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Executive Summary 
The Department of Defense (DoD) is often interested in the ballistic resistance properties of various 

types of armor. The goal of these experiments may be to characterize the ballistic response curve or to 

estimate a specific velocity on the response curve. We describe four test methods for this type of 

sensitivity experiment and discuss their advantages and disadvantages. We highlight a more recent 

sequential method, the three phase optimal design, which has been shown to provide efficient 

estimates of the ballistic response curve in an affordable number of runs. 

  

Keywords: ballistic resistance, sensitivity testing, three phase optimal design, sequential 

experimentation, logistic regression 

Introduction 
The Department of Defense (DoD) is often interested in the ballistic resistance properties of various 

types of armor. In this type of experiment, a bullet or projectile is shot at the armor with a given 

velocity. The shot results in either a complete penetration (CP) or partial penetration (PP) where non-

penetrations are classified as PPs. The goal of these experiments may be to characterize the ballistic 

response curve or to estimate a specific velocity on the response curve such as V50 or V10, the velocity at 

which there is a 50% and 10% probability of CP, respectively. This is an example of a sensitivity 

experiment where the goal is to understand the effect of a single stress factor (e.g., velocity) on a binary 

outcome (e.g., penetration of armor).  

This best practice examines four methodologies for these types of sensitivity experiments: lot 

acceptance sampling plans, the up-down method, the Langlie method and the three phase optimal 

design (tomsshinyapps). Although we highlight these methods as applied to a ballistic resistance test, 

they have many applications across various fields of study. For example, in clinical trials a sensitivity 

experiment is used to determine the maximum tolerated dose of a drug. The experimenters assume that 

benefits to the patient may increase as the dose of the drug increases, but the toxicity increases as well. 

An experiment is performed on a small set of patients where the dose is methodically changed to 

determine the maximum tolerated dose.  Another medical application is determining the probability of 

detection for a substance in a patient’s blood as a function of concentration. Reliability engineers use 

this same type of experiment to determine the probability of product or system failure as a function of 

the number of cycles, pressure, or yield load.  

Ballistic resistance testing is a destructive, often expensive test. A test strategy that can successfully 

estimate the ballistic response curve and/or a particular point along this curve in an affordable number 

of runs is essential. In the next several sections, we discuss the advantages and disadvantages of four 

test strategies for sensitivity experiments. We conclude with a summary of many advantages of a more 

recent method, three-phase optimal design (tomsshinyapps) developed by Wu and Tian (2013).  
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Lot Acceptance Sampling Plans 
Lot acceptance sampling plans (LASPs) are typically used to determine acceptance or rejection of a lot. 

Because it is inefficient and/or costly to test every item in the lot, a random sample of items from the lot 

are inspected or tested to determine whether to accept or reject the entire lot. Acceptance sampling 

plans are defined by the sample size, 𝑛, and the acceptance number (i.e., number of allowed failures), 𝑐. 

The user must specify an acceptable quality limit, rejectable quality limit, consumer’s risk, and 

producer’s risk to determine the sampling plan. Refer to Truett (2013) and Harman (2013) for a more 

thorough discussion of acceptance sampling plans.  

In the context of ballistic resistance testing, an acceptance sampling plan may be used to verify V50, V10, 

or another quantile of interest Vp. Suppose you believe the velocity with 10% probability of CP is some 

value V. A sampling plan with 𝑛 runs and acceptance number 𝑐 is used to test the probability of CP at 

the tested velocity. If there are 𝑐 or fewer CPs in 𝑛 trials, the initial assumption (e.g., that V10 = V) is 

accepted; if there are more than 𝑐 CPs, the assumption is rejected. Only one point on the response 

curve is tested using this approach (e.g. V10); however, an acceptance sampling is not done to estimate a 

specific point on the curve. This method simply assesses performance at a particular velocity.  

The assumptions in the analysis for this method are that the response is binary (i.e., pass/fail), the test 

size is fixed at 𝑛, each run in the test is independent, and the probability of penetration is constant for 

each run in the test. The first three assumptions are typically met in ballistic resistance tests; however, 

the last assumption is likely violated because there are multiple conditions necessary for it to hold. One 

of the critical assumptions in LASP is that each item in the lot has been produced exactly like the others 

under highly controlled conditions. In ballistic resistance testing, this assumption may not hold because 

of the inherent variability in velocity of the projectile.  

LASPs have a few advantages: they are very simple to implement and the results lead to a conclusive 

decision of pass or fail. However, acceptance sampling plans have several drawbacks in addition to the 

potential assumption violation previously discussed. Suppose we are interested in assessing V10. A test 

with 80% confidence yields a LASP with sample size 𝑛 = 16 and acceptance number 𝑐 = 0.   Figure 1 

shows an operating characteristic curve for this plan. If we observe one (or more) CPs, the test fails and 

we have gained limited information. We do not know at which velocity the true V10 is. Now suppose we 

perform the test and do not observe a CP, that is we have “passed” the test. We still cannot conclude 

that the tested velocity is the true V10; the true V10 may in fact be a value larger than the velocity tested. 

In addition to the limited conclusions we can draw from this type of test, these methods also require 

large sample sizes to have sufficient confidence and power. With limited test resources in ballistic 

resistance testing, it is often inefficient and costly to use acceptance sampling plans. However, LASPs 

may be appropriate when determining whether to accept a lot of armor. In these cases, it is likely not 

necessary to test the armor at several different values. 
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Figure 1.  Operating characteristic curve for acceptance sampling plan with n = 16 and c = 0 

In the following sections, we discuss three sequential test methods: the up-down method, the Langlie 

method, and 3pod. The key assumptions utilized for these methods are that there is a binary response 

and a single stress factor. As the stress factor value increases, the probability of the response occurring 

increases. A response curve can be estimated for the probability of CP using a logistic regression model. 

Similar to a linear regression model, a logistic regression model provides an estimate for the probability 

of a success (e.g., CP) given values of a factor (e.g., velocity). For one factor 𝑥 and a binary response 𝑦, 

the model takes the form:  

𝑃(𝑦 = 𝐶𝑃|𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 

The model parameters 𝛽0 and 𝛽1 can be readily estimated by statistical software using maximum 

likelihood. Using this model, confidence intervals (CIs) can also be calculated for a quantile Vp on the 

ballistic response curve (e.g., V10 or V50). For more information on logistic regression, refer to Myers et 

al. (2010).  

One concern when modeling a binary response as a function of one or more input variables is the issue 

of separation.  Figure 2 shows an example of separation for one input factor. In Figure 2a , there is no 

overlap in the responses so that when 𝑋 < 9, the response is always a fail and for 𝑋 > 9, the response is 

always a pass. When there is no overlap, separation occurs, and the response curve cannot be 

estimated, resulting in limited analysis options. In Figure 2b, there is overlap in responses (i.e., no 

separation) as indicated by the vertical line (not all passes are on one side of the line). When there is no 

separation as in Figure 2b, the response curve, and consequently any quantile, is estimable. The 

following methods for sensitivity experiments handle this issue of separation differently.  

(1) 
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Figure 2.  Illustration of Separation:  In a) the response curve cannot be estimated.  In b) the overlap in 

responses allows response curve to be estimated. 

Up-Down Method  
One common method to estimate V50 is the up-down method as described in MIL-STD-662F (1997). This 

method requires an initial guess on the velocity 𝜇𝐺  where the estimated probability of penetration is 

50%. The test points are chosen as follows: 

1. 𝑥1 = 𝜇𝐺  

2. If 𝑦1 is a CP, 𝑥2 = 𝑥1 − 𝛿 ft/s  

If 𝑦1 is a PP, 𝑥2 = 𝑥1 + 𝛿 ft/s. 

3. The velocity is increased or decreased 𝛿 ft/s until one PP and CP are observed.  

4. Once a PP and CP are observed, 𝑥𝑖+1 = 𝑥𝑖 + 𝛿 ft/s if 𝑦𝑖  is a PP.  

If 𝑦𝑖  is a CP, 𝑥𝑖+1 = 𝑥𝑖 − 𝛿 ft/s.  

The stopping criterion for this method occurs when an equal (pre-specified) number 𝑘 of PPs and CPs 

have been observed (typically 3 or 5). V50 is then estimated as the arithmetic average of the 𝑘 highest 

velocities resulting in PPs and the 𝑘 lowest velocities resulting in CPs. Figure 3 shows a notional example 

of the up-down method. For this example, the initial estimate is 2500 ft/s with 𝛿 = 50 ft/s. The estimate 

for V50 is 2495 ft/s using 𝑘 = 5, but note that separation occurs in this test sequence because there is no 

overlap in responses. As a result, the response curve cannot be estimated.  
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Figure 3. Notional example of up-down method 

The up-down method was designed to converge at V50 and thus an average of these velocities can 

provide a reasonable estimate of V50. The up-down method is very easy to implement as it does not 

require special statistical software or difficult calculations, but it also has several drawbacks. This 

approach is designed to only estimate one point on the response curve (V50) and typically cannot 

estimate the entire response curve due to separation occurring. It is also not an effective method to 

estimate other velocities, particularly at the extremes (e.g., V10). The method is also highly dependent on 

the initial starting value. Without historical information to estimate 𝜇𝐺 , the method will take longer to 

converge to an estimate. Finally, because there is a constant step size (𝛿), the method may not converge 

to V50 in some cases (choosing a step size that is too large).  

Langlie Method 
Another common DoD method is the Langlie method (Langlie, 1962), a sequential experiment that does 

not require an initial estimate of V50. This method was developed for use in DoD testing for experiments 

limited to 15 to 20 runs. A modified version of the Langlie method is implemented in the Army (Collins 

and Moss, 2011). A lower and upper limit (𝜇𝑚𝑖𝑛 and 𝜇𝑚𝑎𝑥) are initially selected as the test interval. This 

interval should be made sufficiently wide since it serves as the range of stress levels tested. The 

subsequent test points, a modified version of the Langlie method, are chosen as follows (Collins and 

Moss, 2011): 
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1. 𝑥1 = (𝜇𝑚𝑖𝑛 + 𝜇𝑚𝑎𝑥)/2 

2. If 𝑦1 is a CP, 𝑥2 = (𝑥1 + 𝜇𝑚𝑖𝑛) 2⁄ ; if 𝑦1 is a PP, 𝑥2 = (𝑥1 + 𝜇𝑚𝑎𝑥) 2⁄ . 

3. If 𝑦1 is a CP and 𝑦2 is a PP or 𝑦1 is a PP and 𝑦2 is a CP, 𝑥3 = (𝑥1 + 𝑥2) 2⁄ .  

If 𝑦1 and 𝑦2 are both PPs, 𝑥3 = (𝑥2 + 𝜇𝑚𝑎𝑥)/2. 

If 𝑦1 and 𝑦2 are both CP, 𝑥3 = (𝑥2 + 𝜇𝑚𝑖𝑛)/2. 

4. If the previous shots are all CPs, adjust the lower and upper limits such that 𝜇𝑚𝑖𝑛 = 𝜇𝑚𝑖𝑛 − 65 

ft/s and 𝜇𝑚𝑎𝑥 = 𝜇𝑚𝑎𝑥 − 65 ft/s. Then 𝑥4 = (𝑥3 + 𝜇𝑚𝑖𝑛)/2.* 

If the previous shots are all PPs, adjust the lower and upper limits such that 𝜇𝑚𝑖𝑛 = 𝜇𝑚𝑖𝑛 + 65 

ft/s and 𝜇𝑚𝑎𝑥 = 𝜇𝑚𝑎𝑥 + 65 ft/s. Then 𝑥4 = (𝑥3 + 𝜇𝑚𝑎𝑥)/2.* 

5. In general, 𝑥𝑖+1 is determined after completing 𝑖 trials by working backward in the test sequence. 

Beginning at the 𝑖th trial, work backward until there is a trial 𝑝 such that there are an equal 

number of CPs and PPs in the 𝑝th through 𝑖th trials. Then 𝑥𝑖+1 = (𝑥𝑖 + 𝑥𝑝)/2.  

If there is no value 𝑝 such that there are an equal number of CPs and PPs before the 𝑖th trial, 

𝑥𝑖+1 = (𝑥𝑖 + 𝜇𝑚𝑖𝑛) 2⁄  or 𝑥𝑖+1 = (𝑥𝑖 + 𝜇𝑚𝑎𝑥) 2⁄  if 𝑦𝑖  is CP or PP, respectively.  
*The manual for the Langlie method defines this adjustment as 20 m/s, which we have translated to ft/s 

for consistency. 

The method continues for at least 8 trials and stops when all stopping criteria are met. The stopping 

criteria for this modified method are:  

1) At least one PP has a higher velocity than a CP (i.e. there are overlapping responses and 

separation is broken) 

2)  The average velocity of CPs is larger than the average velocity of PPs 

3) The range of the tightest three PPs and three CPs is within 125 ft/s 

4) There exist test points approximately ±65 ft/s from V50 estimated from the tightest three 

PPs and three CPs. 

Figure 4 shows a notional test sequence using the Langlie method where 𝜇𝑚𝑖𝑛 = 2400 ft/s and 𝜇𝑚𝑎𝑥 =

2700 ft/s. Using all test points, a statistical software package estimates the logistic regression model for 

CP as: 

P̂(𝐶𝑃|𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) =
1

1 + 𝑒−(−465.77+0.18×𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)
 

Using this model, V50 is estimated as 2551.9 ft/s with an 80% CI of (2532.95, 2569.00). V10 is estimated as 

2538.86 ft/s with an 80% CI of (2397.50, 2547.90).  

(2) 
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Figure 4.  Notional example of the Langlie method 

The Langlie method was developed to estimate V50; however, because one of the stopping criteria for 

the modified method requires breaking separation, the resulting data can be used to estimate the entire 

ballistic response curve. Unlike the up-down method, the step size at each step is not constant and 

depends on the results of the previous shots. Another advantage of the Langlie method is that the only 

required inputs are a minimum and maximum velocity. If quantiles other than V50 are of interest in the 

experiment, however, the Langlie method will not perform as efficiently as it does for estimating V50. For 

example, Figure 5 shows the response curve generated from the test sequence in Figure 4 with 

associated 80% CIs for various quantiles. While the CI for V50 is relatively narrow, the intervals for the 

other quantiles are imprecise. Estimates of V10 tend to be biased toward V50 because more test points 

are placed near V50 by design. As we will demonstrate later, this method is not as efficient or as robust 

as 3pod.  

 

Figure 5. Response curve with 80% CIs for Langlie example test sequence 
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Three-Phase Optimal Design 
Because of the limitations of the methods previously described, an alternative approach that can be 

performed successfully in a relatively small number of runs and can estimate the entire response curve 

is preferred. 3pod is a sequential test strategy developed by Wu and Tian (2013) for sensitivity 

experiments (which include ballistic resistance testing). The 3pod method has three sequential steps 

that can be summarized as Search, Estimate, and Approximate. In the “Search” phase, the goal is to 

identify a reasonable experimental range of velocity and to bound the ballistic response curve with CPs 

and PPs. This phase has three steps:  

I1:  Obtain at least one CP and one PP to bound the range of velocities 

I2:  Search for overlapping regions so that the largest velocity among the PPs (𝑀0) is greater 

than the lowest velocity among the CPs (𝑚1) (i.e. break separation) 

I3:  Enhance this overlapping region using one or two shots, particularly when the 

difference between 𝑀0 and 𝑚1 is small 

Phase 1 (shown in the flowchart in Figure 6) finds the overlapping region of CPs and PPs in order to 

estimate the parameters in the resulting ballistic response curve. The second phase, “Estimate,” seeks to 

optimize the model parameters of the resulting model of the ballistic response curve. Test points in 

phase two are chosen sequentially to optimize a measure of the test matrix (the D-optimality criterion, 

see Wu and Tian [2013] for details) that includes all previous test points. The user specifies the number 

of test points in this stage. Finally, the “Approximate” phase, an optional phase, is used to better 

approximate a specific point on the response curve (such as V10 or V50). The number of test points in this 

phase is also user-specified. Velocities are sequentially chosen in this phase using an approximation 

procedure called Robbins-Monro-Joseph (Wang et al., 2015). This final phase can be skipped in order to 

better estimate the overall response curve, particularly when there are a limited number of runs 

available in the experiment. The resulting test points from the three phases can be analyzed using a 

logistic regression model. The estimated response curve from this analysis can then be used to estimate 

any quantile value of the response curve such as V10 or V50 with CIs. To begin the method, the user must 

specify a minimum and maximum velocity as well as an estimate of the standard deviation of velocity.   
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Figure 6. Flowchart of phase 1 of the 3pod method 
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An Illustrative Example 
Suppose a program needs to estimate the velocity at which there is a 10% chance of CP. Previous testing 

indicates the velocities for PPs and CPs range from 2400 to 2700 ft/s. Due to limited resources, only 28 

runs are available in the test. To initiate the test, the required inputs are a minimum velocity (2400 ft/s), 

maximum velocity (2700 ft/s), and estimated standard deviation of velocity (50 ft/s).  Figure 7 shows a 

simulated test sequence for this notional ballistic resistance test. Eight runs were required to complete 

phase 1; the test team evenly splits the remaining 20 runs between phase 2 and phase 3 so that the 

complete test has 8 runs in phase 1, 10 in phase 2, and 10 in phase 3. Phase 1 is shown broken into the 

three steps outlined previously (I1, I2, and I3). Note that the velocity of the sixth shot (which is a PP) is 

larger than the velocity of the fourth shot (which is a CP). This means that there is no separation 

between the responses (i.e., there is overlap in velocities of the CPs and PPs). This overlap allows us to 

fit a logistic regression model and estimate any velocity Vp. The sixth shot triggers the final step of phase 

1 (shots 7 and 8). Phase 2 occurs in shots 9 through 18, where each velocity tested is determined via an 

optimality criterion. Finally, phase 3 shows small, incremental changes in the velocity. The procedure in 

this phase is designed to approximate a point along the curve as specified by the user; in this case, V10. 

 

Figure 7. Sample test sequence for a ballistic resistance test.  Phase 3 is designed to approximate V10 

Figure 8 shows the estimated ballistic response curve using all 28 runs from the experiment with the 

results of the test overlaid on the plot. The test points across the top of the figure resulted in CPs while 

those on the bottom resulted in PPs. The curve was fit using a logistic regression model so that the 

probability of CP is estimated as 

𝑃̂(CP|𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦) =
1

1 + 𝑒−(−87.08+0.034∗𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)
 

The parameters for the model were estimated using statistical software.  Figure 8 also shows 

80% CIs for the estimated velocity at V05, V10, V15, etc. The estimate of V10 in this example is 2478.2 ft/s 

(3) 
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with an 80% CI of (2431.0, 2502.3) ft/s. The estimate of V50 is 2542.4 ft/s with an 80% CI of (2520.0, 

2576.3) ft/s.  

 

Figure 8. Estimate response curve using all 28 runs in the 3pod experiment 

Number of Runs in Phase 1 of 3pod 
One question to explore further is the number of runs required to complete phase 1 in 3pod. 

Completing phase 1 is essential in order to estimate the ballistic response curve. However, the number 

of runs required in phase 1 is not a fixed number, which can lead to uncertainty in test planning. We 

performed a simulation study under a variety of conditions for the armor test example discussed 

previously. The starting minimum and maximum velocities remain the same throughout each scenario 

(𝑥𝑚𝑖𝑛 = 2400 and 𝑥𝑚𝑎𝑥 = 2700) with the guessed mean 𝜇𝐺  defined as (𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥) 2⁄ = 2550 ft/s. 

The guessed standard deviation 𝜎𝐺 was chosen to be either 25 or 50 ft/s. The true mean 𝜇𝑇 was varied 

between three conditions:  𝜇𝑇 = 𝜇𝐺  (Δ𝜇 = 0), 𝜇𝑇 = 𝜇𝐺 + 100 (Δ𝜇 = 100), and 𝜇𝑇 = 𝜇𝐺 − 100 (Δ𝜇 =

−100). The true standard deviation 𝜎𝑇 was also varied between three conditions:  𝜎𝑇 = 𝜎𝐺  (Δ𝜎 = 0), 

𝜎𝑇 = 𝜎𝐺 + 10 (Δ𝜎 = 10), and 𝜎𝑇 = 𝜎𝐺 − 10 (Δ𝜎 = −10). A factorial of these combinations was 

implemented with each of the 18 scenarios simulated 10000 times. The results of this simulation study 

are summarized in Figure 9.  The median number of runs to complete phase 1 of 3pod ranged between 

8 and 12 and the 75th percentile was always 14 or less across all 18 scenarios. Note that the number of 

runs required tends to be higher for a smaller standard deviation.  
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Figure 9. Summary of Simulation Results 

How to Implement 3pod 
An application implementing 3pod is available on the Test Science website (“3Pod”) or the shinayapps.io 

website (tomsshinyapps) (shown in Figure 10 was built using the statistical software package R, but does 

not require the user to have R to use the app. To begin, the user enters the initial settings for the 

experiment as described previously, the desired significance level (1 – confidence level) for the resulting 

CIs, the total number of runs, and the proportion of remaining runs after phase 1 is complete to allocate 

to phase 2. For example, to split the remaining runs evenly between phases 2 and 3, the user should 

select 0.5 for this option.  
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Figure 10. Entering initial algorithm parameter in the 3pod App 

Once all initial settings have been entered, the app displays the first velocity at which to shoot. After the 

results of the first shot are entered into the app (CP or PP and actual velocity achieved) as shown in 

Figure 11, the next test point (velocity) is displayed. Using these results, the algorithm determines the 

velocity setting for the next run using the procedure described earlier. Plots similar to those in Figure 7 

and Figure 8 are produced by the app. The results table can be downloaded for further analysis at the 

end of the test. Source code in R developed by The Armament Research Development and Engineering 

Center (ARDEC) Statistics Group at Picatinny Arsenal is also available. An R package implementing that 

code is currently under development.   
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Figure 11. Using the 3pod App 

Additional Study of 3pod 
A simulation study performed by research analysts at the Institute for Defense Analyses (IDA) (Johnson 

et al., 2014) compared several sequential testing strategies for sensitivity experiments, including the up-

down method, Langlie method, 3pod, and others under a variety of conditions. The velocity is assumed 

to have a “true mean” 𝜇𝑇 and “true standard deviation” 𝜎𝑇. Each scenario in the simulation considers 

the effect of choosing a guessed mean 𝜇𝐺  and guessed standard deviation 𝜎𝐺 to select the initial 

conditions of each test strategy. The step size used in the up-down method is 𝜎𝐺. The starting values in 

the Langlie method and 3pod are 𝑥𝑚𝑖𝑛 = 𝜇𝐺 − 4𝜎𝐺 and 𝑥𝑚𝑎𝑥 = 𝜇𝐺 + 4𝜎𝐺. We summarize a few general 

results here and refer the reader to Johnson et al. (2014) for complete details. Unsurprisingly, all three 

methods perform similarly when the true mean and the guessed mean are the same. The median error 

of V50 is centered near 0 for all three methods in this scenario.  

In general, 3pod was shown to be the most robust method compared to the other three over all 

scenarios. In other words, the estimates of V50 and V10, both in terms of bias and spread, were not 

largely affected by using 𝜇𝐺  and 𝜎𝐺 that varied from the true values.  The up-down method does not 
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provide accurate estimates of V50 when the guessed initial conditions are different than the true values. 

Among these three methods, 3pod performs best for estimating V10, followed by the Langlie method. 

The up-down method was the worst compared to all the methods in estimating V10. 3pod tended to 

decrease the median V10 error while the Langlie and up-down methods increased the median V10 error. 

In general, the study indicated 3pod was the most robust method in estimating multiple quantiles. While 

the Langlie method did not perform as poorly as the up-down method, it was inferior to 3pod in most 

instances.  

Conclusion 
We presented several test strategies for an experiment with one stress factor and a binary response. 

While we demonstrated the methods for a ballistic resistance test, the methods are applicable in other 

similar experiments. Compared to LASP, the up-down method, and the Langlie method, 3pod provides 

more information with the same test resources where there is one factor of interest and the response is 

binary. We encourage users to consider using 3pod in these types of experiments to obtain efficient 

estimates of the response curve. For additional assistance, contact the STAT COE at COE@afit.edu.  
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