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Version History 
1.1 Updated Matlab code to correct lower bound calculation  

Executive Summary 
Reliability assessment is a typical requirement for defense test programs. A common method is the 

determination of a mean time between failures (MTBF) and informing decision makers on system 

suitability by comparing the MTBF lower confidence bound to the MTBF threshold. The accuracy of this 

method is challenged when data sets are small, have limited test times for the observed failures, and/or 

contain no failures at all. Using a classical (also called frequentist) approach, confidence intervals are 

wide when the data sets are small, and when there are zero failures, no estimate of MTBF is possible 

(dividing by zero). Bayesian analysis can address these issues and provides a more detailed assessment 

and more intuitive interpretation of the results. But while Bayes’ rule is easily described, analysis for real 

world problems gets complicated quickly and typically requires advanced skills and software to conduct 

the analysis. This paper provides practical and easy-to-use Matlab code that will support most programs 

reliability assessment needs. Additionally, R code is provided for more flexible applications. 

 

Keywords: Bayes, reliability, prior selection, mean time between failures, conjugate prior, defense, 

Matlab 

Introduction 
Generating a reliability assessment is a typical requirement for defense test programs. Following a test 

period, this requirement is typically assessed using a frequentist approach where the mean time 

between failures (MTBF) is estimated as the total test time divided by the number of failures. Note, the 

following methods also apply if the desired metric is mean miles between failure or another similarly 

continuous measure. A decision on the suitability of the system is determined by comparing the MTBF 

lower confidence bound to the MTBF threshold. This method runs into difficulty when the data sets are 

small, have limited test time, and/or contain no failures. Confidence intervals are wide when the data 

sets are small and when there are zero failures, the MTBF is not estimable (dividing by zero) (Truett, 

2017). Even if you assume the system has a high MTBF due to no observed failures, an exponential 

distribution lower bound calculation may be so low as to provide minimal information to the decision-

maker (Morris, 2017). 

Bayesian analysis can address these issues and provide a more detailed assessment and more intuitive 

interpretation of the results (Berger 2006). But while Bayes’ rule is easily described, analysis for real 

world problems gets complicated quickly and typically requires advanced skills and software to conduct 

the analysis. This paper addresses these topics and provides practical, easy-to-use Matlab code 

(Appendix B) that will support most program reliability assessment needs. Additionally, R code is 
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(1) 

provided to perform similar Bayesian analysis (Appendix C). R is free, open-source software and 

extremely effective at addressing statistical problems, but government users may not have 

administrative privileges to load it onto government computers. 

This paper does not cover the determination of the test time for a reliability test plan. Frequentist 

methods for calculating a test time length can be found in Kensler (2014) as well as numerous other 

sources. Bayesian test time determination is somewhat more complicated but an overview can be found 

at the NIST website (section 8.3.1.5) among other sources. Regardless, this paper assumes the data 

already exists. 

Analytical Objectives 
Regardless of the selected method, analysts typically have the following objectives: 

1. Collect failure time data for a determined test time 

2. Estimate the value for MTBF 

3. Determine a lower bound on this estimate for evaluation against requirements 

This paper addresses these objectives using a Bayesian method and compares the process and output to 

frequentist methods. This method can be applied during developmental testing (DT) to compare 

performance before and after correction of deficiencies or in operational testing (OT) to evaluate overall 

performance. 

Frequentist and Bayesian Differences 
Frequentist methods treat model parameters as unknown, fixed constants and employ only observed 

data to estimate the values of parameters. In the case of failure time data, one might assume the data is 

exponentially distributed: 

𝑓(𝑥; 𝜆) =  
1

𝜆
𝑒

−
𝑥
𝜆   for x ≥ 0 

where  is the parameter of interest, MTBF. The maximum likelihood estimator for  in this equation is 

simply the total test time divided by the number of failures which provides a point estimate for MTBF. 

To describe the variability in the estimate, a confidence interval (more typically a one-sided lower 

bound) can be calculated (Morris, 2017). When the data set is small or no failures are observed the 

bounds can be wide and minimally informative. And, in the case of no failures, no point estimate is 

available (dividing by zero). Moreover, to the confusion of many, confidence bounds do not describe the 

range of values the parameter occupies, but describes the uncertainty associated with a sampling 

method (Kensler and Cortes, 2014). We would say that “we expect 90% of the estimated intervals to 

include the population parameter” (StatTrek.com, 2017). 
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(2) 

Bayesian methods treat parameters as unknown random variables whose distribution (the prior) 

represents the current belief about the parameter. Bayes’ rule is defined as:  

𝑃(𝜽|𝑫) =
𝑃(𝑫|𝜽)𝑃(𝜽)

𝑃(𝑫)
 

where   

1. P(|D) is the Posterior: Probability distribution of the parameter () given a data set (D)  

2. P(D|) is the Likelihood: A function of the observed data (D) given a parameter () 

3. P() is the Prior: Probability distribution of the parameter () which represents our belief on the 

parameter before the dataset D is observed 

4. P(D) is the evidence: Probability distribution of the observed data (D) which acts as a 

normalizing constant that ensures the Cumulative Posterior Distribution sums to 1. 

Many people are familiar with maximum likelihood estimation (MLE). MLE is used when one wants to 

find the parameter values that best fit the dataset using a specified distribution. The likelihood term 

represents this type of information. The difference is that the likelihood and prior are inputs to Bayesian 

analysis, not the output. The critical point in Bayesian analysis is that the posterior is a probability 

distribution function (pdf) of the parameter given the data set, not simply a point estimate. This enables 

all the properties of a pdf to be employed in the analysis. Figure 1 shows a pdf for a normal distribution 

with =80 and =5. 

 

 
Figure 1: Probability Distribution Function 
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(3) 

(4) 

The pdf shows the probability of  across a range of values and shows the most likely value at the peak 

(80). Also, we can state the lower quantile indicates a 10% chance the parameter is below 73.6 and 10% 

chance it is above 86.4. Since the Bayes posterior is a pdf, we can use credible interval (CI) quantiles 

instead of confidence intervals (unfortunately both are abbreviated CI). Note the more intuitive 

interpretation of credible intervals than confidence intervals. 

In either case, the differences between frequentist and Bayesian methods become negligible as the 

sample size increases. However, when the data sets are small, these differences can be significant, with 

Bayesian interval estimates often narrower than the frequentist methods (Hamada 2008). 

Steps to Implementing Bayesian Analysis 
1. Choose a prior distribution that describes our belief of the MTBF parameter 

2. Collect failure time data and determine the likelihood distribution function 

3. Use Bayes’ rule to obtain the posterior distribution 

4. Use the posterior distribution to evaluate the data 

Choose a Prior Distribution That Describes Our Belief of the MTBF Parameter 
Any distribution can be chosen as a prior so long as it accurately describes the parameter information 

known and is determined before collecting any new data. In the case of failure times, we choose an 

inverse gamma distribution as it relates to the specific example below. The inverse gamma distribution 

is defined as:  

𝑓(𝜆; 𝛼, 𝛽) =  
𝛽𝛼

Γ(𝛼)
𝜆−𝛼−1𝑒

−
𝛽
𝜆    for α > 0,β > 0 

Where 

  = exponential distribution parameter 

  = shape parameter 

  = rate parameter 

There are several ways to arrive at the values of these parameters. First, MLE can be used to determine 

them directly. Alternatively, if expert opinion or engineering knowledge provide insight to the values of 

the mean and standard deviation of MTBF, the expected mean () and variance (2)can be used to 

determine the values of 𝛼 and 𝛽:  

𝜇 =
𝛽

𝛼 − 1
  𝑓𝑜𝑟 𝛼 > 1,  𝜎2 =

𝛽2

(𝛼 − 1)2(𝛼 − 2)
 𝑓𝑜𝑟 𝛼 > 2 

This is an option coded into the Matlab code in the Appendix. Finally, there may be expectations that 

95% of the MTBF values fall in a certain range and this quantile information can be used to derive the 
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parameters. This method is not covered in this paper (see Cook [2010]), but it is contained in the Matlab 

code.  

Collect Data and Determine the Likelihood Distribution Function 
Many defense systems’ failure times are assumed to be exponentially distributed (NIST 8.1.6.1); 

however, this may not always be true (Reliasoft.com, 2001). Ultimately, the collected data should drive 

the choice of a likelihood distribution. Here we will choose the exponential distribution for the analytical 

convenience that will be described later.  

Use Bayes’ Rule to Obtain the Posterior Distribution 
The posterior combines the prior and likelihood distributions and (generally) any combination is 

possible. The general case requires the use of numerical methods, usually Markov Chain Monte Carlo 

(MCMC). However, certain combinations of distributions result in closed form posteriors with the same 

form as the prior. These are called conjugate priors and the case of an exponential likelihood and 

inverse gamma prior results in an inverse gamma posterior of the form (Fink, 1997 or Wikipedia 

conjugate priors, 2017):  

P(|D)~ Inverse Gamma (𝛼0+ N, 𝛽0 +∑ 𝑥𝑖
𝑁
𝑖=1 ) 

where the parameters are a combination of  

 0 = prior  

 0 = prior  

 N = number of observed failures 

 ∑ 𝑥𝑖
𝑁
𝑖=1 = sum of all failure times. 

 

Because the posterior is always a distribution, we can readily evaluate most likely and interval values for 

any data set, including small samples and those with no observed failures. Also, Bayesian analysis 

enables you to conduct posterior analysis following every failure data point while testing continues. 

Frequentist analysis requires the pre-determined test time to be completed before any analysis is 

conducted. 

Example: Use the Posterior Distribution to Evaluate the Data 
Consider an example with the following information: 

 Inverse gamma prior information 

o 0 = 46.9 

o 0 = 3147.6 

 Data consisting of ten failure times (𝑥𝑖) (these are ordered for clarity) 

https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Conjugate_prior
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o 55.8   57.8   70.1   79.1   94.1   96.6   103.9   111.3   122.1   161.0 

o ∑ 𝑥𝑖
10
𝑖=1 = 951.8  

o N = 10 

The prior takes the form 

P() ~ Inverse Gamma (46.9, 3147.6) 

The posterior takes the form 

P(|D)~ Inverse Gamma (46.9 + 10, 3147.6 + 951.8) 

The Matlab code provides the following information in the chart header seen in Figure 2: Sample Matlab 

Code Output 

 

 Max/most likely posterior value of parameter (peak) 

 Specified quantile/credible interval (CI) value 

 Frequentist MTBF point estimate (total test time/number of failures) 

 Total test time 

 Number of observed failures (N) 

 Prior mean and sigma value 

 Inverse gamma prior alpha and beta parameters 

 Inverse gamma posterior alpha and beta parameters 

 

Additionally, the chart plots threshold (T) and objective (O) values for evaluation against the lower CI. 

  
Figure 2: Sample Matlab Code Output 
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The prior depicts an inverse gamma distribution with 95% of its density between 50 (Threshold) and 90 

(Objective). The observed 10 data points result in an inverse gamma posterior shifted slightly to the 

right. The 10% quantile of the posterior of MTBF (90% lower CI indicated by the dotted black line in 

Figure 2) is at 61.4 and is above the threshold. This indicates that there is a 90% chance the MTBF is 

above 61.4. Note this interpretation of the CI is quite intuitive compared to a confidence interval. The 

most likely MTBF value is at the peak, about 71. 

Assumptions in the Closed Form Solution 
Most statistical analysis requires the assumption of an underlying distribution and Bayesian analysis is 

no different. In this case, the data is assumed to be exponentially distributed (likelihood) and the prior 

on the parameter assumes an inverse gamma distribution. The failure time data should be exponentially 

distributed (or at least close) for the results to be accurate. Data varying significantly from this 

assumption may skew results with no insight as to the extent of the impact.  

The parameters of the posterior use failure meta-data (number of failures and sum of the failure times). 

This implies the test period ends at the last observed failure time, called a failure truncated period. 

However, most DOD test periods go until a pre-determined test time and the final failure time is 

censored, called a time truncated period. This closed form solution implemented in Matlab does not 

address censoring, but the MCMC code implemented in R provided in Appendix C does. 

The closed form solution will also not correctly address a test period without any observed failures. You 

might assume the total test time (for sum of the failure times) and N=0 could be inserted into the 

posterior parameters equations, but this is not correct because the single data point is censored. Again, 

the MCMC code can handle any number of censored data points and a comparison of the Matlab and R 

code for this case is provided in Appendix D. 

These assumptions and specific distributions may seem to overly constrain the analysis, but they 

facilitate the creation of closed form solutions using conjugate priors coded into Matlab and made 

accessible to more T&E practitioners.  

Choosing a Prior 
Choosing of a prior may be a challenging task. A prior should be chosen before any data is collected so as 

not to appear to manipulate the output. However, there are several defensible, objective sources and 

methods for choosing a prior.  

Hamada et al. (2008) outlines various sources for informative priors: 

1. Physical/chemical theory 

2. Computational analysis 
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3. Previous engineering and qualification test results from a process development program 

4. Industrywide generic reliability data 

5. Past experience with similar devices 

6. Expert opinion 

In DOD testing, one could argue that the most defensible source is data collected on the same systems 

in a previous test phase. This is primarily due to the complexity and uniqueness of DOD systems and a 

general lack of trust in data otherwise sourced.  

Hamada also points out some concerns to be avoided: 

1. Beware of zero values 

2. Cognitive biases in the way people think 

3. Overly narrow priors 

4. Prior information should be relevant to the problem at hand 

5. Be careful when assessing prior distributions on parameters that are not directly observable 

6. Beware of conservatism. Realism is the desired ideal, not conservatism. 

 

Bayesian analysis is essentially a weighted solution where the prior effect varies with the size of the data 

set. Posteriors from a small data set will typically not move significantly from the prior. Conversely, 

increasingly larger data sets will begin to overwhelm the prior and reduce its effect. If you chose 

Bayesian analysis because of the benefits it provides to small data sets, you may unintentionally impact 

the results with an unrealistic prior. A prior with a small variance (optimistic) implies a high degree of 

confidence the parameter only exists over a small range of values and is fair only if the data supports it. 

Conversely, a large variance (vague) used in an attempt to “be fair” imparts little knowledge to the 

posterior and may result in unnecessarily wide and uninformative intervals. So, an overly optimistic or 

needlessly vague prior does not serve the analysis well. Ultimately, the analyst must be able to defend 

the choice of a prior and allow the data to tell the story. It is acceptable to conduct sensitivity analysis 

for different priors before data is collected (as in the next section) but this should be avoided after data 

has been collected. 

Impacts of Various Priors  
Figure 3 and Figure 4 show the posteriors for the same fictitious 10 point data (true MTBF=80) set using 

a narrow prior and a vague prior. Note the peak of the vague prior in Figure 4 appears to be shifted left 

compared to the narrow prior. This is simply a function of the gamma distribution properties. The mean 

and sigma values are shown in the header for comparison. 
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Figure 3: Narrow Prior Impact on the Posterior 

  
Figure 4: Vague Prior Impact on the Posterior 
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Takeaways from this example (not necessarily indicative of all Bayesian analysis): 

1. The Bayesian posterior peak value is closer to the simulated MTBF (80) than the Frequentist 

result (these differences would be unknown with real data)  

2. The posterior peak values vary slightly (~ 2.5%) 

3. The narrow prior results in a narrower and more peaked posterior 

4. The prior impacts the location of the CI quantile, the vague prior moving it left 

5. In both cases the lower bound is greater than threshold resulting in the same conclusion 

(passing) 

 

Table 1: Comparison of Results for Various Priors 

Mean/Most Likely Narrow Prior Vague Prior 

Frequentist (% error) 95.2 (19%) 95.2 (19%) 

Bayesian (% error) 70.8 (12%) 72.5 (9%) 

10% Quantile Value   

Frequentist* 65.1 65.1 

Bayesian 61.4 57.0 

*Frequentist CI values were calculated using JMP Life Distribution platform (likelihood method) 

Impact of Sample Size 
Figure 5 and Figure 6 compare small (10 data points) and large (50 data points: same 10 plus 40 more) 

data sets analyzed with the same prior. The data is included alone in Appendix A and in the Matlab code 

in Appendix B. 
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Figure 5: Posterior from 10 Data Points 

  
Figure 6: Posterior from 50 Data Points 
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Takeaways from this example (not necessarily indicative of all Bayesian analysis): 

1. Larger difference between MTBF point estimates (~19%) than between peak posterior values 

(~1%). The exponential distribution mean is sensitive to large value data points, especially in 

small data sets. 

2. The larger data set has a narrower and more peaked posterior 

3. The Bayesian CI changes less as N increases (9.4 difference @ 10 points, 7.7 (50 points)) than the 

Frequentist CI (30.1 (10 points), 12.4 (50 points)) 

4. In all cases the lower bound is greater than threshold resulting in the same conclusion (passing) 

  

Table 2: Comparison of Results for Various Data Sizes 

Mean/Most Likely 10 Data Points 50 Data Points 

Frequentist (% error) 95.2 (19%) 76.8 (4%) 

Bayesian (% error) 70.8 (12%) 71.4 (11%) 

10% Quantile Value   

Frequentist* 65.1 64.4 

Bayesian 61.4 63.7 

*Frequentist CI values were calculated using JMP Life Distribution platform (likelihood method) 

Matlab Code Details 
The full code is provided in Appendix B. Matlab was chosen because it is prevalent at government test 

and evaluation sites. Detailed instructions are commented in the code but additional information is 

provided below. You may request the code in native format at COE@afit.edu. 

1. Enter data and make changes only in the USER DATA ENTRY section. 

2. Test times can be in any order. They do not need to be sorted.  

3. Threshold and Objective values are input for plotting against the distributions and desired 

credible interval. 

4. Three methods are available to define the prior. Be sure to input the selected method value as 

well as entering the specific method data. 

a. Method 1 inputs a mean and standard deviation to determine inverse gamma 

parameters. 

b. Method 2 uses lower and upper quantiles to determine inverse gamma parameters. 

c. Method 3 inputs inverse gamma parameters directly. 

R Code Details 
The code is provided in Appendix C and the example data file example is in Appendix A. Detailed 

instructions are commented in the code but additional information is provided below. Note the JAGS 
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package and RJAGS library must be installed to run the code. You may request the code in native format 

at COE@afit.edu. 

1. Working directory needs to match the location of the R file and data file. 

2. This code is set up to read a CSV file with two columns: DATA and CENSOR. 

a. In this code, 1=censored data, 0=observed failure. 

b. The data file must be in the same working directory. 

c. Enter the file name on line 34: Data.Set <- read.csv("FailureData.csv",header=TRUE). 

3. Threshold and Objective values are input for plotting against the distributions and desired 

credible interval. 

4. Three methods are available to define the prior. Be sure to input the selected method value as 

well as entering the specific method data. 

a. Method 1 (line 48) inputs a mean and standard deviation to determine gamma 

parameters. Note R MCMC functionality does not require inverse gamma 

parameterization. 

b. Method 2 (line 52) uses lower and upper quantiles to determine gamma parameters. 

c. Method 3 (line 62) inputs gamma parameters directly. 

Conclusions 
Bayesian analysis provides a clear and intuitive method to address reliability failure time analysis, 

especially when frequentist methods fall short. The mathematical fundamentals permit easy calculation 

and the provided code should enable all DOD practitioners to effectively analyze real world real world 

problems and provide insightful information to decision makers. If your data violates the assumptions of 

the solution presented in this paper you should contact the STAT COE (COE@afit.edu) or your local 

analyst for specific help. 
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Appendix A: Example Data Set and R Code CSV File Example 
Failures times were simulated using an exponential distribution with MTBF=80.  
 

Failure times:  

122.1  111.3  103.9  57.8  79.1  55.8  96.6  161.0  70.1  94.1  67.3  340.3  111.6 

41.5  33.3  22.7  95.1  98.4  91.1  59.8  23.4  120.3  0.7  22.3  54.5  8.0  

35.8  50.5  40.2  220.6  99.5  79.2  125.0  41.2  1.6  69.7  19.3  34.9  36.7 

22.3  39.7  267.6  43.4  151.6  20.8  12.5  57.5  51.0  114.7  64.3 
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Appendix B: Matlab Closed Form Solution Code 
% MTBF_Bayes_Exponential_Gamma_Posterior_Analysis.m 

% 

% This code performs Bayesian analysis on a continuous failure time data 

% set using an exponential likelihood and inverse gamma conjugate prior. 

% The user enters the data set information and the method they want to use 

% to select the prior. The program outputs a plot of the prior and 

% posterior along with the MTBF point estimate, and selected quantile 

% (lower or upper). 

% 

% Your failure time data should be (at least roughly) exponentially 

% distributed. If this is not the case then the results may not be 

% accurate. This assumption is built into the conjugate prior closed form 

% solution which precludes the use of MCMC simulation. This inherently 

% assumes the test time ends at the last failure (no last censored data 

% point). In the case you have a test period with no failures, or you have 

% at least one censored data point, use the similarly titled R code 

% provided by the STAT COE 

% 

% The closed form solution explanation can be found at 

% https://www.johndcook.com/CompendiumOfConjugatePriors.pdf, page 15.  

% 

% Notes:  

% ****** 

% Method 2 (quantile selection) may not solve when the X1 and X2 values are 

too 

% close. Try moving them apart by small values until it works. 

% ****** 

% 

% Created at the Scientific Test and Analysis Techniques (STAT) Center of 

% Excellence (COE). Contact email: COE@AFIT.edu Website: www.AFIT.edu/STAT 

% DISCLAIMER: This code has been checked using known examples and functions 

% correctly to the best of our knowledge. 

% 

% Michael Harman 

% Vers 2.2 5/31/17 

% Vers 2.3 7/30/18 corrected code for determining lower bounds 

% 

% Clear and initialize 

close all; 

clear all; 

clc; 

  

% ***************************************** 

% USER DATA ENTRY ************************* 
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% IF TEST TIME HAS AT LEAST 1 FAILURE: ENTER DATA HERE 

% Data set is time between failures 

Data=[66.9 30.5 29.1 94.5]; 

%Data=[122.1 111.3 103.9 57.8 79.1 55.8 96.6 161.0 70.1 94.1 67.3...  

%      340.3 111.6 41.5 33.3 22.7 95.1 98.4 91.1 59.8 23.4 120.3 0.7...  

%      22.3 54.5 8.0 35.8 50.5 40.2 220.6 99.5 79.2 125.0 41.2 1.6...  

%      69.7 19.3 34.9 36.7 22.3 39.7 267.6 43.4 151.6 20.8 12.5 57.5 51.0 

114.7 64.3]; 

  

% Enter Threshold and Objective Requirement Values 

T=74; 

O=114; 

  

% Enter credibility interval value (output is one sided) 

CI=0.8; 

% Enter 1 for lower bound, 0 for upper 

bound=1; 

  

% PRIOR SELECTION: Choose method 1, 2, 3 to define the prior 

% Enter specific data under the chosen METHOD below 

method=2; 

  

% METHOD 1: Define typical (mean) MTBF prior Mean and Standard Deviation 

mean=100; 

sigma=50; 

  

% METHOD 2: Enter expected prior quantile information for MTBF 

% Lower Quantile (enter as %, e.g. 2.5% = 2.5) 

P1=3.5; 

% Lower Quantile Value 

X1=74; 

% Upper Quantile (enter as %, e.g. 2.5% = 2.5) 

P2=97.5; 

% Upper Quantile Value 

X2=114; 

  

% METHOD 3: Enter prior INVERSE GAMMA distribution parameters 

% These parameters are typically determined using MLE on a data set 

alpha=46.9; 

beta=3147.6; 

  

% END USER DATA ENTRY ************************* 

% ********************************************* 

  

N=length(Data); 

SumXi=sum(Data); 
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MTBF=SumXi/N; 

  

% Check method and determine which values to use 

if method==1 % Mean and Sigma for GAMMA distribution 

    % no change to mean and sigma; 

    % determine INVERSE GAMMA alpha and beta 

    alpha=mean^2/sigma^2+2; 

    beta=mean*(alpha-1); 

  

elseif method==2 % Quantile bounds 

    % method from https://www.johndcook.com/quantiles_parameters.pdf  

    % solves for GAMMA alpha, beta, mean, sigma and converts to INVERSE 

    alpha=0.1; 

    incr=.1; 

    complete=0; 

    Xratio=X2/X1; 

         

    while complete==0 

        Calcratio=icdf('Gamma',P2/100,alpha,1)/icdf('Gamma',P1/100,alpha,1); 

        if abs(Xratio-Calcratio)<=0.001 

            complete=1; 

            beta=X1/icdf('Gamma',P1/100,alpha,1); 

        elseif Xratio-Calcratio<0 

            alpha=alpha+incr; 

        elseif Xratio-Calcratio>0 

            alpha=alpha-incr; 

            incr=incr/2; 

        end 

    end 

     

    % determine mean and sigma 

    mean=alpha*beta; 

    sigma=sqrt(alpha*beta^2); 

         

    % convert alpha and beta to inverse gamma values 

    alpha=mean^2/sigma^2+2; 

    beta=mean*(alpha-1); 

     

elseif method==3 % alpha and beta for inverse gamma distribution 

    % determine mean and sigma 

    mean=beta/(alpha-1); 

    sigma=sqrt(beta^2/(alpha-1)^2/(alpha-2)); 

     

end 

  

% X values for calcs and plotting 
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X=.8*T:0.1:O+.2*T; 

  

% Prior is INVERSE GAMMA 

Prior=(beta^alpha)/gamma(alpha)*X.^(-alpha-1).*exp(-beta./X); 

  

% Posterior is INVERSE GAMMA 

alphapost=alpha+N; 

betapost=beta+SumXi; 

PostLOG= alphapost*log(betapost) - gammaln(alphapost) + log(X)*(-alphapost-1) 

-betapost./X; 

Posterior=exp(PostLOG); 

MaxPindex = find(Posterior==max(Posterior(:))); 

  

% Calculate desired bound value 

z=abs(bound-CI); 

BVal=1/icdf('gamma',1-z,alphapost,1/betapost); 

  

% Plotting 

plotnum=1; 

  

% Max Y value for plotting 

maxY=max([Prior Posterior]); 

  

figure(1) 

hold on 

plot(X,Prior,'k--') 

plot(X,Posterior,'k','linewidth',2) 

plot([BVal, BVal],[0, maxY],'k:','LineWidth',2);   % Bound value 

plot([T, T],[0, maxY],'r','LineWidth',2);   % T line 

plot([O, O],[0, maxY],'g','LineWidth',2);   % T line 

legend('Prior','Posterior','Bound','T','O') 

MP=num2str(X(MaxPindex),'%.1f'); 

MM=num2str(MTBF,'%.1f'); 

sx=num2str(SumXi,'%.1f'); 

BV=num2str(BVal,'%.1f'); 

aa=num2str(alpha,'%.1f'); 

bb=num2str(beta,'%.1f'); 

mm=num2str(mean,'%.1f'); 

ss=num2str(sigma,'%.1f'); 

ap=num2str(alphapost,'%.1f'); 

bp=num2str(betapost,'%.1f'); 

title({['Bayesian Exp LH & Gamma Prior/Posterior']; 

       ['Max Posterior= ',MP]; 

       [num2str(z*100),'% Quantile Value= ',BV]; 

       ['MTBF= ',MM,' (Frequentist), Test Time=',sx,', N= ',num2str(N)]; 

       ['Prior mean=',mm,', sigma=',ss]; 
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       ['Inv Gamma prior alpha=',aa,', beta=',bb]; 

       ['Inv Gamma post alpha=',ap,', beta=',bp]}); 

xlabel('MTBF') 

ylabel('density') 

hold off 

  

% output selections to screen for QA 

fprintf('Data set contains %d fails.\n',N) 

fprintf('Chosen Prior selection method = %d.\n',method) 

  

% EOF 
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Appendix C: R MCMC Code 
# MTBF_Bayes_Exp_Gamma_Post_Analysis_Censor.R 

#  

# This code performs Bayesian analysis on a continuous failure time data 

# set using an exponential likelihood and gamma prior. 

# The program outputs a plot of the prior and posterior along with the MTBF point estimate  

# and selected posterior quantile. 

#  

# Your failure time data should be (at least roughly) exponentially 

# distributed. If this is not the case then the results may not be 

# accurate. This assumption is built into the model.  

 

# The code facilitates the use of censored data points.  

# Examples: single or multiple systems with test time ending before next observed failure or 

# single system with no observed failures. 

 

# Created at the Scientific Test and Analysis Techniques (STAT) Center of Excellence (COE). 

# Contact email: COE@AFIT.edu 

# Website: www.AFIT.edu/STAT 

# DISCLAIMER: This code has been checked using known examples and functions correctly  

# to the best of our knowledge.  

# Michael Harman 

# Vers 3.1 6/20/17 

 

# access RJAGS library 

library(rjags) 

 

# USER DATA ENTRY REGION **************** 

 

# Change working directory to where your files are located 

setwd("I:/HARMAN WORKING/Bayes/1-R") 

 

# Read data set 

# Reads a CSV Data set with first column DATA and second column CENSOR 

# Censor column =1 if censored, =0 if observed failure 

Data.Set <- read.csv("FailureData.csv",header=TRUE) 

 

# Requirements (for plotting) 

T<-c(50) 
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O<-c(90) 

 

# Desired Credibility Interval/Quantile (0.10=10%ile/90% lower CI, 0.90=90%ile/90% upper CI) 

CI<-0.1 

 

# PRIOR SELECTION: Choose method 1, 2, 3 to define the prior 

# Enter specific data under the chosen METHOD below 

method<-2 

 

# METHOD 1: Define MTBF prior Mean and Standard Deviation 

mean<-80 

sigma<-10 

 

# METHOD 2: Enter expected prior quantile information for MTBF 

# Lower Quantile (enter as %, e.g. 2.5% = 2.5) 

P1<-2.5 

# Lower Quantile Value 

X1<-50 

# Upper Quantile (enter as %, e.g. 2.5% = 2.5) 

P2<-97.5 

# Upper Quantile Value 

X2<-90 

 

# METHOD 3: Define prior gamma parameters 

gamma.shape<-44.9 

gamma.scale<-1.53 

 

########################################################################## 

#################### END USER DATA ENTRY REGION########################### 

 

# Check method and determine which values to use 

# Mean and Sigma for GAMMA distribution 

# no change to mean and sigma; 

if (method==1)  { 

  gamma.shape<-mean^2/sigma^2;  

  gamma.scale<-mean/gamma.shape 

} else if (method==2) { 

  # Quantile bounds 

  # method from https://www.johndcook.com/quantiles_parameters.pdf  

  # solves for GAMMA alpha, beta, mean, sigma  
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  alpha<-0.1;  

  incr<-0.1;  

  complete<-0;  

  Xratio<-X2/X1; 

 

    while (complete==0)  

      { 

      Calcratio<-qgamma(P2/100,alpha,1)/qgamma(P1/100,alpha,1) 

      if (abs(Xratio-Calcratio)<=0.001) 

        { 

        complete<-1; 

        beta<-X1/qgamma(P1/100,alpha,1) 

        } 

      else if (Xratio-Calcratio<0)  

        { 

        alpha<-alpha+incr 

        } 

      else if (Xratio-Calcratio>0)  

        { 

        alpha=alpha-incr; 

        incr=incr/2 

        } 

      } 

   

  # determine mean and sigma 

  gamma.shape<-alpha 

  gamma.scale<-beta 

  mean<-gamma.shape*gamma.scale 

  sigma<-sqrt(gamma.shape*gamma.scale^2) 

   

} else   

  # Method=3 

  mean<-gamma.shape*gamma.scale 

  sigma<-sqrt(gamma.shape*gamma.scale^2) 

   

# End method check and calculations 

 

# Define MODEL 

model <-paste( 

'model{ 
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# Likelihood (exponential) 

for(i in 1:n) 

{ 

  is.censored[i] ~ dinterval(LH[i], Censor.Time[i]) 

  LH[i] ~ dexp(tau) 

} 

           

# Prior (gamma) 

tau <- 1/lambda   # rate parameter 

lambda ~ dgamma(shape,1/scale)  # jags uses rate=1/scale 

           

# ENTER PRIOR PARAMETERS HERE 

shape  <- ', gamma.shape,  

'scale <- ',gamma.scale,' 

}') 

# End of MODEL 

 

# Assign csv file information 

Data<-Data.Set$Data 

Censor<-Data.Set$Censor 

is.na(Data)<-Censor==1       # make data NA where censored 

Censor.Time<-Data.Set$Data+1-Censor 

 

#Store data needed for JAGS in list 

jags.dat<-list(n=length(Data),LH=Data,is.censored=Censor,Censor.Time=Censor.Time) 

 

#Sets initial values for MCMC 

init.Censor<-Data.Set$Data+5 

is.na(init.Censor)<-Censor==0 # make data NA where not censored 

init.values <- list(LH=init.Censor) 

 

# Run JAGS 

jags <- jags.model(textConnection(model), inits = init.values, n.chains = 1, data = jags.dat) 

 

#Update starts sampler at a value n.iter into the chain (burn-in) 

update(jags,n.iter = 5000) 

 

#Obtain draws from the MCMC algorithm 

posterior <- coda.samples(jags,thin = 5, variable.names = c('lambda'), n.iter = 50000) 
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# Summary of the posterior parameter (lambda in this case) 

summary(posterior) 

CIquantile=quantile(posterior[[1]],probs=CI) 

 

# Find most likely posterior value 

MaxP <- density(posterior[[1]]) 

MaxY<-MaxP$y[which.max(MaxP$y)] 

MaxX<-MaxP$x[which.max(MaxP$y)] 

 

# ACF displays autocorrelation plots for diagnostics 

acf(posterior[[1]]) 

 

# Determine plot limits 

Xplotmin<-0.8*T 

Xplotmax<-O+0.4*T 

Yplotmin<-0 

Yplotmax<-MaxY*1.1 

 

# Calc number of actual observed fails for MTBF use 

obs.fails<-length(Censor)-sum(Censor) 

if (sum(Censor)==length(Censor)) {MTBF<-NaN; NN=0} else {MTBF<-sum(Data.Set$Data)/obs.fails; 

NN=obs.fails} 

 

# Plot prior and posterior 

par(mar=c(5, 4, 7, 4)) 

plot(density(posterior[[1]]),xlim=c(Xplotmin,Xplotmax),ylim=c(Yplotmin,Yplotmax), 

     main=paste("Bayesian Exp LH & Gamma Prior/Posterior \n",  

                "Max Posterior = ", round(MaxX,1),"\n", 

                CI*100, "% Quantile = ", round(CIquantile,1), 

                "\n MTBF = ", round(MTBF,1), " (Frequentist), Test Time = ", round(sum(Data.Set$Data),1),", N  

(observed)= ",NN, "\n",  

                "Gamma prior mean = ",round(mean,1),", Gamma prior sigma = ", round(sigma,1), "\n", 

                "Gamma prior shape = ",round(gamma.shape,1),", Gamma prior scale = ", 

round(gamma.scale,1)), 

     xlab="MTBF",lwd=2, cex.main = 1.0) 

lines(density(rgamma(10000,gamma.shape,scale=gamma.scale)),lty=2,lwd=2) 

 

abline(v=c(T),col="red",lwd=3) 

abline(v=c(O),col="green",lwd=3)  

abline(v=c(CIquantile),col="black",lty=3,lwd=2)  
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legend("topright",lty=c(2,1,3),c("Prior","Posterior","CI"), cex = .75) 

 

# EOF  
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Appendix D: Zero Failure Data Set Comparison 
The following two figures show posteriors for the case where the test time (for a single unit) expired 

before any failures were observed. Figure 7 is the closed form solution (Matlab code) and Figure 8 is the 

MCMC solution (R code). The R code correctly accounts for the likelihood differences for censored data 

points.   

Significant observations: 

1. Posterior peaks are similar (85.6, 85.2) 

2. CI values are similar (72.2, 72.8) 

3. Closed form solution appears to have more mass in the right tail 

4. This data set consists of a single censored data point. A larger data set with more censored 

points may result in much different posteriors between the two solution methods. 

 
Figure 7: Closed Form Solution with Zero Failures 
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Figure 8: MCMC Solution with Zero Failures 

 

Despite the similarities in this output, the correct analysis method must be used when censored data is 

present. The previous plots appear similar because there is only 1 point in the data set so the prior is not 

overwhelmed by the data. However, consider the case where the same ten data points seen in Figure 2 

are accrued by five units resulting in 5 censored data points (the plot reflects the 10 point data set with 

every even data point censored). The closed form Matlab solution has no way to deal with this correctly 

but the MCMC R code does (Figure 9).  
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Figure 9: MCMC Solution with 5 Censored Data Points 

The comparison yields the following information: 

1. Censored data results in higher peak and CI values (as expected) 

2. The censored data analysis results in a lower error from the true value 

3. Frequentist MTBF is overly optimistic given only 5 observed failures (190.4) 

 

Table 3: Comparison of Uncensored and Censored Data Analysis 

 10 Uncensored Points 

(Figure 2) 

5 of 10 Censored Points 

(Figure 9) 

Most Likely (% error) 70.8 (12%) 79.6 (1%) 

10% Quantile Value 61.4 67.2 

 

There are frequentist methods that correctly deal with censored data. These are not covered here and 

there is no implication that method would produce an incorrect result. This appendix simply deals with 

the comparison between the Bayesian methods when censoring is present. 
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