Textbook:
[1] P. H. Merritt & M. F. Spencer, Beam Control for Laser Systems, 2nd Edition, Directed Energy Professional Society, Albuquerque, NM (2018)
Book chapter:
[1] M. F. Spencer, “Spatial Heterodyne,” in Encyclopedia of Modern Optics, 2nd Edition, Bob Guenther & Duncan Steel, Eds., Elsevier, Amsterdam, The Netherlands (2018)
Patents:
[2] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Method of Single Shot Imaging for Correcting Phase Errors,” U.S. Patent 10,591,871 (March 17, 2020)
[1] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Single Shot Imaging Using Digital Holography Receiver,” U.S. Patent 10,416,609 (September 17, 2019)
Journal Articles:
[30] M. T. Banet, J. R. Fienup, J. D. Schmidt, & M. F. Spencer, “3D multi-plane sharpness metric maximization with variable corrective phase screens,” App. Opt. 60(25), G243-G252 (2021)
[29] D. J. Burrell, M. F. Spencer, N. R. Van Zandt, & R. G. Driggers, “Wave-optics simulation of dynamic speckle: II. In the image plane,” App. Opt. 60(25), G77-G90 (2021)
[28] D. J. Burrell, M. F. Spencer, N. R. Van Zandt, & R. G. Driggers, “Wave-optics simulation of dynamic speckle: I. In the pupil plane,” App. Opt. 60(25), G64-G76 (2021)
[27] D. E. Thornton, M. T. Banet, & M. F. Spencer, “Subaperture sampling for digital-holography applications involving atmospheric turbulence,” App. Opt. 60(25), G30-G39 (2021)
[26] T. M. Dolash, M. A. Cooper, M. F. Spencer, & S. A. Shakir, “Demonstration of a general scaling law for far-field propagation,” App. Opt. 60(20), G1-G9 (2021)
[25] D. E. Thornton, C. J. Radosevich, S. Horst, & M. F. Spencer, “Achieving the shot-noise limit using experimental multi-shot digital holography data,” Opt. Exp. 29(6), 9599-9617 (2021)
[24] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Coherent Plug-and-Play: Digital Holographic Imaging Through Atmospheric Turbulence Using Model-Based Iterative Reconstruction and Convolutional Neural Networks,” IEEE Tran. Comp. Img. 6, 1607-1621 (2020)
[23] M. T. Banet & M. F. Spencer, “Compensated-beacon adaptive optics using least-squares phase reconstruction,” Opt. Exp. 28(24), 36902-36914 (2020)
[22] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Impacts of Laboratory Vibrations and Laser Flicker Noise,” IEEE J. Quantum Electron. 56(5), 1400107 (2020)
[21] C. J. Radosevich, C. J. Pellizzari, S. Horst, & M. F. Spencer, “Imaging through deep turbulence using single-shot digital holography data,” Opt. Exp. 26(13), 19390-19401 (2020)
[20] S. Sulaiman, S. Gibson, & M. Spencer, “Novel subspace wavefront estimation using image sharpening and predictive dynamic digital holography,” J. Opt. Soc. Am. A, accepted (2020)
[19] M. F. Spencer, “Wave-optics investigation of turbulence thermal blooming interaction: I. Using steady-state simulations,” Opt. Eng. 59(8), 081804 (2020)
[18] M. F. Spencer, “Wave-optics investigation of turbulence thermal blooming interaction: II. Using time-dependent simulations,” Opt. Eng. 59(8), 081805 (2020)
[17] N. R. Van Zandt & M. F. Spencer, “Improved adaptive-optics performance using polychromatic speckle mitigation,” App. Opt. 59(4), 1071-1081 (2020)
[16] D. E. Thornton, D. Mao, M. F. Spencer, C. A. Rice, & G. P. Perram, “Digital holography experiments with degraded temporal coherence,” Opt. Eng. 59(10), 102406 (2020)
[15] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Digital holography efficiency measurements with excess noise,” App. Opt. 58(34), G19-G30 (2019)
[14] M. W. Hyde IV & M. F. Spencer, “M2 factor of a vector Schell-model beam,” Opt. Eng. 58(7), 074101 (2019).
[13] N. R. Van Zandt, M. F. Spencer, & S. T. Fiorino, “Polychromatic Speckle Mitigation for Wavefront Sensing in the presence of weak turbulence,” App. Opt. 58(9), 2300-2310 (2019)
[12] D. E. Thornton, M. F. Spencer, & G. P. Perram, “Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry with comparisons to the self-referencing interferometer,” App. Opt. 58(5), A179-A189 (2019)
[11] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Imaging through distributed-volume aberrations using single-shot digital holography,” J. Opt. Soc. Am. A. 36(2), A20-A33 (2019)
[10] M. W. Hyde IV & M. F. Spencer, “Behavior of tiled arrays fed by vector partially coherent sources,” App. Opt. 57(22), 6403-6409 (2018)
[9] N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde IV, & S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” App. Opt. 57(15), 4090-4102 (2018)
[8] N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde IV, & S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects,” App. Opt. 57(15), 4103-4110 (2018)
[7] S. Sulaiman, S. Gibson, & M. Spencer, “Predictive dynamic digital holography and image sharpening,” J. Opt. Soc. Am. A 35(6), 923-935 (2018)
[6] M. T. Banet, M. F. Spencer, & R. A. Raynor, “Digital-holographic detection in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing,” Appl. Opt. 57(3), 465-475 (2018)
[5] C. J. Pellizzari, M. T. Banet, M. F. Spencer, & C. A. Bouman, “Demonstration of single-shot digital holography using a Bayesian framework,” J. Opt. Soc. Am. A 35(1), 103-107 (2018).
[4] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Phase-error estimation & image reconstruction from digital-holography data using a Bayesian framework,” J. Opt. Soc. Am. A 34(9), 1659-1669 (2017)
[3] M. F. Spencer, R. A. Raynor, M. T. Banet, & D. K. Marker, “Deep turbulence wavefront sensing using digital holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56(3), 031213 (2016)
[2] S. A. Shakir, T. M. Dolash, M. F. Spencer, R. Berdine, D. S. Cargill, & R. Carreras, “General wave optics propagation scaling law,” J. Opt. Soc. Am. A 33(12), 2477-2484 (2016)
[1] M. W. Hyde IV, S. Basu, M. F. Spencer, S. J. Cusumano, & S. T. Fiorino, “Physical optics solution for the scattering of a partially-coherent wave from a statistically rough material surface,” Opt. Exp. 21(6), 6807-6825 (2013)
Mass Media Article:
[1] M. F. Spencer, M. W. Hyde IV, “Rough surface scattering for active-illumination systems,” SPIE Newsroom (2013)
Invited First-Author Conference Papers:
[3] M. F. Spencer, “Limitations of the Deep-turbulence Problem, Invited,” Proc. OSA PW3F.1 (2021)
[2] M. F. Spencer & T. J Brennan, “Compensation in the Presence of deep turbulence using tiled-aperture architectures, Invited,” Proc. SPIE 10194, 1019403 (2017)
[1] M. F. Spencer, R. A. Raynor, T. A. Rhoadarmer, & D. K. Marker, “Deep-Turbulence Simulation in a Scaled-Laboratory Environment Using Five Phase-Only Spatial Light Modulators, Invited,” Proc. 18th Coherent Laser Radar Conference (2016)
Conference Papers:
[59] C. J. Radosevich, D. E. Thornton, & M. F. Spencer, “Optimal signal & reference strengths for a digital-holography wavefront sensor,” Proc. SPIE 11836, 11836-14 (2021)
[58] T. Bate, M. F. Spencer, & C. J. Pellizzari, “Model-based digital holographic imaging using multi-shot data,” Proc. SPIE 11836, 11836-16 (2021)
[57] N. Tako, C. J. Radosevich, T. J. Brennan, & Mark F. Spencer, “Comparison of the Shack-Hartmann and fixed-Pyramid wavefront sensors in weak to moderately deep turbulence conditions,” Proc. OSA PF1C.4 (2021)
[56] J. H. Follansbee, J. R. Crepp, M. T. Banet, C. J. Radosevich, & M. F. Spencer, “Simulations of compensated-beacon adaptive optics using a Fresnel wavefront sensor,” Proc. OSA PF1C.3 (2021).
[55] S. Sulaiman, S. Gibson, & M. Spencer, “Predictive local sharpening and digital holography,” Proc. SPIE 11508, 115080D (2020)
[54] L. Cuellar, S. Shakir, D. Voelz, M. Spencer, & J. Vera Cruz, “Digital holography three-dimensional imaging using frequency chirping of a laser,” Proc. SPIE 11508, 115080H (2020)
[53] D. Burrell, B. Berry, M. Spencer, & R. Driggers, “Laser Speckle Mitigation Through Substandard Compressive Sensing,” Proc. OSA JW4D.5 (2020)
[52] A. de Pinho e Braga, D. W. Oesch, D. C. Dayton, & M. F. Spencer, “Coherence length measurements under strong scintillation conditions using five-layer laboratory-scaled atmospheric simulator,” Proc. OSA SW4E.7 (2020)
[51] C. J. Radosevich & M. F. Spencer, “Closed-form expressions for digital-holographic detection in a laboratory setting,” Proc. SPIE 11135, 111350C (2019)
[50] M. T. Banet & M. F. Spencer, “Multiplexed digital holography for simultaneous imaging and wavefront sensing,” Proc. SPIE 11135, 1113503 (2019)
[49] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Laser linewidth measurements using digital holography,” Proc. SPIE 11135, 111350F (2019).
[48] D. Mao, D. E. Thornton, C. A. Rice, M. F. Spencer, & G. P. Perram, “Effects of sinusoidal phase modulation on the signal-to-noise ratio in a digital holography system,” Proc. SPIE 11135, 111350E (2019).
[47] R. J. Hall & M. F. Spencer, “Polychromatic effects on incoherent imaging through anisoplanatic turbulence,” Proc. SPIE 11135, 1113506 (2019)
[46] D. J. Burrell, M. F. Spencer, N. R. Van Zandt, & R. G. Driggers, “Wave-optics simulation of correlated speckle fields for use in closed-loop-tracking studies,” Proc. SPIE 11135, 1113508 (2019).
[45] S. Horst, C. J. Radosevich, C. J. Pellizzari, & M. F. Spencer, “Measuring the Fried parameter of transmissive phase screens using digital-holographic detection,” Proc. SPIE 11135, 111350D (2019)
[44] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Coherent-Image Reconstruction Using Convolutional Neural Networks,” Proc. OSA MTu4D.4 (2019)
[43] M. T. Banet & M. F. Spencer, “Multiplexed Digital Holography for Atmospheric Characterization,” Proc. OSA PTh1D.2 (2019)
[42] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Heterodyne Mixing Efficiency of a Digital Holography System,” Proc. OSA JW2A.47 (2019)
[41] C. J. Pellizzari, D. E. Thornton, C. Vikupitz, M. Cooper, M. F. Spencer, “A STEM outreach tool for demonstrating the sensing and compensation of atmospheric turbulence,” Proc. OSA 11143_98 (2019)
[40] M. W. Hyde IV & M. F. Spencer, “Modeling the effects of high-energy-laser beam quality using scalar Schell-model sources,” Proc. SPIE 10981, 10981100 (2019)
[39] C. C. Wilcox, C. J. Radosevich, K. P. Healy, A. L. Tuffli, B. D. Agena, M. F. Spencer, & D. J. Wittich III, “Digital holography wavefront sensing with a supersonic wind tunnel,” Proc. SPIE 11030, 110300L (2019)
[38] D. E. Thornton, M. F. Spencer, B. T. Plimmer, & D. Mao, “The digital holography demonstration: a table-top setup for STEM-based outreach events,” Proc. SPIE 10741, 107410J (2018)
[37] B. T. Plimmer, D. C. Dayton, M. F. Spencer, & A. G. Hassall, “Influence functions of a deformable mirror: least-squares wave-front fitting,” Proc. SPIE 10772, 1077205 (2018)
[36] S. P. Bingham, M. F. Spencer, N. R. Van Zandt, & M. A. Cooper, “Wave-optics comparisons to a scaling-law formulation,” Proc. SPIE 10772, 1077202 (2018)
[35] C. J. Radosevich, C. C. Wilcox, D. C. Dayton, B. Selph, M. A. Cooper, M. F. Spencer, & Donald J. Wittich, “Dual wavefront sensing design for supersonic wind tunnel experiments,” Proc. SPIE 10772, 1077209 (2018)
[34] J. R. Beck, M. F. Spencer, J. P. Bos, & T. J. Brennan, “Investigation of branch-point density using traditional wave-optics techniques,” Proc. SPIE 10772, 1077206 (2018)
[33] N. R. Van Zandt, M. F. Spencer, & T. J. Brennan, “Polychromatic speckle mitigation for improved adaptive-optics system performance,” Proc. SPIE 10772, 107720R (2018)
[32] D. C. Dayton, M. F. Spencer, A. G. Hassall, T. A. Rhoadarmer, “Distributed-volume optical disturbance generation in a scaled-laboratory environment using neumatic liquid-crystal phase modulators,” Proc. SPIE 10772, 107720H (2018)
[31] C. E. Murphy & M. F. Spencer, “Investigation of turbulence thermal blooming interaction using the split-step beam propagation method,” Proc. SPIE 10772, 1077208 (2018)
[30] D. J. Burrell, N. R. Van Zandt, M. F. Spencer, & T. J. Brennan, “Wave-optics simulation of correlated speckle fields for use in closed-loop-phase-compensation studies,” Proc. SPIE 10772, 1077207 (2018)
[29] M. F. Spencer & D. E. Thornton, “Signal-to-noise models for digital-holographic detection,” Proc. SPIE 10650, 1065008 (2018)
[28] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Efficiency measurements for a digital-holography system,” SPIE Proc. 10650, 1065004 (2018)
[27] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Optically coherent image reconstruction in the presence of phase errors using advanced-prior models,” Proc. SPIE 10650, (2018)
[26] N. R. Van Zandt, M. F. Spencer, J. E. McCrae, & S. T. Fiorino “Polychromatic Speckle Mitigation at Surface Discontinuities,” Proc. IEEE (2018)
[25] D. E. Thornton, M. F. Spencer, & G. P. Perram, “Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry,” Proc. SPIE 10410, 1041004 (2017)
[24] R. A. Raynor, M. F. Spencer, & T. D. Moore, “Modeling coherence propagation in a homogenizing light pipe for speckle mitigation,” Proc. SPIE 10410, 104100X (2017)
[23] A. Enterline, M. F. Spencer, D. J. Burrell, & T. J. Brennan, “Impact of beacon wavelength on phase-compensation performance,” Proc. SPIE 10410, 1041002 (2017)
[22] M. T. Banet & M. F. Spencer, “Spatial-heterodyne sampling requirements in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing,” Proc. SPIE 10410, 104100E (2017)
[21] M. Lanari, S. D. Butler, M. Marciniak, & M. F. Spencer, “Wave optics simulation of statistically rough surface scatter,” Proc. SPIE 10402, 1040215 (2017)
[20] M. F. Spencer & T. J. Brennan, “Branch cut accumulation using LSPV+7,” Proc. OSA PTh2D.2 (2017)
[19] N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, S. T. Fiorino, & M. F. Spencer, “Simulating time-evolving non-cross-spectrally pure Schell-model sources,” Proc. IEEE (2017)
[18] M. F. Spencer, I. J. Atencio; J. A. McCullough; E. S. Hwang “The AFRL Scholars Program: a STEM-based summer internship initiative,” Proc. SPIE 9946, 99460E (2016)
[17] N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. 106500B Anderson, M. W. Hyde, & S. T. Fiorino “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016)
[16] S. Sulaiman, S. Gibson, & M. F. Spencer, “Predictive dynamic digital holography,” Proc. SPIE 9982, 99820A (2016)
[15] T. D. Moore, R. A. Raynor, M. F. Spencer, & J. D. Schmidt, “Waveguide generated mitigation of speckle and scintillation on an actively illuminated target,” Proc. SPIE 9982, 99820E (2016)
[14] M. T. Banet, M. F. Spencer, R. A. Raynor, & D. K. Marker, “Digital holography wavefront sensing in the pupil-plane recording geometry for distributed-volume atmospheric aberrations,” Proc. SPIE 9982, 998208 (2016)
[13] M. J. Gridley, M. W. Hyde, M. F. Spencer, & S. Basu, “Experimental method of generating electromagnetic Gaussian Schell-model beams,” Proc. SPIE 9617, 96170C (2015)
[12] M. F. Spencer, I. V. Dragulin, D. S. Cargill, & M. J. Steinbock, “Digital holography wave-front sensing in the presence of strong atmospheric turbulence & thermal blooming,” Proc. SPIE 9617, 961705 (2015)
[11] S. Basu, M. W. Hyde IV, J. E. McCrae Jr., M. F. Spencer, & S. T. Fiorino, “Examining the validity of using a Gaussian Schell model for modeling an extended beacon on a rough perfectly reflecting surface,” Proc. SPIE 9224, 92240L (2014)
[10] M. F. Spencer, M. J. Steinbock, M. W. Hyde, & M. A. Marciniak, “The Laser Propagation Demonstration: a STEM-based outreach effort,” Proc. SPIE 9188, 91880D (2014).
[9] M. F. Spencer, M. W. Hyde, S. Basu, M. A. Marciniak, “The scattering of partially coherent electromagnetic beam illumination from a statistically rough surface modeled as a perfect electrical conductor,” Proc. SPIE 9205, 92050J (2014)
[8] M. F. Spencer, D. E. Thornton, M. W. Hyde, & J. P. Bos, “Piston phase compensation of tiled apertures in the presence of turbulence & thermal blooming,” Proc. IEEE (2014)
[7] C. J. Pellizzari, M. F. Spencer, B. Calef, J. P. Bos, S. Williams, D. C. Senft, & S. E. Williams, “Performance Characterization of Phase Gradient Autofocus for Inverse Synthetic Aperture LADAR,” Proc. IEEE (2014)
[6] C. J. Pellizzari, M. F. Spencer, N. Steinhoff, J. Belsher, G. Tyler, S. Williams, S. Williams, “Inverse synthetic aperture ladar: a high-fidelity modeling & simulation tool,” Proc. SPIE 8877, 88770B (2013)
[5] M. F. Spencer & M. W. Hyde IV, “Phased beam projection from tiled apertures in the presence of turbulence and thermal blooming,” Proc. SPIE 8877, 887703 (2013)
[4] M. W. Hyde IV, S. Basu, S. J. Cusumano, & M. F. Spencer, “Scalar wave solution for the scattering of a partially coherent beam from a statistically rough metallic surface,” Proc. SPIE 8550, 85503A (2012)
[3] M. F. Spencer & M. W. Hyde IV, “An investigation of stair mode in optical phased arrays using tiled apertures,” Proc. SPIE 8520, 852006 (2012)
[2] M. F. Spencer & S. J. Cusumano, “Impact of branch points in adaptive optics compensation of thermal blooming & turbulence,” Proc. SPIE 8165, 816503 (2011).
[1] M. F. Spencer, S. J. Cusumano, J. D. Schmidt, & S. T. Fiorino, “Impact of spatial resolution on thermal blooming phase compensation instability,” Proc. SPIE 7816, 781609 (2010)
Invited First-Author Conference Presentations:
[4] M. F. Spencer, C. J. Pellizzari, & C. A. Bouman, “Imaging through deep turbulence and emerging solutions, Invited,” Proc. IS&T (2020)
[3] M. F. Spencer, “Integrating digital-holographic detection into a laser weapon system, Invited,” Proc. MSS (2019) [Dist.D]
[2] M. F. Spencer, C. J. Pellizzari, & D. E. Thornton, “Collaborative research in deep turbulence, Invited,” Proc. OSA (2019)
[1] M. F. Spencer & T. J. Brennan, “Phase Compensation in the Presence of BIL-HEL Wavelength Differences, Invited,” Proc. DEPS (2018) [Dist. D]
First-Author Conference Presentations:
[21] M. F. Spencer, “Overview of the Deep Turbulence Problem & Emerging Testbeds,” Proc. DEPS (2021) [Dist. D]
[20] M. F. Spencer & C. J. Pellizzari, “Emerging solutions to the deep-turbulence problem using digital holography and deep learning,” Proc. DEPS (2021)
[19] M. F. Spencer & C. J. Pellizzari, “Imaging through deep turbulence using digital holography experiments,” Proc. IS&T (2021)
[18] M. F. Spencer, “Wave-optics investigation of turbulence thermal blooming interaction,” Proc. DEPS (2020) [Dist. C]
[17] M. F. Spencer, “Overview of the deep-turbulence problem for beam-control system design,” Proc. DEPS (2020) [Dist. D]
[16] M. F. Spencer, “Integrating digital-holographic detection into a laser weapon system: an update,” Proc. DEPS (2019) [Dist.D]
[15] M. F. Spencer, “Impacts of turbulence thermal blooming interaction,” Proc. SPIE 1113507 (2019)
[14] M. F. Spencer & D. K. Marker, “An In-Depth Overview of Phased Array Research at AFRL,” Proc. DEPS (2018) [Dist. D]
[13] M. F. Spencer, T. J. Brennan, & D. K. Marker, “Tiled Vs. Filled Phase Compensation: A System-Level, Deep-Turbulence Study,” Proc. DEPS (2017) [Dist. D]
[12] M. F. Spencer, N. R. Van Zandt, T. J. Brennan, D. C. Dayton, & D. K. Marker, “Comprehensive overview of a HEL-JTO sponsored wavefront sensor study,” Proc. DEPS (2017) [Dist. D]
[11] M. F. Spencer, T. J. Brennan, R. A. Raynor, & D. K. Marker, “Compensation in the Presence of Deep Turbulence Using Tiled-Aperture Architectures,” Proc. DEPS (2016) [Dist. D]
[10] M. F. Spencer, D. K. Marker, I. J. Atencio, & R. A. Hamil, “Linear Systems in Optics: A DE-inspired short course at AFRL,” Proc. DEPS (2016) [Dist. D]
[9] M. F. Spencer, T. A. Rhoadarmer, A. L. Tuffli, D. K. Marker, “Deep-Turbulence Simulation in a Scaled-Laboratory Environment Using Five Phase-Only Spatial Light Modulators,” Proc. DEPS (2016) [Dist. D]
[8] M. F. Spencer, I. V. Dragulin, D. S. Cargill, & M. J. Steinbock, “Digital holography wave-front sensing in the presence of strong atmospheric turbulence and thermal blooming,” Proc. DEPS (2015) [Dist. D]
[7] M. F. Spencer & M. W. Hyde, “The Scattering of Partially Coherent Electromagnetic Beam Illumination from a Statistically Rough Perfectly Reflecting Surface,” Proc. DEPS (2014)
[6] M. F. Spencer, “Bachelors to PhD: An Education Stimulated by Research in Directed Energy,” Proc. DEPS (2014)
[5] M. F. Spencer, M. W. Hyde, & S. J Cusumano, “Rough Surface Scattering as Applied to Laser Target Interaction of a Multi-Fiber Laser Source,” Proc. DEPS (2011) [Dist. C]
[4] M. F. Spencer & S. J. Cusumano, “Branch Point Mitigation of Thermal Blooming Phase Compensation Instability,” Proc. DEPS (2011) [Dist. C]
[3] M. F. Spencer, S. J. Cusumano, J. D. Schmidt, & S. T. Fiorino, “Impact of Temporal Resolution on Thermal Blooming Phase Compensation Instability,” Proc. DEPS (2010) [Dist. C]
[2] M. F. Spencer, S. J. Cusumano, J. D. Schmidt, & S. T. Fiorino, “Adaptive Optics Mitigation of Thermal Blooming Effects,” Proc. DEPS (2009) [Dist. C]
[1] M. F. Spencer, S. M. Massey, & T. H. Russell, “Stimulated Brillouin Scattering Phase Conjugation in Optical Fibers,” Proc. DEPS (2007)
State-of-the-Art Assessment Report:
[1] M. F. Spencer, “Section 3.2.4.1: Wavefront Sensing & Control,” in Beam Control Technology Assessment (BCTA) Report, Robert J. Pawlak, Amanda B. Clark, & Arthur G. Hassall, Eds., DE-JTO, Albuquerque, NM (2019) [Dist. D]
PhD Dissertation, MS Thesis, & Undergraduate Honors Thesis:
[3] M. F. Spencer, “The Scattering of Partially Coherent Electromagnetic Beam Illumination from Statistically Rough Surfaces,” PhD Dissertation, Air Force Institute of Technology, ADA603227 (2014)
[2] M. F. Spencer, “Branch Point Mitigation of Thermal Blooming Phase Compensation Instability,” MS Thesis, Air Force Institute of Technology, ADA538538 (2011)
[1] M. F. Spencer, “Stimulated Brillouin Scattering (SBS) Threshold in Optical Fibers,” Undergraduate Honors Thesis, University of Redlands (2008)