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Executive Summary 
The operating characteristic (OC) curve is the primary tool in lot acceptance sampling plans (LASP). They 

allow data from a sample to be used to draw conclusions about the lot as a whole with defined risks. 

Although LASP may not be used in DoD testing, the same concept can be applied to reliability or 

performance when the response is expressed as a percentage (e.g., the system must successfully 

complete the task at a rate of 80%). One limitation of this methodology is that it only applies to a task 

that is performed repetitively at the same conditions because it requires all of the samples to be taken 

from the same population. OC curves allow the test planners to easily see how changing different 

criteria that define the required performance and level of risk impacts the required amount of testing. 

Therefore, they are an ideal way to balance cost and risk. Understanding OC curves can also be a 

practical way to better understand alpha, beta, delta, and sample size for many other types of tests. 

They also clearly demonstrate how not considering delta can lead to a flawed perception of risk.  

Keywords: Operating Characteristic curves, OC curves, acceptance testing, consumer’s risk, producer’s 

risk, AQL, RQL 

Introduction 
Operating Characteristic (OC) curves are widely used in industry for lot acceptance sampling plans 

(LASP). The x-axis is typically the percent defective, and the y-axis is the probability that the lot will be 

accepted. The user defines the Acceptable Quality Limit (AQL) and the Rejectable Quality Limit (RQL), 

and the producer’s risk and the consumer’s risk. The OC curve is generated by determining a sample size 

and an allowable number of failures or defects. Figure 1 is an OC curve with an AQL of 0.9 (percent 

defect of 0.1), an RQL of 0.8, producer’s risk of 0.1, consumer’s risk of 0.1, a sample size of 86 and 

acceptance number of 12 (maximum number of failures allowed in the sample). 
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Figure 1: Sample OC curve 

Each of the criteria can have a profound effect on the others and understanding how they interact is 

critical for developing a sampling plan that balances cost versus risk. While your initial reaction may be 

that this is not applicable to DoD testing, the same principles for creating OC curves can be useful for 

certain types of DoD testing. Also, OC curves are a practical graphic method to understand criteria alpha, 

beta, delta, sample size and how they relate to power and confidence. 

Understanding the Criteria 

Setting Limits 
The Acceptable Quality Limit (AQL) is a percent defective that is the requirement for the quality of the 

producer's product. The producer would like to design a sampling plan such that there is a high 

probability of accepting a lot that has a defect level less than or equal to the AQL. Or stated another 

way, “What level of performance do I want to pass.”  

The Rejectable Quality Limit (RQL) is a maximum percent defective that would be unacceptable to the 

consumer. The consumer would like the sampling plan to have a low probability of accepting a lot with a 

defect level as high as the RQL. Or stated another way, “What level of performance do I want to fail.” 

While not specifically mention in OC planning, the difference between the AQL and RQL is delta. OC 

curves help define and visualize a meaningful delta because it considers what value should pass, and 

what value should fail, instead of abstractly setting the difference between them at 1 or 2 standard 

deviations. 

Setting Risks 
Understanding the risks is important to the process of developing OC curves. Notice that risks is plural. 

There are two types of risk that should be considered, but they do not necessarily have to be equal. In 
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LASP, the system is assumed to pass the AQL, so if the system truly is at or above the AQL, but the 

sample has more than the allowable number of defects, this is a type I error. In LASP, the type I error 

rate (or alpha) is associated with the producer’s risk. However, alpha is not always the producer’s risk, 

and this will be discussed later.  

If true system performance does not meet the RQL, but the number of defects in the sample is equal to 

or lower than the acceptance number, this is a type II error. In LASP, the type II error rate (or beta) is 

associated with the consumer’s risk. However, beta is not always the consumer’s risk, and this will be 

discussed later. 

Ideally, alpha would be set at 0.05 but not more than 0.10. Many tests in the DoD use alpha as high as 

0.20 because of costs or other constraints. This might be required by budget or time constraints, but this 

means there is up to a 20% chance that you will reject a system that exactly meets the AQL. If I was a 

producer that delivered a system that met the requirement, I would be uncomfortable knowing that I 

might fail the test 1 out of 5 times. Any time constraints lead to accepting an alpha higher than 0.10 

leadership should be made aware of the risk. Furthermore, they should be informed of the cost to lower 

alpha to an acceptable level. 

Ideally beta would be 0.10 or less, but 0.20 is also common. To assess the risk of passing a system that 

does not meet the RQL, the consequences of incorrectly passing the system should be considered. 

Another way to decrease beta is to increase delta, but this would increase the AQL and/or lower the RQL 

and may result in unacceptable limits. So when considering “What do I want to pass and fail” you should 

also consider how much risk you are willing to accept at that level.  

Sample Size and Allowable Failures 
The last two criteria to consider in developing OC curves are the sample size (n), and the number of 

allowable failures or defects(c). As n increases the slope of the curve will increase, allowing the AQL and 

RQL to be closer together or consumer’s and producer’s risk will be lowered. As c increases the curve 

will move to the right.  

Drawing and Interpreting OC Curves  

Creating a Sampling Plan 
It is possible to generate OC curves in Excel, but this paper will not focus on the derivation required to do 

this. There are many other software tools that can generate OC curves, but this paper will use Minitab 16 

Statistical Software for all examples because it is easy to use and flexible enough most requirements. The 

Acceptance Sampling by Attribute function is under the Stat tab and Quality Tools sub menu. The input 

screen is shown in Figure 2. 
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Figure 2: Minitab Dialog Screen 

 

This section will show you how to create a sampling plan in Minitab. We will focus on the Go / no go 

(defective) measurement type, but there is also the ability to select the number of defects. We will also 

use the percent defective default, but other options include the proportion defective or defectives per 

million. The first two inputs boxes are the AQL and RQL in percent defective. Therefore enter 10 for a 0.90 

proportion and 20 for a 0.80 proportion. Here alpha and beta are set to 0.1 and 0.1, and the results are 

shown in Figure 1. The program will also output the results in tabular form as shown in Table 1. 

 

Table 1: Sample Minitab Output 
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The sample size given is the smallest n that will meet or exceed all of the requirements. In this case, the 

actual alpha is 0.086, and the actual beta is 0.901. For this sampling plan, we would conclude that the 

system was acceptable if we observed 12 or fewer defects (or failures). But remember, even if you 

choose to accept the performance, there is still a risk to the producer (a sample that fails a system that 

truly meets the AQL) defined by alpha and the consumer (a sample that passes a system that is at or 

below the RQL) defined by beta. A good sampling plan does not eliminate the risks; it just balances the 

risks versus the cost in an objective way. Also, the only decision that should be made using a sampling 

plan is to accept or reject the system. No other conclusions should be inferred even if the results are far 

above the AQL or far below the RQL. 

 

To see how to balance cost versus risks, let’s look at two examples. For both cases we want the system 

performance to be 0.90. In one case we can only test 50 times, and in the other case, we can test 200 

times. 

 

Given the limited number of tests available in the first case, we will have to relax some of our criteria. 

We can increase our risk, or lower our RQL. Increasing alpha and beta to 0.15 would require 59 runs 

with 8 acceptable defects. Decreasing the RQL to 0.75 but keeping alpha and beta at 0.10 would require 

40 runs with 6 allowable failures. The OC curves for both of these cases are shown in Figure 3. 

 
Figure 3: OC Curves for n=59 c=8 and n=40 and c=6 
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While these sampling plans do offer alternatives, neither seems ideal because one requires 9 more tests 

than available, and the other does not use all of the available testing and may be giving you less 

information than possible. A method for better optimizing the OC curve will be given in the next section. 

 

If we assume that we have more resources available, we can tighten some criteria. If we reduce alpha 

and beta to 0.05, this results in n=139 and c=19. If we increase the RQL to 0.85, this results in n=288 and 

c=35. These OC curves are shown in Figure 4. Again, neither of these answers appears to be optimized 

for 200 tests. Possible recommendations could be to reduce testing to 139, if the current RQL is 

acceptable, or increase the amount of testing to 288 if the raising the RQL to 0.85 justifies the additional 

cost. There is no right answer; this is simply a tool to balance cost and risk. The impact of changing alpha 

beta and the delta is different for each system under test. 

 
Figure 4: OC Curves for n=139 c=19 and n=288 and c=35 

Comparing User Defined Sampling Plans 
In the previous section, we attempted to develop sampling plans with the constraints of 50 and 200 

tests by changing the input criteria. Another method to develop OC curves available in Minitab is to 

compare user defined sampling plans. This option is available under the first dropdown arrow in the 

dialog box. This will change the input to look like Figure 5. 
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Figure 5: Compare User Defined Sampling Plans Input Screen  

This tool is very useful because it allows you to plot and analyze several sampling plans at one time. You 

can enter multiple values for n in the sample size box and input the corresponding value for c in the 

acceptance numbers block. Going back to our previous example, if we really want to define the best 

plan possible for exactly 50 tests, we can enter 50 multiple times for n and vary c. These results are 

shown in Figure 6 and Table 2. 

 

Figure 6: Compare User Defined Sampling Plans n=50  
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Table 2: Compare User Defined Sampling Plans n=50. 

 

For this example, let’s assume that we will keep the RQL at 0.80. For c=6 the consumer's risk is only 

0.103, but the producer's risk is 0.23. For c=7, the consumer’s risk increases to 0.19, but the consumer’s 

risk of only 0.122. For this example of a fixed AQL, RQL, and n, the biggest question is where to put the 

greater risk, on the consumer or producer. 

For the case with 200 tests, the OC curves are shown in Figure 7. Both the green line for c=26 and the 

blue line for c=28 have a producer’s risk of less than 0.1 and a very low consumer's risk for an RQL of 0.8. 

Two possible conclusions from this graph are you could perform less testing or increase your RQL to 

approximately 0.83 or 0.84. You could get the exact values for alpha and beta by going back into the 

compare user defined sampling plans input screen and changing the RQL to 0.83 and 0.84 and rerunning 

the results. Again, there is no right answer, and each case is different.  
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Figure 6: Compare User Defined Sampling Plans n=200  

Applying OC Curves to DoD Requirements 

Traditional DoD View of Requirements 
In LASP, the lot is assumed to meet the AQL, and will only be rejected if there is evidence that it is bad. 

In this case, the requirement is the AQL, and the null hypothesis is that the proportion is >= AQL. Alpha 

is the chance of a type I error (saying the system is bad when it is not) and is, therefore, the producer’s 

risk. Beta, or the chance of a type II error, is the chance of accepting a system that is below the RQL 

(saying the system is good when it is bad) and is, therefore, the consumer’s risk.  

When trying to verify requirements in DoD, the traditional approach has been to assume that the 

system does not meet the requirement unless there is evidence to reject this assumption. Also, there is 

often no consideration of a meaningful delta. OC curves are a good tool for graphically showing the 

issues with this approach.  

Under the null hypothesis that the proportion is <= the requirement, the requirement is set to the RQL. 

Even when there is an Objective (O) and Threshold (T) value given, testing is primarily designed to 

evaluate the Threshold value. Since there is only one value given, the AQL becomes the same as the 

RQL. Also since we are looking for data to reject the RQL, alpha, or the type I error rate becomes the 

consumer’s risk, and beta becomes the producer’s risk. This can cause a deal of confusion if the null and 
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alternative hypotheses are not clearly stated. With no delta, the producer’s risk + consumer’s risk = 1. 

This means that if one risk is low, the other risk is high. This is demonstrated by the OC curve in Figure 7 

for n=50 and c=1 and c=2. 

 

Figure 7: Compare User Defined Sampling Plans n=50 

Another danger illustrated by this chart is not examining the effects of the criteria. If you require 

RQL=AQL, alpha=0.1 and n=50. You would get only one allowable failure or defect. For c=1 alpha=0.034 

but for c=2, alpha= 0.112. In both cases, beta is 1-alpha and is very high. 

Another important conclusion from this chart is that even if the vendor delivers a system that exceeds 

the requirement, he would still have a low probability of it being accepted. If the vendor delivered a 

system actually only had 0.05 failures or defects, for c=2, the probability of acceptance is only 0.541, and 

for c=1, the probability of acceptance falls to 0.279. The sampling plan created without consideration of 

delta is very different from the one in the previous section that allowed 6 or 7 failures or defects, and it 

has very serious impacts on the probability of a good system being accepted. 

Alternative View of Requirements 
If we only consider one-level requirements (threshold=objective) it is not intuitive whether the 

assumption should be that the system will pass or the system will fail. Furthermore, being restricted to 

only one level, either the producer or consumer is going to take most of the risk. The lack of a defined, 

meaningful delta is prevalent in DoD programs and leads to a flawed process for balancing cost and risk. 
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We should not think that a requirement is evaluated via a mechanical process that results in THE 

answer. Instead, when we examine a requirement, we should think in terms of AQL (what do I want to 

pass) and RQL (what do I want to fail) and to help construct appropriate testing requirements and that 

considers delta. This process also helps to clarify the issue of determining what the null hypothesis 

should be. Then we can examine various levels of producer’s and consumer’s risk and balance that 

against the total amount of testing required. Finally, all of the options can be presented to leadership in 

a clear manner that explains the costs versus the risks instead of simple reporting that we followed the 

process and produced the answer. 

Summary and Conclusion 
OC curves are useful in evaluating repetitive testing events when the response is expressed as a 

proportion. They allow the users to easily examine the effects of the input criteria and help to balance 

cost and risk. They are also helpful in understanding alpha, beta, delta, and sample size because the 

changes are displayed graphically, and many different values can be plotted as once. For DoD testing, 

the most valuable lesson to learn from OC curves is the importance of defining an AQL (what do you 

want to pass) and an RQL (what do you want to fail). When this is not done, delta becomes zero, and 

there are serious impacts to the test design that leads to a flawed process for balancing cost and risk. 


