capability but also

support across the organization. Automation in testing is not the typical mindset of most DoD

organizations. One theme across all organizations, government or commercial, is the essential role of

leadership championing AST and actively managing the process. Culture may be an important and

possibly insurmountable obstacle. If manual testing is the “way we always do it,” then a combination of

leadership, policy, and technical skill insertion is needed to move forward. AST is the cornerstone as

programs transition to a test-driven development (TDD) method with Agile and DevOps. Agile and

DevOps also require culture change as software developers embrace change, operators desire stability,

and testers focus on risk reduction.

There should be a general understanding of the AST resources required in the current test environment.

Examples include personnel (testers and automators), software/tools, host computers, network

environment, cloud support, information assurance/cyber protection, software approval processes,

enterprise licensing, and so forth. It is essential to understand the overall schedule and flexibility

because it may not be possible to automate within the timelines.

Bottom line: Pave the way to automation success by securing leadership support, identifying the major

pieces that must be in place in order to automate and then comparing the needed resources to your

program’s current state. Gain a sense for the hurdles to overcome in order to build an automation

capability.

Assess Manpower and Skillset Requirements
There often is a distinct difference in skillsets and experience between software testers and automators.

With today’s tools, testers with little software development experience can effectively learn to

automate some aspects of testing otherwise done manually. However, a robust, streamlined,

maintainable, and reusable automation solution often requires significant investment in software coding

and development to grow fully independent and reusable automation test scripts that take full

advantage of automation capabilities. Rarely will a single automation tool with a friendly graphical user

STAT COE-Report-01-2017

Page 9

interface (GUI) be the sole solution for all the automation needs. A suite of tools, each for a different

purpose (e.g., browser apps, tracking, unit testing, and continuous testing) with different capabilities

integrated into an automation framework, is often the recommended solution. Many tool vendors

market their products as not requiring any software development experience, but they succeed in many

ways at automating only specific types of tests and have limitations on maintainability and reusability.

There will be significant lead time to hire and/or train personnel to achieve initial automation capability.

The time and resources will be a function of automation goals. Management has to decide whether to

grow the current workforce internally or hire out the positions. For hiring new staff, they must identify

where the talent resides, the best source (military, civil service, or contractor) and then quickly attract

the right people, understanding the delays associated with the hiring process. If the decision is to build

an AST capability by training the current workforce, it may be difficult to find the individuals with the

right potential and motivation who can be freed up from their current duties enough to train and be

successful. If this approach is taken, a deliberate training plan that identifies appropriate peers, mentors,

coaches, and training timelines is crucial to success.

The long-term benefit to the software acquisition program could be substantial or perhaps an unwise

investment depending on how much automation is value added, given the constraints of the system

requirements that are testable, the timelines, and expected future efforts. An alternative may be to

contract out the work to an experienced AST group, whether government, contractor, or commercial. A

detailed discussion of specific knowledge, skills, and abilities is provided in Phase 2: Design for

Automation.

Bottom line: Finding or training automators is the single most important investment by any group

interested in successful automation. This aspect of the automation process also tends to take the most

time and can be expensive depending on the route chosen. Consider all your options in obtaining the

right number and experience levels for the project.

Determine Potential Benefits from Automation
The primary goal of automated software testing is to discover defects and opportunities for improved

performance more quickly and thoroughly than otherwise would have been achieved using a manual

approach. Some metrics to consider when comparing fully manual versus some degree of automation

are:

 Increased coverage for lines of code tested

 Increased coverage of expected operational paths and use cases

 Manpower savings over manual testing, especially for repetitive testing (e.g. regression)

 Ability to scale with multiple users and environments; perform high-load and boundary testing

 Ability of test force to focus energies on high priority/high risk areas

 Better output data for analysis and reporting

 Higher defect discovery rate through better coverage and/or freeing manual testing resources

for deeper exploratory testing

STAT COE-Report-01-2017

Page 10

 Greater delivered software quality

 Shorter time to field system

 Continuous testing to include overnight and weekends

 Reusability of automated scripts

Bottom line: Now is the time to start building a spreadsheet for comparing various automation

alternatives. Possible choices are: a) no automation, b) partial or phased automation capability, and c)

complete automation where appropriate. Consider the short term and long term impacts of each

alternative and use quantifiable metrics such as the ones listed above.

Quantify Costs of the Automation Effort
There are both direct and indirect costs associated with an automation project. Representative direct

costs include: software licensing and training; hardware and middleware components for the automated

test framework; cloud and network services; labor for learning tools, developing scripts, integrating

components, executing tests, and analyzing results; and contractor consulting costs.

Indirect costs can be thought of as the hidden or unexpected time required to automate. Examples are

the time taken away from the manual testing function, time to collaborate across many functions, time

to keep management informed, time to achieve competence in using the suite of tools, and time to

maintain the automated solution. Often overlooked are the maintenance costs required due to

frequently changing system configuration and images.

Costs should also be viewed through the short-term versus long-term lens. The direct sunk cost of

licensing, tools, training, etc., should be amortized over the expected duration of the automated

software test program.

Bottom line: Begin to gather direct and indirect costs associated with gaining an automation capability;

both financial and time commitments. Refine estimates as you gather information and learn from

experts, and use this knowledge to inform decisions.

Decide Based on Expected Return on Investment
All requirements should not be automated. If there are some tests that only occur once or are on stable

software builds and environments, then the marginal benefits would not outweigh the costs. Take time

to thoughtfully consider both the quantitative and the qualitative costs and benefits of the automation

effort.

It is helpful to estimate the ratio of the expected additional time to develop an automated routine to the

time it takes to run a manual test. As mentioned in the benefits and costs sections, many of the actual

benefits and costs are not considered up front. It would be prudent to make this evaluation across a

range of expected costs and benefits (i.e., optimistic, realistic, pessimistic) to see the sensitivity of the

results.

Leadership has to use the analyses to balance the assumptions, expectations, and program pressures to

STAT COE-Report-01-2017

Page 11

assess risk. Ultimately, they have to make a ‘Go/No-Go’ decision as early as possible; but not before they

have been provided a solid business case from the staff. Typical leadership roles making these decisions

would be the Integrated Product Team Test Lead, Director of Engineering, Program Manager, and

Software leadership.

If an AST program fails to provide sufficient ROI, carefully consider whether this project could serve as a

stepping stone for a much greater capability the next time. Many costs have already been realized and

lessons learned can make the next AST program much more worthwhile.

Bottom line: Now is the time to make the decision: automate or not. Be sure to convert the metrics from

automation into quantifiable gains (time and money) to the program, and then have your operations

analyst compute the automation return on investment for the short term (1 year) and longer term (2-4

years if appropriate to the program). Use the ROI to make your decision and be sure to document all

analyses along with minutes of decision briefings.

Phase 1: Plan
Upon deciding to pursue an automated software test approach, it is now time to perform more detailed

planning. Fortunately, a fair amount of planning has already occurred to create the business case which

can take the form of: research into automation, automation taking place elsewhere, quantifying

resources needed, and determining possible tool solutions and costing options. A more deliberate

planning approach is needed now in Phase 1, which will leverage the information already learned and,

equally as important, build upon the relationships already established from Phase 0. Leadership still has

the most important role in managing the dynamic environment as automation may be new territory for

the program.

Detailed information is needed on the system requirements that can be automated and how best to

prioritize them using a risk management approach. Planning includes establishing an approach to the

AST framework that consists of the hardware, network, models, tools, and analysis methods. The

Planning Phase also includes running small automated scripts as a proof of concept and capability. These

could be as simple as logging on to the system under test and selecting something from the main menu

using the selected tools.

Bottom line: In the planning phase, it is time to assess what is now known about the automation road

ahead, and to start building upon and working out a detailed action plan for each of the steps from the

pre-plan phase. Leadership support is emphasized as well as identifying the aspects of the program to

automate and the tools best suited for use.

Plan Phase Deliverable: The output of this phase is a test plan that outlines the expected requirements

tested with AST, the overall strategy with representative tasks, the resources required, the responsible

point of contact (POC), and plan of action and milestones (POA&M).

STAT COE-Report-01-2017

Page 12

Identify Automation Requirements
Requirements are statements of expected functionality. Software requirements have already been

addressed in Pre-planning at a high level. We build on that foundation in the Plan phase to focus on the

most important requirements offering the best opportunity for successful automation. The goal is to

think beyond traditional requirements and the traditional depth/breadth of testing as automation can

enable more rigorous and complete testing of the system under test.

Careful test planning always starts by forming concise yet comprehensive objectives, and for most

phases of developmental testing, objectives come from the requirements. Software testing

requirements will have to be distilled from various sources. Rarely will there be a comprehensive and

well-thought out list of requirements with testable criteria. These must evolve through an iterative and

collaborative approach where stakeholders can agree to a common set of requirements as well as a

prioritization scheme.

Requirements should be traceable to actual system capability and functions. Some source documents

include Capabilities Development Documents, Capabilities Production Documents, Concept of

Operations, Operational Mode Summary/Mission Profiles, system specifications, system software

specification, and component specifications. Other documents could be System Engineering Plans, Test

and Evaluation Master Plans (TEMPs), test plans/detailed test procedures of similar systems, and

contractor design documents and test plans. The goal is to use the defined requirements and mission

threads to develop test designs. A meticulous process decomposition using flow charts and activity

diagrams will identify many sub-requirements that trace to a system function. Depending on the phase

of test (e.g. unit, integration, functional, performance in Developmental Testing (DT), integrated DT/OT,

Operational Testing (OT)), the testing scope in level of detail and number of requirements will vary. It is

helpful to have a requirements management (RM) system in place enabled by a tool such as Atlassian

JIRA to help plan and track automation requirements. Other common tools are IBM Rational DOORS,

qTest, and XQual.

There are other requirements that need to be addressed in the Plan phase. Non-functional

requirements such as the expected operating system, information assurance features, hardware

systems, and other environmental factors need to be accounted for. The requirements for the AST

framework should also start taking shape and will be addressed in subsequent sections.

One critical factor in planning and executing automated testing is whether the automation will be used

to generate complete tests, input data and expected results, or input data only. A variety of methods

are available to automate the generation of test oracles (see section on Determine Approach to Test

Oracle). Most of these rely on formal models in some form, or assertions embedded in code which serve

effectively as a partial formal model. Other options include partial correctness approaches such as

metamorphic testing and other "sanity checks." In some cases, fuzz testing will be a useful preliminary

step, and this should be included in planning discussion as well. References include Barr et al (2015),

Bartholomew (2013), Kuhn and Okun (2006).

STAT COE-Report-01-2017

Page 13

Bottom line: The places to start in detailed automation planning are the system requirements and

intended operational capabilities. Collect all the available system requirements documents and develop

a comprehensive test strategy, such that all the opportunities for value-added automation are listed.

Develop DEF-based Requirements Prioritization
MITRE created and DASD (DT&E) has endorsed the Developmental Evaluation Framework (DEF) shown

in Figure 2 to provide an analytically tractable way to manage a test program to best support acquisition

decisions. This methodology has also been used throughout the DoD and is directly applicable to AST

implementation. The DEF supports the requirements decomposition process where the goal is to flow

from a capability to precisely defined and testable requirements. The capabilities are the Developmental

Evaluation Objectives (DEO), which we can translate to the software testing world as functions. These

DEOs are categorized into broad areas such as system performance, cyber-security, interoperability, and

reliability & maintainability. These objectives are broken down even further with technical measures

assigned to each. The AST process would break down these system requirements and test & evaluation

(T&E) measures even further into the functional components and tasks. This extra level of detail should

be added to the existing DEF matrix to ensure requirements traceability. These tasks form the basis for

test cases and scenario generation. The right side of Figure 2 could be adapted by replacing the

‘Decisions’ with ‘specific scenarios of interest’ and the entries would be the applicable test cases.

Figure 2. MITRE Developmental Evaluation Framework

The DEF process documents sources for each requirement and can be used to help prioritize which

STAT COE-Report-01-2017

Page 14

requirements get automated. The hope is that the most important capabilities receive top priority, but

that does not necessarily translate to the correct prioritization of the AST requirements. Additional

consideration needs to be given to the risks of automation. Automation can be more complex

depending on the requirement and the consequences of failure can be higher for testing some

requirements. These value/risk tradeoffs should be evaluated and integrated into an overall

prioritization scheme. Attention and weights should be considered for:

 Contribution to DEOs (which are rank ordered)

 Probability that automating the requirement fails based on complexity or script development

delays

 Consequence of failing to automate the requirement

 Ability of manual methods to effectively test the requirement

There are many ways to compute a priority number, such as a weighted average. The test team should

integrate the prioritized list of requirements in all activities across the AST lifecycle.

Bottom line: Take the previous step’s requirements and build a DEF, focusing on automation

opportunities. The DEF process decomposition converts the written requirements to testable

requirements, allowing the automation team to see which types of tests would be recurring and better

suited for automation.

Once the team understands and prioritizes the AST requirements, they may consider involving the

system contractor. The team can review the Request for Proposal if possible and include language

directing an AST program. Deliverables can include results, reusable scripts, assessment of AST utility,

and other information. Additionally, Operational Test Agencies should look at the possible benefits of

automation during preparation of the TEMP for Milestone B; they may be part of the development and

execution teams.

Identify and Compare Tools
The number and types of tools available for AST can be overwhelming. Each phase of an automated test

program potentially has a requirement for a different tool or set of tools that may need to be integrated

with a disparate collection of tools. The goal in the Planning Phase is to understand the general

capabilities of the relevant tools and down-select to a few promising candidates that will fit your

workforce, timing, and desired level of automation rigor. A thorough assessment of needs will result in a

multiple tool solution.

Begin with the tools your team uses or feels comfortable with and can efficiently use for the upcoming

AST. These tools will have higher priority due to the associated shorter learning curve and better overall

automation probability of success. Write up a brief gap analysis of these tools to find the capability holes

in order to identify alternative tool solutions. Perform a broad search for possible tools such as those

used historically, open source to include tools built specifically for DoD use, freeware, and commercial

packages. Take time to interview experts to find out what they are using and why, what they have tried

STAT COE-Report-01-2017

Page 15

but no longer use, and what they would like to use if their program was unconstrained. There are

multiple repositories of tool evaluations and program usage profiles across the DoD (e.g. SPAWAR AST

Tools Database and Gunter AFB AST Tools Database) which could also help identify promising

contenders.

Some measures to keep in mind as you consider possible tool solutions are:

 Are the types of tests modular and capable of being shared across application domains?

 Does the tool use a common scripting language like VB, JavaScript, Python, etc.?

 Where in the testing or acquisition lifecycle can it automate?

 What operating systems does it support? Is it for web-based systems only?

 What is the ease of use and how big is the learning curve to effectively automate?

 Can the team be reasonably expected to efficiently use the tool?

 Does it have a GUI capture-replay capability only or does it support application programmer

interface (API) calls to the GUI?

 What are the total costs to include licensing, training, maintenance, and support? Are enterprise

licenses available elsewhere that can be used?

 How responsive is the vendor for support questions and troubleshooting? What training or user

community is available free on-line?

 What are the information assurance hurdles? Can it be integrated into and operated on

government computers (e.g. Navy Marine Corps Internet (NMCI)) and if so, how long is the

approval process?

 What are the output products and can they be easily accessed and customized? How well does it

provide insight for debugging (or fault identification) versus just showing that a test has failed?

 Is there a history of Verification, Validation, and Accreditation (VV&A) within the DoD?

Bottom line: A tools assessment is one of the most time-intensive yet rewarding parts of the planning

process. Often, automation projects have selected a tool based on very limited information (e.g. only

one they have heard of) and later regret their decision (pay now or pay later syndrome). Better

automation tools typically require automators to have the time and motivation to learn the tool,

resulting in more stable (less maintenance) and more extensive automation capability. Consider all

reasonable options.

Determine Automation Needs
Automated software testing has many definitions and interpretations. Depending on the program and

staffing, AST can be quite complex, taking the test team years to develop the right automation

framework or it can be quite simple where a few basic steps of a test are automated, like running batch

files overnight. There should be a general understanding of how complex the AST will be coming out of

Phase 0 research. An important overall consideration is the level of abstraction. That is, how does the

system operate during test? It could be live operators, virtual scripts, modeling and simulation, or

running a pre-recorded mission thread. This Live, Virtual, Constructive (LVC) environment will influence

STAT COE-Report-01-2017

Page 16

many other facets of the testing to include choice of venue (virtual network, software integration lab

(SIL), contractor facility, or operational environment).

Based on the automation requirements and potential available tools, determine possible matches to

best execute an AST in both the short and long-term. Possible considerations include:

 Bitmap capture-replay that limits how test inputs may be applied and how system responses are

evaluated versus the de facto standard (currently) of direct programmatic access to GUI APIs

 Need to maintain system integrity and mimic operational performance by hosting the tool apart

from the system under test by not altering its source code (client/slave relationship)

 Planning to ensure convenient reports that show evidence that the test properly executed

 Ability to have data-driven tests with unique data entry flexibility; accounting for the reality of a

reduced installation and test time

 Requirements for shorter tool learning curves

 Minimizing sustainment/maintenance time for software version changes and tool version

changes

 Ability to conduct both positive and negative testing where faults are intentionally inserted

Bottom line: First, understand the testing environment, current resources for tools, and planned

automator capabilities. Form a small team (program management, test lead, software engineer) to

perform tools assessment to determine the best, feasible tool solutions.

Outline Test Scripts
Creating test scripts is a continuous process that begins in the planning phase, takes shape in the design

phase, becomes operational in the execution phase, and is updated often in the maintenance phase. In

planning, the goal is to outline the overall approach to building the test scripts and then create scripts

for a few simple tasks.

A critical task in this phase is to query test script repositories to see if there are any that can be used or

slightly modified to save on automation development time. There is no formal DoD repository of scripts,

but likely testers and automators from earlier or existing AST programs have cataloged and documented

their work. Be sure to reach out to all relevant programs and testers because even if they have scripts to

immediately apply, they will also have helpful recommendations and lessons learned.

For new scripts – start small and build. Take elements of a representative test case and try automating it

with different tools and different ways within the same tool. Experiment with negative testing to see the

output reports and fault detection logic.

Once a rudimentary automation capability exists, outline the expected flow for building the test scripts

of the full project. Understand there will be many iterations of this catalog but at least begin to think

about how to effectively test in an automated environment.

Bottom line: Working on outlining the needs for test scripts and building simple scripts transitions a

STAT COE-Report-01-2017

Page 17

general plan into tangible products, bringing automation to life. Obviously, the benefits here are that

the automators can see the bigger test script landscape and gain valuable experience with various tools

by automating.

Publish Automated Software Test Plan
Documentation is important to ensure everyone (management, test leads, software developers, system

engineers, software engineers, automators, etc.) understands and agrees with the overall AST approach.

Bottom line: The deliverable out of Phase 1 is an Automated Software Test Plan. The test plan is a living

document and should clearly articulate the planned approach. Sections should include but not be

limited to:

 Detailed system description

 Delineated requirements along with the DEF decomposition matrix down to automatable tasks

 Prioritization methodology and ranking

 Planned AST framework

 Candidate tools along with capability evaluations

 Responsible POCs for critical tasks

 Test resources

 Timelines

Phase 2: Design for Automation
The Test Plan provides a strong foundation and preparation for the design phase. The purpose of this

phase is to provide more detail into the automated software test plan and make important decisions

that will shape how the tests will actually be executed. The activities in the design phase do not occur

linearly but are worked on simultaneously and iteratively. As the design matures, assumptions are

revisited and different paths may result. The entire design phase should be accomplished in a highly

collaborative environment as expertise across many functional areas is required to develop a coherent

AST design.

Design Phase Deliverable: The deliverable out of this phase is the content for and execution of a detailed

design review. This review should be a natural extension to the collaboration across the automation

team that is taking place all along, characterized by extensive peer review, walk-throughs, and strategy

sessions. The design review should result in a recommendation to proceed to automated test execution.

Alternatively, the team may need to focus more energy on certain aspects of the design to ensure

successful automation or the collective group may determine the additional time spent understanding

the system and developing the AST has educated them enough to decide to stop the automation.

Determine What to Automate
After completing the requirements definition, the development evaluation framework, tool research,

and consultation with test automation experts, it should be clear which tests are the most promising to

STAT COE-Report-01-2017

Page 18

automate. Decisions regarding what can and should be automated will be influenced by the software

development life cycle (unit test/development, integration, functional, and performance) and test

phases (DT, integrated DT/OT, and OT). Factor in ease of automation, success of automating like

requirements across other programs, the team’s expected capability level, the potential improvement in

test coverage, and how often a test will need to be run manually. Balance these considerations against

the risks associated with upfront fixed automation investment costs, penalties for scheduling delays due

specifically to automation challenges, additional workforce development, and initial time investment

taken away from manual testing.

It is helpful to bin automation opportunities into initial categories of easy, moderate, difficult, and very

difficult, and to sequentially automate in this fashion. This ordering will allow the team to gradually

sharpen their skills while achieving success along the way. Multiple automators will benefit from each

other’s learning, which accelerates automation capabilities.

Bottom line: Now decide where to automate. The entire automation set of tasks should be laid out, then

sequenced based on skills of the automators, complexity of the automations, and automation priorities.

Select Tools
Phase 1 identified a candidate set of tools applicable to the expected AST. As the requirements and test

environment have become more mature, the preferred toolset should become more obvious. Select the

automated test tools appropriate for the requirements. There will be additional research required to

make the best selection for capability and usability. Sources include guidebooks, texts, related studies,

other DoD AST efforts’ tools, vendor sites, and demonstrations. It is likely tools not initially considered

will now enter the mix. There are also the more popular DoD AST functional testing tools that have

widespread support and subject matter experts (SMEs) throughout the department: Innovative Defense

Technology’s (IDT) Automated Test and ReTest (ATRT), Hewlett Packard’s Unified Functional Testing (HP

UFT), SmartBear’s TestComplete, Microsoft’s Team Foundation Server, and open source Selenium.

Other helpful information is understanding how all of the seemingly disparate organizations may have

synergies with the possible existence of enterprise licenses or qualify for reduced acquisition costs

through combining seats. Seek available expertise such as the team running the tools on the Hanscom

MILCLOUD or the automation SMEs at SPAWAR’s RITE group. Once the tools are narrowed down, learn

them. Practice with easy test cases, on-line tutorials, and vendor documentation to become proficient as

quickly as possible.

The suite of tools will not necessarily seamlessly work with one another—there can be substantial

integration issues that may require clever coding solutions, so think about an automation framework. A

skilled software coder or outsourcing this function may be necessary to get the entire suite to function

properly.

Bottom line: Take the tool decision process from the planning phase, and acquire the tools chosen. Be

sure to look for enterprise licenses, or to see about joining other groups for volume discounts. Open

source tools offer advantages as well. Also, ensure the tool can be loaded on government computers

STAT COE-Report-01-2017

Page 19

and the tools can work together.

Build Automation Capability
An AST-enabled test team has software engineers, test engineers, software testers, and automated

software testers. A high-performance team is created either by training and developing current

testers/engineers into automators or by hiring personnel (full or part-time) with those skills. The

decision on how to achieve automation capability is a function primarily of the automation

requirements, resources available (time and funding profile), and the in-place team’s skillset as well as

potential for growth. To grow an in-house automation capability, the team needs time for formal

training, self-teaching, networking, and mentoring. Instant expertise may be available by “borrowing”

neighboring automators, contracting out consultants, or hiring full-time equivalents; whether military,

civilian, or contractors.

Bottom line: Recruit your automators internally or externally. Only a few are needed to be successful,

but they need to be capable of, and committed to automation. The educational or technical background

of the individual is not as important as the passion to learn the ability to automate.

Determine Automated Test Platform and Framework
A test team enabled with the right AST skillsets and tools needs to be resourced to create an adequate

AST framework. A framework can be thought of as the components needed to automate testing the

SUT. An example would be a simulation model that stimulates the SUT allowing automated operations

to achieve the desired function. Considerations include the proper client/slave configuration, selection

of an operating system, networking and potential use of the cloud, accounting for simultaneous user

needs, information assurance and classification needs, and hardware requirements.

The framework also includes the suite of AST tools. The tools can control the entire test process and are

also used for finding software failure and output analyses. A notional example of a simple framework

from Distributed Common Ground Station-Navy Increment 2 (DCGS-N Inc 2) is shown in Figure 3 below.

Figure 3. Notational DCGS-N Inc 2 automated test tool integration framework

STAT COE-Report-01-2017

Page 20

Generate Scenarios and Test Cases
Test cases are derived from the prioritized requirements matrix and should be “linked” to the

requirement to ensure coverage metrics. A test case may incorporate several requirements and multiple

test cases define a scenario. Beware of requirements that are tested in multiple test cases or not at all.

The scenario is a required function or capability of the SUT. The test cases should be simple steps that

are easy to understand and may require prerequisite test cases. Test cases should be easy to update as

requirements change and also should be well documented. Consider designing ‘smoke tests’ to ensure

critical functionality is exercised by grouping several test cases together.

There are many scenario generation tools that should have been vetted in the Tool Selection task. These

can help; but, most of the work will be manual in a collaborative setting with SMEs trying to map the

requirements to reasonable test cases. Carefully consider the new automated testing paradigm, which

may allow for broadening the test scenario coverage. Decide what data feeds are required, the method

of fusion, and approach.

Bottom line: Query the system experts or look to historical testing and develop test case scenarios. This

aspect of the process often consists of an experienced system operator or manual tester sitting down

with the automator and automating a manual test case using record and playback. Iterate on the

automation to improve the automation and make it robust to changes in the software configurations.

Determine Test Case Coverage
Coverage can refer to the percentage of lines of code of the SUT that are exercised in a test program. It

can also measure the proportion of requirements tested in a scenario or across test cases. More often,

coverage relates to the number or percentage of use cases or possible paths that are tested out of all

possible combinations.

Target adequate coverage, and decide on the correct approach for maximizing the coverage of the

software operating conditions. Spend time devising the factors that characterize the SUT’s expected

functionality in order to build the test design. Possible strategies and methods include:

 Risk-based testing that focuses on critical performance areas with high probability of failure

 Statistically-based test matrices from the design of experiments discipline (e.g. fractional

factorials)

 Combinatorial or factor covering arrays that minimize runs required to test a specified order of

interaction referred to as strength

 Distance-based or space-filling designs used with continuous factors to uniformly populate the

design space

After designing test cases, determine the percentage of coverage using the appropriate metrics for the

given methodology. Note that the desired coverage could have a substantial impact on costs and should

be weighed appropriately as part of the overall risk management framework.

There may also be contractual or regulatory requirements for particular coverage criteria to be

STAT COE-Report-01-2017

Page 21

achieved. For example, there are test criteria required by the Federal Aviation Administration (FAA) for

civil aviation. Avionics and other equipment used in DoD systems may also be used for commercial

application, so the software would be required to meet FAA requirements.

A variety of tools are available for measuring structural and lines of code coverage. Many are open

source (e.g. gcov, Code Cover, JavaCodeCoverage, JFeature) while others are commercial (e.g. Clover,

BullseyeCoverage, TestCocoon, eXVantage).

Decide Test Timing
One advantage of AST is that testing can be executed without much human intervention. Tests can be

run during off hours, during the weekend, or in the background while testers work on other projects.

This flexibility would have been first considered during the ‘Go/No Go’ process. Based on this flexibility,

teams must decide on the practical and desired frequency of testing to be performed. Are tests to be

performed after agile sprints (monthly), capability deliveries (quarterly), or overnight during the sprints

as Command Run On (CRON) jobs?

The flexibility of test timing can be affected by the duration of the individual test cases and the allotted

time. The duration of a test is often dictated by the test case complexity and the performance of the

chosen AST framework. The tools vary dramatically in how fast the automated scripts run. GUI-based

tools or scripts tend to run near real time, while some object or code-based scripts can reduce execution

times by more than 90-percent from real time. If a test case can be run at various depths and the tester

has determined the execution times for each depth of test, the tester can control the duration of a test

case by selecting the appropriate depth of test. Thus, the tester must consider the amount of control

over test case execution times and the length of the allotted test time window when scheduling

individual test cases to achieve the chosen objective (maximize coverage, etc.).

Bottom line: Determine the frequency of testing based on the software development cycle and testing

needs.

Establish Data Acquisition and Processing Systems
Determine the needs and best approach for collecting the data output from the automated testing. Set

the system up to capture the data which may be as simple as a spreadsheet. Consider running prototype

tests with negative testing (inducing faults) to identify areas where greater detail is required for log and

output files. Focus efforts first on the ease of identifying where the software error occurred and provide

any relevant information that could be useful in a root cause analysis. Decide how best to reduce,

analyze, visualize and post-process the data to maximize insight into SUT performance.

Determine Approach to Test Oracle
The test oracle is the process of determining whether or not a test has passed or failed. Even with

automated methods of generating input data and running tests, the oracle problem remains. Testing

requires both test data and results that should be expected for each data input. This is generally the

costliest part of the testing effort, since extensive human involvement is needed in conventional

STAT COE-Report-01-2017

Page 22

approaches. However, a variety of methods are available to automate some or all of the test oracle

generation. These vary in initial cost, level of sophistication, and domains of application. Automated

approaches to solving the oracle problem include:

 Fuzz/crash testing is typically done by recording some data input, then randomly permuting data

fields to generate a large number of tests (possibly tens to hundreds of thousands). These are

run to determine if any inputs cause the system to crash or freeze. Fuzz testing is used

extensively by commercial software developers (less for functionality) for early detection of

major faults with numerous tools and references available.

 Embedded assertions is a popular “light-weight formal methods” technique to embed assertions

within code to ensure proper relationships between data, i.e., as preconditions, post-conditions,

or input value checks. Tools such as the Java Modeling Language (JML) can be used to introduce

very complex assertions, effectively embedding a formal specification within the code. The

embedded assertions serve as an executable form of the specification, thus providing an oracle

for the testing phase. Reference: du Bousquet, L., Ledru, Y., Maury, O., Oriat, C. and Lanet, J.L.,

2004, September. “A case study in JML-based software validation.” In Automated Software

Engineering, 2004. Proceedings. 19th International Conference on (pp. 294-297). IEEE.

 Model based test generation is a formal (mathematical) model of the system under test,

typically expressed in temporal logic or as an extended state machine, or in design notations such

as Unified Modeling Language (UML). A simulator or model checker is then used to generate

expected results for each input. If a simulator can be used, expected results can be generated

directly from the simulation, but model checkers are widely available and can also be used to

prove properties such as liveness in parallel processes in addition to generating tests.

Conceptually, a model checker can be viewed as exploring all states of a system model to

determine if a property claimed in a specification statement is true. Reference: Bartholomew, R.,

2013, May. “An industry proof-of- concept demonstration of automated combinatorial test.” In

Automation of Software Test (AST), 2013 8th International Workshop on (pp. 118-124). IEEE.

 Metamorphic testing uses a small set of tests whose expected outcome has been determined

manually. Then system properties are used to generate other tests with different inputs, whose

expected outcomes can be produced from the original test. For example, in testing a sine

function, it must be the case that sin 𝑥𝑥 = sin(𝜋𝜋 − 𝑥𝑥). Thus, the program is tested for a correct

result for sin x, then a new test can be generated using the input sin(𝜋𝜋 − 𝑥𝑥). Reference: Liu, H.,

Kuo, F.C., Towey, D. and Chen, T.Y., 2014. “How effectively does metamorphic testing alleviate

the oracle problem?” IEEE Transactions on Software Engineering, 40(1), pp. 4-22.

 Match testing using two-layer covering arrays suggests that test settings for an input factor may

represent ranges of values (called equivalence classes) for which the output is expected to

remain unchanged. For example, a shipping program may charge the same rate for any package

under one pound, a second rate for packages one pound to 10 pounds, and a third rate for

packages over 10 pounds. Values within each of these ranges are equivalent with respect to the

cost calculation. Any value within an equivalent range may be substituted for any other and the

program output should be unchanged. The test method works by generating two test arrays: a

STAT COE-Report-01-2017

Page 23

primary array and a secondary array. The entries of the primary array represent names of

equivalence classes of input factors. For each test row of the primary array, a second array is

computed. The settings in the second array are the values from equivalence classes

corresponding to the names of equivalence classes in the primary array. If the outputs

corresponding to one row of the primary array differ, then either the equivalence classes were

defined incorrectly or the code is faulty in some way. Reference: Kuhn, D.R., Kacker, R.N., Lei, Y.

and Torres-Jimenez, J., 2015, April. “Equivalence class verification and oracle-free testing using

two-layer covering arrays.” In Software Testing, Verification and Validation Workshops (ICSTW),

2015 IEEE Eighth International Conference on (pp. 1-4). IEEE.

 Classification tree method is a graphical method for analyzing program inputs and their value

partitions, then turning these into test cases. A tree structure is defined with one branch for each

parameter or factor in the program inputs. For each of these, branches are then defined for each

equivalence class of that parameter or factor. Equivalence partitioning is done as in other test

approaches. After the tree has been constructed, weights can be attached for the frequency of

occurrence of factor values in inputs, which are then used in optimizing and prioritizing tests.

Reference: Kruse, P.M., 2016, April. “Test oracles and test script generation in combinatorial

testing.” In Software Testing, Verification and Validation Workshops (ICSTW), 2016 IEEE Ninth

International Conference on (pp. 75-82). IEEE.

 Pseudo-exhaustive testing relies on the fact that not all outputs depend on every possible

combination of input variables. The method depends on exhaustive testing of all combinations of

variable values that truly matter using combinatorial arrays along with the automated generation

of test oracles for model checking. An advantage of this method is that it can be used to produce

a complete test set in the sense that all negative cases as well as all positive cases are verified.

Two arrays are generated, one for positive tests and one for negative. Reference: Kuhn, D.R., Hu,

V., Ferraiolo, D.F., Kacker, R.N. and Lei, Y., 2016, April. Pseudo-exhaustive testing of attribute

based access control rules. In Software Testing, Verification and Validation Workshops (ICSTW),

2016 IEEE Ninth International Conference on (pp. 51-58). IEEE.

Create Configuration Control Construct
Changes to both the SUT and the automation framework are common across DoD applications and need

to be tracked. Configuration control is the process for managing and tracking these changes. There are

numerous tools available to help an AST program with configuration control including JIRA and

Subversion-Source Control which are hosted on the open-source (for DoD) Defense Intelligence

Information Enterprise (DI2E). Independent of the tool selected, the team must enforce a disciplined

process of keeping the database up-to-date regularly as some test cases may not run correctly on a

different version of the SUT. Keep detailed records of changes and assign points of contact to track

specific capability areas.

Conduct Design Review
Design Phase Deliverable: Plan and conduct a review presentation and discussion to demonstrate

readiness for automation execution. Phase 0: Pre-Plan should include a brief summary of the pre-plan

STAT COE-Report-01-2017

Page 24

decision process and evidence for the automation decision. Phase 1: Plan should be covered in detail

and highlight any incompletes, surprises (good or bad), and areas of concern. Phase 2: Design, again,

should be in detail, and showcase that the primary steps have been taken to ensure readiness to

execute automation. Evidence of readiness can include a demonstration of initial capability with smaller

prototype scripts. The team should revisit the ROI of the project again before committing the additional

resources to enter into Phase 3: Execute.

Phase 3: Execute
The word “execute” in software is associated with the program running. For AST, there is a task where

the scripts run to execute the automated test. However, Phase 3 in this methodology refers to the

collection of activities that enable a test to become automated. This phase covers the flow from seeing

how users employ the system, to manually testing that process, writing scripts to automate it, and

finally, running the automated test. There is intentional redundancy within the design phase which sets

up this execution phase.

Capture Operator’s Application of the System
The test team needs to be familiar with how the SUT is actually used operationally. A SME usually

provides the functions most commonly executed, along with the functions that are occasionally

performed. The automator can then build the pixel- or code-based script (GUI versus API) that captures

the primary process flow for the mission threads, together with all related contingency paths.

The team should also focus not only on the most frequently executed paths, but also on the highest risk

ones in terms the SUT’s ability to perform intended functions. The team should also make an

assessment of the automation potential for these mission threads—just because they are critical does

not mean the technical challenge of implementing automated tests is any easier.

Create Manual Tests
First ensure that the manual test processes of the tests expected to be automated are adequately and

sufficiently captured. The test automator will participate with the software test engineers in a series of

manual tests that are detailed in a step-by-step procedure. The automator will make note of promising

constructs to integrate into the automated solution. If possible, other testers should also run the test

manually with the automator to check for consistency along with alternative and innovative solutions.

Decide Automated Test Environments
The test team will have to evaluate test execution options, though some will be dictated by the software

development lifecycle and maturity of the SUT. There may be no choice on where the test is being

conducted: at a software integration lab (SIL); on a cloud server; via the web, Secured Internet Protocol

Router Network (SIPRNet) or Joint Worldwide Intelligence Communication System (JWICS); in a

controlled operationally representative environment/range; or completely operational environment

(e.g. on board a ship or aircraft). There may be multiple ways to stimulate the system in order to see if it

works effectively. These levels of abstraction are live, simulated live (virtual), recorded live, and

STAT COE-Report-01-2017

Page 25

constructive via modelling and simulation.

Questions to ask include:

 How and where will the software be tested?

 Is the emphasis on developmental or operational test?

 Will the true system operators be involved?

 What are the hardware requirements?

 Are simultaneous users or different load conditions of interest?

 Are alternative classification systems involved?

Integrate Tools within the Automated Test Framework
The selected tools from the design phase should already be part of the framework. Test communication

between tools using prototype or simple test scripts. Engage the software developers/coders if there are

compatibility issues or ineffective linking and communication among software tools. For example, make

sure the open source tools work effectively with commercial parent tools.

As the automated solution and environment matures, often additional tools are needed to achieve

desired automation features. This is especially evident as more and more output data is generated and

test teams are faced with challenges of how to use it.

Develop and Refine Automation Scripts
The design phase produced draft automation scripts for most of the test cases. In the execution phase,

the scripts are finalized through an iterative process in a highly collaborative setting possibly hosted on

the cloud. There should be detailed code reviews by peers and continued work with SMEs to adequately

verify and validate the automated software test.

There may be considerable refinement necessary for scripts that were “borrowed” from other users or a

repository. They may have seemed to be plug-and-play, but rarely will these products require no

modification. One common “borrowed” script is for user authentication – a Common Access Card (CAC)

– for example. This ordinarily would require the tester to be present; however, simple scripts using open

source tools (such as AutoIT) can be developed or acquired to automate this activity.

Verify Automation Pilot Results
Output from Phase 2 is an estimate of the difficulty to automate proposed test cases. Simpler test cases

should be automated first to give the AST program the best chance of succeeding. In a collaborative

environment, walk through the results output to the log file. These outputs can be screen shots or

messages indicating success or failure in executing a step.

It is very helpful to perform negative testing of the automation to ensure the automation catches the

input errors. Negative testing will also help the team evaluate whether the output can be effectively

interpreted manually or if it is written to the correct files using proper formatting. There may be

modifications to the messaging architecture required to better understand the output.

STAT COE-Report-01-2017

Page 26

Execute the Automation
This execution task refers to the actual process of running the AST program. The goal is to execute the

AST program without test team intervention either off hours or in the background, not interfering with

other test activities. There still may be a need to monitor the AST as errors may occur in the SUT

stopping the automation early, or there may be errors in the automation framework. It is also not

uncommon for some tools to get “hung up” looking for the correct image in order to proceed to a

subsequent step. Be aware of automation that requires interim manual inputs; here, the testing is not

fully autonomous.

The team should look for opportunities to correct or improve the automation. Identify the faults that

stop the automation process and try to make the framework as robust as possible. Promptly correct

scripts that execute incorrect logic and those scripts that fail to fully execute the intended functions.

Execute Contingencies
The AST program may be solid and execute perfectly, but there are always more conditions that can be

tested than time allows. In the design phase, there should have been a prioritized list of requirements.

Once the core requirements have been covered in test cases, it may be helpful to look into

contingencies from the baseline test case.

Example contingencies are scaling for many more users, applying tests in different environments, and

using different hardware and operating systems. For example, an automated test (GUI-based) ran fine in

the SIL; but, when attempted at another location it failed because the laptop used was older with lower

screen resolution. Another important contingency is when the SUT is running in a degraded state. These

contingencies may necessitate changes to the AST framework and scripts. The benefit is that the

enhancements make the automation more robust and often will reduce the maintenance burden.

Phase 4: Analyze
The analysis phase takes the output from the executed test cases and transforms it into decision quality

information to assess both SUT software performance and the AST framework effectiveness. The team

of testers, software developers, software testers, and automators may require the assistance of an

analyst familiar with scientific test and analysis techniques (STAT) and other applied statistics methods.

Establish Data Output Format
A quality AST program requires a detailed account of everything that went on during the execution. This

serves multiple purposes to include quick fault isolation, improved debugging, comprehensive

understanding of state transitions, and confidence the AST framework is executing properly. The most

important attributes are transparency into the system status/execution steps and traceability back to

requirements.

Representative output products include detailed logs (possibly color coded to indicate faults),

screenshots of system status upon failure, and data written to output files. Critical items to be included

STAT COE-Report-01-2017

Page 27

in an output file include:

 Test case ID

 Requirement ID

 Test data steps and current state

 Expected results

 Actual results

 Pass/Fail

Bottom line: Taking time up front to establish output files will set your automation up for success.

Choice of tools may dictate what type of products are possible.

Analyze SUT Anomalies
The purpose of software testing is defect discovery. Software bugs, faults, errors, and anomalies will

occur – it is important to not only detect the error but also to determine the source of the discrepancy.

With a properly designed AST architecture, the output reports should allow rapid fault isolation. If this is

not the case, then a formal root cause analysis program should be instantiated. Some techniques are to

ask why 5 times (the 5 Whys), cause-and-effect (Ishikawa) diagrams, and the 8-step process from the

auto industry.

Determining whether the anomaly is attributable to the SUT or the AST framework is critical. For

example, an automated test stopped because the image of the user, “Gregg” was not correctly

identified; however, it was correctly entered from the input file (Gregg, 2014). Other concerns are the

overall error rate. False positives occur when the system detects an error that does not exist. Similarly,

we want to minimize the occurrence of false negatives where software defects go unnoticed. On a

related issue, we do not want to react to every low-level issue that does not have an impact on

performance. For all valid defects, software trouble reports should be generated and socialized in a

collaborative environment so all team members have visibility into the issues.

As part of post-processing, use the software defect information gathered to improve similar or identical

future testing (e.g. regression), or to better scope next acquisition phase of testing (e.g. DT to inform IT

Verify Requirements Adequately Tested).

Some useful references for root cause analysis are:

www.au.af.mil/au/awc/awcgate/nasa/rootcauseppt.pdf and https://nsc.nasa.gov/SFCS.

Bottom line: Set your team up for success to easily identify anomalies, balance false positive and false

negative reporting, and produce solid documentation to pass along to subsequent testing.

Summarize Requirements Tested and Identify Possible Voids
The test log should be robust enough to determine what requirements actually were tested. It should

also provide the levels of the input variables that would allow the team to quantify how well the test

region was covered. Review the system requirements and determine gaps or areas still needing to be

http://www.au.af.mil/au/awc/awcgate/nasa/rootcauseppt.pdf
https://nsc.nasa.gov/SFCS

STAT COE-Report-01-2017

Page 28

tested. The team should provide initial data analysis findings and conclusions for reporting on the

requirements achievement. Be sure to include discussions on the coverage of the test space and stress

the value of automation to the overall test effort.

Check Repeatability and Reproducibility
It is common in practice that the same tool and same test do not provide the same results all the time.

This is especially true for GUI testing. The team will need to test the stability of scripts to see if they give

the same output each time. Repeatability refers to the same tester getting consistent results upon

executing the same routine. Reproducibility accounts for variation in equipment. For AST, repeatability

would be getting similar results from the same tool or suite of tools and reproducibility would be

consistent results across multiple tools and solutions. Negative testing triggers failures to determine if

the software responds correctly.

Bottom line: Automation can be frustrating because many solutions are brittle and do not provide the

expected results from the same tests. Search for robust tools and methods that have demonstrated

success on similar systems. Beware of Capture-Replay not working across different platforms and

operating systems.

Compute and Update Automation Metrics
The estimates of automated test benefits required in Phase 0 were helpful to inform a ‘Go/No Go’

decision. Now that automation has occurred, the team needs an accurate, reliable, and realistic measure

of how effective the effort was for the affected test program. This metric will inform the updated ROIs

and the direction of future AST work. Some metrics are:

 Percent requirements tested

 Increased coverage in lines of code tested

 Increased coverage of expected operational paths and use cases

 Time to run the automated test sequence

 Time to develop automation capability; time to execute manually

 Defect discovery rate

 Testing time on off hours

 Reusability of automated scripts

Bottom line: Leadership is always interested in the business case for automation as they look to expand

the program or discontinue. Continually update metrics that capture how well automation is working

relative to the manual tests.

Compute ROIs and Consider Future AST Program
After the initial investment to achieve AST capability, an evaluation needs to be made on its worth. The

team has a variety of options. Some of the more prominent ones to consider are listed below:

STAT COE-Report-01-2017

Page 29

 Go deeper with the current effort

 Scale up with more user load

 Automate new requirements

 Adopt different tools

 Transition from GUI to code-based API tests

 Conduct contingency test cases

 Abandon automation

This decision puts the team back to Phase 0: Pre-Planning, but they are now much more informed. They

should review the research and decision-making accomplished during the pre-planning phase given the

valuable AST journey they completed. Use the metrics to perform cost-benefit analysis of automation

versus manual testing and report the findings with recommendations.

Phase 5: Maintain
The STAT test methodology does not include a Maintain phase. Unfortunately, empirical evidence

suggests that once an automated test is executed and analyzed, the job is not done. A pervasive theme

across all services is how much effort is required, though not necessarily resourced, in the maintenance

phase. Changing SUT configurations, updated tools, new tools, and adding new personnel are just a few

of the dynamics that require an updated AST solution.

Manage Automated Software Suite Configuration
Configuration control is essential. Systems and architectures are not stable for long across the DoD

enterprise. Fortunately, the design phase already has prepared the team by having them design a

configuration control system to track changes over time linked to test cases and requirements. There

are many file management system options and a disciplined approach is needed.

It is rare that a change to the SUT would not require some change to the automation. Think of a GUI-

based AST – it only takes a minor change in the expected output graphic for the automation to report an

error of not finding the image. A key question is “how to best manage updating the test script over

time.” Different SUT configurations will correspond to specific AST framework versions. Another

question is whether a single individual should be responsible for developing and executing the scripts or

whether an automation team collectively updates the scripts. Periodic verification/validation programs

are necessary to ensure compatibility between the SUT and automation solution.

Update Automation Code
As previously mentioned, the automation code needs to be responsive to changing SUT and interfaces.

The team needs to be aware of any changes that would impact execution and should expect they will

not be aware of many of these changes until they are executing a test. Code should also be updated to

account for new tools and updates to existing tools. Code may need to be modified to incorporate

better coverage or improve other metrics.

STAT COE-Report-01-2017

Page 30

The design of the code and scripts should be nimble enough to easily account for frequent changes. This

is not the case in practice, but many automators and tester wish they would have developed the

solutions with a “design for maintainability” mentality to meet changing system output or to better

improve automation metrics.

Manage Scripts
Each program should create their own script repository. They will need to access scripts to update them

and should track the different versions under the configuration control system. The team can share

scripts internally with other developers/automators or externally with other organizations who may be

able to reuse them for efficient automation. The script repository should also include acquired scripts

from research efforts and other organizations. These can be catalogued for ease of adaptability to new

testing needs.

Track Program Software Defects
A disciplined approach to tracking software defects is necessary to fully realize the benefits of software

testing. A closed-loop system such as a Failure Reporting, Analysis, and Corrective Action System

(FRACAS) database provides excellent visibility and accountability. Some fields include conditions such as

failure occurred, time/date, system status, initial corrective action, point of contact to own failure, and

current status. Many of the defects will be subject to Failure Review Board (FRB) actions, and the

FRACAS database is set up to provide required background information and record FRB

recommendations. The team should institute a process as part of the regular battle rhythm to update

and review the FRACAS database.

Assess Defect Discovery Trends
It is helpful to classify the software failures based on mission criticality. This serves two purposes: to

quantify reliability in terms of defects per thousand lines of code and to prioritize failure modes. The

FRACAS database should allow the team to view defects over time and to assess how reliability is

improving or degrading. Data visualization methods can easily stratify based on failure mode, failure

criticality, requirement, test case, version, and so forth to see if there are trends over time. In addition,

there are statistical models that can help quantify system performance.

If the SUT program management has placed value on finding and correcting software failures, then the

defect rate should decrease. There are several software reliability growth models outlined in IEEE 1633,

Recommended Practice on Software Reliability (2016, Annex C Supporting Information on Reliability

Growth Models) that can be used to predict future failure rates based on the current failure rate,

management aggressiveness in finding root causes, remaining test time, and the quality of the

contractor’s software development program as measured by capability maturity model integration

(CMMI) rating.

Bottom line: Plan for future automation success by being aware of ‘level of effort’ required to maintain

your automation capability. Realizing that the true power of automation lies in repeated application of

the same or similar testing – it is imperative that minimal modifications are required to your library of

STAT COE-Report-01-2017

Page 31

functioning scripts. Updates to scripts should be minor for either of the following purposes: a) to

execute the same test later when the SUT or test environment changes, or b) to adapt scripts to perform

similar but different automation purposes. Know that maintenance loads can vary significantly

depending on the automation tools selected.

References
Aldor-Noiman, Sivan, Paul D. Feigin, and Avishai Mandelbaum. "Workload forecasting for a call center:

methodology and a case study." Annals of Applied Statistics, no. 4 (2009): 1403–1447.

Ammann, P. and Offutt, J. (2017). Introduction to Software Testing, 2nd ed., Cambridge, New York, NY.

Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2015). The oracle problem in software

testing: A survey. IEEE transactions on software engineering, 41(5), 507-525.

Bartholomew, R. (2013). An industry proof-of-concept demonstration of automated combinatorial test.

In Automation of Software Test (AST), 2013 8th International Workshop on (pp. 118-124). IEEE.

Binder R., Carney, D. and Novak, W. (2015). Navy Software Test Automation Study: Product and

Technology Background. Software Engineering Institute, Carnegie Mellon University, CMU/SEI-2015-SR-

047.

du Bousquet, L., Ledru, Y., Maury, O., Oriat, C. and Lanet, J.L. (2004). A case study in JML-based software

validation. In Automated Software Engineering, 2004. Proceedings. 19th International Conference on

(pp. 294-297). IEEE.

Dustin, E., Garrett, T., Gauf, B. (2009). Implementing Automated Software Testing: How to Save Time and

Lower Costs, Pearson Education, MA.

Fewster, M. and Graham, D. (1999). Software Test Automation, ACM Press, Edinburgh, UK.

Graham, D. and Fewster, M. (2012). Experience of Software Test Automation: Case Studies of Software

Test Automation, Pearson Education, NJ.

Gregg, Brendan (2014). Systems Performance: Enterprise and the Cloud. Pearson Education, NY.

Kruse, P. (2016). Test oracles and test script generation in combinatorial testing. In Software Testing,

Verification and Validation Workshops (ICSTW), 2016 IEEE Ninth International Conference on (pp. 75-82).

IEEE.

Kuhn, D., Hu, V., Ferraiolo, D., Kacker, R. and Lei, Y. (2016). Pseudo-exhaustive testing of attribute based

access control rules. In Software Testing, Verification and Validation Workshops (ICSTW), 2016 IEEE

Ninth International Conference on (pp. 51-58). IEEE.

STAT COE-Report-01-2017

Page 32

Kuhn, D., Kacker, R., Lei, Y. and Torres-Jimenez, J. (2015). Equivalence class verification and oracle-free

testing using two-layer covering arrays. In Software Testing, Verification and Validation Workshops

(ICSTW), 2015 IEEE Eighth International Conference on (pp. 1-4). IEEE.

Kuhn, D. R., & Okun, V. (2006). Pseudo-exhaustive testing for software. In Software Engineering

Workshop, 2006. SEW'06. 30th Annual IEEE/NASA (pp. 153-158). IEEE.

Liu, H., Kuo, F., Towey, D. and Chen, T. (2014). How effectively does metamorphic testing alleviate the

oracle problem? IEEE Transactions on Software Engineering, 40(1), pp.4-22.

Mathur, A. P. (2008). Foundations of Software Testing, 2/e. Pearson, NY.

Microsoft Corporation (2007). Performance Testing Guidance for Web Applications, Microsoft, WA.

Molyneaux, Ian (2015). The Art of Application Performance Testing: From Strategy to Tools, 2/e. O. Reilly

Media, NY.

Mosley, D. and Posey, B. (2002). Just Enough Software Test, Prentice Hall, NJ.

Page, A., Johnston, K., and Rollison, B. (2009). How We Test Software at Microsoft, Microsoft, WA.

Paskal, G. (2015). Test Automation in the Real World: Practical Lessons for Automating Testing,

MissionWares, CA.

Pedron, L. (2015). Software Test Automation: Getting Started Guide for QA Managers, Quality Engineers,

and Project Managers, Independent Publisher.

STAT COE-Report-01-2017

Page 33

Appendix A: Acronym List

Acronym Description Acronym Description

AFB

Air Force Base

JWICS

Joint Worldwide Intelligence Communications
System

API Application Programmer Interface LVC Live, Virtual, Constructive

AST Automated Software Testing NMCI Navy Marine Corps Internet

ATRT Automated Test and ReTest OSD Office of the Secretary of Defense

CAC Common Access Card OT Operational Test

CDRLs Contract Data Requirement Lists POA&M Plan of Action and Milestones

CMMI Capability Maturity Model Integration POC Point of Contact

COE Center of Excellence RITE Rapid Integration and Test Environment

CRON Command Run On RM Requirements Management

DASD(DT&E)
Deputy Assistant Secretary of Defense,
Developmental Test and Evaluation

ROI

Return on Investment

DEF Developmental Evaluation Framework ROM Rough Order of Magnitude

DEO Developmental Evaluation Objectives SIL Software Integration Lab

DI2E Defense Intelligence Information Enterprise SIPRNet Secured Internet Protocol Router Network

DoD Department of Defense SME Subject Matter Expert

DT Developmental Testing SPAWAR Space and Naval Warfare Systems Command

DT/OT Developmental Testing/Operational Testing STAT Scientific Test and Analysis Techniques

FAA Federal Aviation Administration SUT System(s) Under Test

FRACAS
Failure Reporting, Analysis, and Corrective
Action System

T&E

Test & Evaluation

FRB Failure Review Board TDD Test-Driven Development

GUI Graphical User Interface TEMP Test and Evaluation Master Plan

HP Hewlett Packard UFT Unified Functional Testing

IDT Innovative Defense Technologies UML Unified Modeling Language

JML Java Modeling Language VV&A Verification, Validation, and Accreditation

