Dr. Mark F. Spencer, PHD

DR-III (GS-14)

Bio Photo

 

Contact:
Comm: 808-477-9010
DSN: 315-477-8010
Click to E-mail
View Department

Dr. Mark F. Spencer is a Senior Physicist at the Air Force Research Laboratory, Directed Energy Directorate (AFRL/RD) and an Adjunct Associate Professor of Optical Sciences and Engineering at the Air Force Institute of Technology (AFIT), within the Department of Engineering Physics. He currently serves as the Directed Energy Staff Specialist at the US Indo-Pacific Command (as the first-ever liaison from AFRL/RD). Mark received his PhD degree in Optical Sciences and Engineering from AFIT in 2014. In addition to being a Fellow of the International Society for Optics and Photonics (SPIE) and a Senior Member of the Optical Society (Optica, formerly OSA), he is an active member of the Directed Energy Professional Society (DEPS).

Education

PhD, Optical Sciences and Engineering, Air Force Institute of Technology, 2014

MS, Optical Sciences and Engineering, Air Force Institute of Technology, 2011

BS, Physics, University of Redlands, 2008

Awards

  • SPIE Fellow Member, 2021
  • AFRL Early Career Award, 2020
  • OSA Senior Member, 2020
  • SPIE Community Champion, 2019 & 2020
  • US Air Force Scientific Advisory Board Best Presentation, 2019
  • OSA Top 200 Journal Referee Appreciation, 2018
  • SPIE Rising Researcher Award, 2018
  • AFRL Annual Commander’s Cup Junior Individual Award, 2017
  • AFRL/RD Annual Director’s Cup Junior Force Award, 2017
  • AFRL/RD Annual Mentorship Award, 2016
  • SPIE Senior Member, 2016
  • AFRL Scholars Program Outstanding Mentor Award, 2016
  • AFRL/RD Civilian of the Quarter, 2nd Quarter, 2015
  • AFIT Civilian Student of the Year Award, 2013
  • AFIT Civilian Student of the Quarter, 4th Quarter, 2013
  • AFIT Civilian Student of the Quarter, 3rd Quarter, 2012
  • Science, Mathematics, & Research for Transformation (SMART) Scholarship, 2011-2014
  • DEPS Graduate Scholarship, 2010, 2011, & 2012
  • SPIE Scholarship in Optical Sciences & Engineering, 2010 & 2013
  • SPIE Scholarship in Optics & Photonics, 2012
  • Dayton Area Graduate Studies Institute (DAGSI) Scholarship, 2009 – 2011
  • U of Redlands Robert D. Engel Award as the Top Physics Major, 2008

Publications

Textbook:

[1] P. H. Merritt & M. F. Spencer, Beam Control for Laser Systems, 2nd Edition, Directed Energy Professional Society, Albuquerque, NM (2018)

 

Book chapter:

[1] M. F. Spencer, “Spatial Heterodyne,” in Encyclopedia of Modern Optics, 2nd Edition, Bob Guenther & Duncan Steel, Eds., Elsevier, Amsterdam, The Netherlands (2018)

 

Patents:

[2] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Method of Single Shot Imaging for Correcting Phase Errors,” U.S. Patent 10,591,871 (March 17, 2020)

[1] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Single Shot Imaging Using Digital Holography Receiver,” U.S. Patent 10,416,609 (September 17, 2019)

 

Journal Articles:

[30] M. T. Banet, J. R. Fienup, J. D. Schmidt, & M. F. Spencer, “3D multi-plane sharpness metric maximization with variable corrective phase screens,” App. Opt. 60(25), G243-G252 (2021)

[29] D. J. Burrell, M. F. Spencer, N. R. Van Zandt, & R. G. Driggers, “Wave-optics simulation of dynamic speckle: II. In the image plane,” App. Opt. 60(25), G77-G90 (2021)

[28] D. J. Burrell, M. F. Spencer, N. R. Van Zandt, & R. G. Driggers, “Wave-optics simulation of dynamic speckle: I. In the pupil plane,” App. Opt. 60(25), G64-G76 (2021)

[27] D. E. Thornton, M. T. Banet, & M. F. Spencer, “Subaperture sampling for digital-holography applications involving atmospheric turbulence,” App. Opt. 60(25), G30-G39 (2021)

[26] T. M. Dolash, M. A. Cooper, M. F. Spencer, & S. A. Shakir, “Demonstration of a general scaling law for far-field propagation,” App. Opt. 60(20), G1-G9 (2021)

[25] D. E. Thornton, C. J. Radosevich, S. Horst, & M. F. Spencer, “Achieving the shot-noise limit using experimental multi-shot digital holography data,” Opt. Exp. 29(6), 9599-9617 (2021)

[24] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Coherent Plug-and-Play: Digital Holographic Imaging Through Atmospheric Turbulence Using Model-Based Iterative Reconstruction and Convolutional Neural Networks,” IEEE Tran. Comp. Img. 6, 1607-1621 (2020)

[23] M. T. Banet & M. F. Spencer, “Compensated-beacon adaptive optics using least-squares phase reconstruction,” Opt. Exp. 28(24), 36902-36914 (2020)

[22] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Impacts of Laboratory Vibrations and Laser Flicker Noise,” IEEE J. Quantum Electron. 56(5), 1400107 (2020)

[21] C. J. Radosevich, C. J. Pellizzari, S. Horst, & M. F. Spencer, “Imaging through deep turbulence using single-shot digital holography data,” Opt. Exp. 26(13), 19390-19401 (2020)

[20] S. Sulaiman, S. Gibson, & M. Spencer, “Novel subspace wavefront estimation using image sharpening and predictive dynamic digital holography,” J. Opt. Soc. Am. A, accepted (2020)

[19] M. F. Spencer, “Wave-optics investigation of turbulence thermal blooming interaction: I. Using steady-state simulations,” Opt. Eng. 59(8), 081804 (2020)

[18] M. F. Spencer, “Wave-optics investigation of turbulence thermal blooming interaction: II. Using time-dependent simulations,” Opt. Eng. 59(8), 081805 (2020)

[17] N. R. Van Zandt & M. F. Spencer, “Improved adaptive-optics performance using polychromatic speckle mitigation,” App. Opt. 59(4), 1071-1081 (2020)

[16] D. E. Thornton, D. Mao, M. F. Spencer, C. A. Rice, & G. P. Perram, “Digital holography experiments with degraded temporal coherence,” Opt. Eng. 59(10), 102406 (2020)

[15] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Digital holography efficiency measurements with excess noise,” App. Opt. 58(34), G19-G30 (2019)

[14] M. W. Hyde IV & M. F. Spencer, “M2 factor of a vector Schell-model beam,” Opt. Eng. 58(7), 074101 (2019).

[13] N. R. Van Zandt, M. F. Spencer, & S. T. Fiorino, “Polychromatic Speckle Mitigation for Wavefront Sensing in the presence of weak turbulence,” App. Opt. 58(9), 2300-2310 (2019)

[12] D. E. Thornton, M. F. Spencer, & G. P. Perram, “Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry with comparisons to the self-referencing interferometer,” App. Opt. 58(5), A179-A189 (2019)

[11] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Imaging through distributed-volume aberrations using single-shot digital holography,” J. Opt. Soc. Am. A. 36(2), A20-A33 (2019)

[10] M. W. Hyde IV & M. F. Spencer, “Behavior of tiled arrays fed by vector partially coherent sources,” App. Opt. 57(22), 6403-6409 (2018)

[9] N. R. Van Zandt, J. E. McCrae, M. F. Spencer, M. J. Steinbock, M. W. Hyde IV, & S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 1. Well-resolved objects,” App. Opt. 57(15), 4090-4102 (2018)

[8] N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. Anderson, M. W. Hyde IV, & S. T. Fiorino, “Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects,” App. Opt. 57(15), 4103-4110 (2018)

[7] S. Sulaiman, S. Gibson, & M. Spencer, “Predictive dynamic digital holography and image sharpening,” J. Opt. Soc. Am. A 35(6), 923-935 (2018)

[6] M. T. Banet, M. F. Spencer, & R. A. Raynor, “Digital-holographic detection in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing,” Appl. Opt. 57(3), 465-475 (2018)

[5] C. J. Pellizzari, M. T. Banet, M. F. Spencer, & C. A. Bouman, “Demonstration of single-shot digital holography using a Bayesian framework,” J. Opt. Soc. Am. A 35(1), 103-107 (2018).

[4] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Phase-error estimation & image reconstruction from digital-holography data using a Bayesian framework,” J. Opt. Soc. Am. A 34(9), 1659-1669 (2017)

[3] M. F. Spencer, R. A. Raynor, M. T. Banet, & D. K. Marker, “Deep turbulence wavefront sensing using digital holographic detection in the off-axis image plane recording geometry,” Opt. Eng. 56(3), 031213 (2016)

[2] S. A. Shakir, T. M. Dolash, M. F. Spencer, R. Berdine, D. S. Cargill, & R. Carreras, “General wave optics propagation scaling law,” J. Opt. Soc. Am. A 33(12), 2477-2484 (2016)

[1] M. W. Hyde IV, S. Basu, M. F. Spencer, S. J. Cusumano, & S. T. Fiorino, “Physical optics solution for the scattering of a partially-coherent wave from a statistically rough material surface,” Opt. Exp. 21(6), 6807-6825 (2013)

 

Mass Media Article:

[1] M. F. Spencer, M. W. Hyde IV, “Rough surface scattering for active-illumination systems,” SPIE Newsroom (2013)

 

Invited First-Author Conference Papers:

[3] M. F. Spencer, “Limitations of the Deep-turbulence Problem, Invited,” Proc. OSA PW3F.1 (2021)

[2] M. F. Spencer & T. J Brennan, “Compensation in the Presence of deep turbulence using tiled-aperture architectures, Invited,” Proc. SPIE 10194, 1019403 (2017)

[1] M. F. Spencer, R. A. Raynor, T. A. Rhoadarmer, & D. K. Marker, “Deep-Turbulence Simulation in a Scaled-Laboratory Environment Using Five Phase-Only Spatial Light Modulators, Invited,” Proc. 18th Coherent Laser Radar Conference (2016)

 

Conference Papers:

[59] C. J. Radosevich, D. E. Thornton, & M. F. Spencer, “Optimal signal & reference strengths for a digital-holography wavefront sensor,” Proc. SPIE 11836, 11836-14 (2021)

[58] T. Bate, M. F. Spencer, & C. J. Pellizzari, “Model-based digital holographic imaging using multi-shot data,” Proc. SPIE 11836, 11836-16 (2021)

[57] N. Tako, C. J. Radosevich, T. J. Brennan, & Mark F. Spencer, “Comparison of the Shack-Hartmann and fixed-Pyramid wavefront sensors in weak to moderately deep turbulence conditions,” Proc. OSA PF1C.4 (2021)

[56] J. H. Follansbee, J. R. Crepp, M. T. Banet, C. J. Radosevich, & M. F. Spencer, “Simulations of compensated-beacon adaptive optics using a Fresnel wavefront sensor,” Proc. OSA PF1C.3 (2021).

[55] S. Sulaiman, S. Gibson, & M. Spencer, “Predictive local sharpening and digital holography,” Proc. SPIE 11508, 115080D (2020)

[54] L. Cuellar, S. Shakir, D. Voelz, M. Spencer, & J. Vera Cruz, “Digital holography three-dimensional imaging using frequency chirping of a laser,” Proc. SPIE 11508, 115080H (2020)

[53] D. Burrell, B. Berry, M. Spencer, & R. Driggers, “Laser Speckle Mitigation Through Substandard Compressive Sensing,” Proc. OSA JW4D.5 (2020)

[52] A. de Pinho e Braga, D. W. Oesch, D. C. Dayton, & M. F. Spencer, “Coherence length measurements under strong scintillation conditions using five-layer laboratory-scaled atmospheric simulator,” Proc. OSA SW4E.7 (2020)

[51] C. J. Radosevich & M. F. Spencer, “Closed-form expressions for digital-holographic detection in a laboratory setting,” Proc. SPIE 11135, 111350C (2019)

[50] M. T. Banet & M. F. Spencer, “Multiplexed digital holography for simultaneous imaging and wavefront sensing,” Proc. SPIE 11135, 1113503 (2019)

[49] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Laser linewidth measurements using digital holography,” Proc. SPIE 11135, 111350F (2019).

[48] D. Mao, D. E. Thornton, C. A. Rice, M. F. Spencer, & G. P. Perram, “Effects of sinusoidal phase modulation on the signal-to-noise ratio in a digital holography system,” Proc. SPIE 11135, 111350E (2019).

[47] R. J. Hall & M. F. Spencer, “Polychromatic effects on incoherent imaging through anisoplanatic turbulence,” Proc. SPIE 11135, 1113506 (2019)

[46] D. J. Burrell, M. F. Spencer, N. R. Van Zandt, & R. G. Driggers, “Wave-optics simulation of correlated speckle fields for use in closed-loop-tracking studies,” Proc. SPIE 11135, 1113508 (2019).

[45] S. Horst, C. J. Radosevich, C. J. Pellizzari, & M. F. Spencer, “Measuring the Fried parameter of transmissive phase screens using digital-holographic detection,” Proc. SPIE 11135, 111350D (2019)

[44] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Coherent-Image Reconstruction Using Convolutional Neural Networks,” Proc. OSA MTu4D.4 (2019)

[43] M. T. Banet & M. F. Spencer, “Multiplexed Digital Holography for Atmospheric Characterization,” Proc. OSA PTh1D.2 (2019)

[42] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Heterodyne Mixing Efficiency of a Digital Holography System,” Proc. OSA JW2A.47 (2019)

[41] C. J. Pellizzari, D. E. Thornton, C. Vikupitz, M. Cooper, M. F. Spencer, “A STEM outreach tool for demonstrating the sensing and compensation of atmospheric turbulence,” Proc. OSA 11143_98 (2019)

[40] M. W. Hyde IV & M. F. Spencer, “Modeling the effects of high-energy-laser beam quality using scalar Schell-model sources,” Proc. SPIE 10981, 10981100 (2019)

[39] C. C. Wilcox, C. J. Radosevich, K. P. Healy, A. L. Tuffli, B. D. Agena, M. F. Spencer, & D. J. Wittich III, “Digital holography wavefront sensing with a supersonic wind tunnel,” Proc. SPIE 11030, 110300L (2019)

[38] D. E. Thornton, M. F. Spencer, B. T. Plimmer, & D. Mao, “The digital holography demonstration: a table-top setup for STEM-based outreach events,” Proc. SPIE 10741, 107410J (2018)

[37] B. T. Plimmer, D. C. Dayton, M. F. Spencer, & A. G. Hassall, “Influence functions of a deformable mirror: least-squares wave-front fitting,” Proc. SPIE 10772, 1077205 (2018)

[36] S. P. Bingham, M. F. Spencer, N. R. Van Zandt, & M. A. Cooper, “Wave-optics comparisons to a scaling-law formulation,” Proc. SPIE 10772, 1077202 (2018)

[35] C. J. Radosevich, C. C. Wilcox, D. C. Dayton, B. Selph, M. A. Cooper, M. F. Spencer, & Donald J. Wittich, “Dual wavefront sensing design for supersonic wind tunnel experiments,” Proc. SPIE 10772, 1077209 (2018)

[34] J. R. Beck, M. F. Spencer, J. P. Bos, & T. J. Brennan, “Investigation of branch-point density using traditional wave-optics techniques,” Proc. SPIE 10772, 1077206 (2018)

[33] N. R. Van Zandt, M. F. Spencer, & T. J. Brennan, “Polychromatic speckle mitigation for improved adaptive-optics system performance,” Proc. SPIE 10772, 107720R (2018)

[32] D. C. Dayton, M. F. Spencer, A. G. Hassall, T. A. Rhoadarmer, “Distributed-volume optical disturbance generation in a scaled-laboratory environment using neumatic liquid-crystal phase modulators,” Proc. SPIE 10772, 107720H (2018)

[31] C. E. Murphy & M. F. Spencer, “Investigation of turbulence thermal blooming interaction using the split-step beam propagation method,” Proc. SPIE 10772, 1077208 (2018)

[30] D. J. Burrell, N. R. Van Zandt, M. F. Spencer, & T. J. Brennan, “Wave-optics simulation of correlated speckle fields for use in closed-loop-phase-compensation studies,” Proc. SPIE 10772, 1077207 (2018)

[29] M. F. Spencer & D. E. Thornton, “Signal-to-noise models for digital-holographic detection,” Proc. SPIE 10650, 1065008 (2018)

[28] D. E. Thornton, M. F. Spencer, C. A. Rice, & G. P. Perram, “Efficiency measurements for a digital-holography system,” SPIE Proc. 10650, 1065004 (2018)

[27] C. J. Pellizzari, M. F. Spencer, & C. A. Bouman, “Optically coherent image reconstruction in the presence of phase errors using advanced-prior models,” Proc. SPIE 10650, (2018)

[26] N. R. Van Zandt, M. F. Spencer, J. E. McCrae, & S. T. Fiorino “Polychromatic Speckle Mitigation at Surface Discontinuities,” Proc. IEEE (2018)

[25] D. E. Thornton, M. F. Spencer, & G. P. Perram, “Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry,” Proc. SPIE 10410, 1041004 (2017)

[24] R. A. Raynor, M. F. Spencer, & T. D. Moore, “Modeling coherence propagation in a homogenizing light pipe for speckle mitigation,” Proc. SPIE 10410, 104100X (2017)

[23] A. Enterline, M. F. Spencer, D. J. Burrell, & T. J. Brennan, “Impact of beacon wavelength on phase-compensation performance,” Proc. SPIE 10410, 1041002 (2017)

[22] M. T. Banet & M. F. Spencer, “Spatial-heterodyne sampling requirements in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing,” Proc. SPIE 10410, 104100E (2017)

[21] M. Lanari, S. D. Butler, M. Marciniak, & M. F. Spencer, “Wave optics simulation of statistically rough surface scatter,” Proc. SPIE 10402, 1040215 (2017)

[20] M. F. Spencer & T. J. Brennan, “Branch cut accumulation using LSPV+7,” Proc. OSA PTh2D.2 (2017)

[19] N. R. Van Zandt, M. W. Hyde, S. R. Bose-Pillai, S. T. Fiorino, & M. F. Spencer, “Simulating time-evolving non-cross-spectrally pure Schell-model sources,” Proc. IEEE (2017)

[18] M. F. Spencer, I. J. Atencio; J. A. McCullough; E. S. Hwang “The AFRL Scholars Program: a STEM-based summer internship initiative,” Proc. SPIE 9946, 99460E (2016)

[17] N. R. Van Zandt, M. F. Spencer, M. J. Steinbock, B. M. 106500B Anderson, M. W. Hyde, & S. T. Fiorino “Comparison of polychromatic wave-optics models,” Proc. SPIE 9982, 998209 (2016)

[16] S. Sulaiman, S. Gibson, & M. F. Spencer, “Predictive dynamic digital holography,” Proc. SPIE 9982, 99820A (2016)

[15] T. D. Moore, R. A. Raynor, M. F. Spencer, & J. D. Schmidt, “Waveguide generated mitigation of speckle and scintillation on an actively illuminated target,” Proc. SPIE 9982, 99820E (2016)

[14] M. T. Banet, M. F. Spencer, R. A. Raynor, & D. K. Marker, “Digital holography wavefront sensing in the pupil-plane recording geometry for distributed-volume atmospheric aberrations,” Proc. SPIE 9982, 998208 (2016)

[13] M. J. Gridley, M. W. Hyde, M. F. Spencer, & S. Basu, “Experimental method of generating electromagnetic Gaussian Schell-model beams,” Proc. SPIE 9617, 96170C (2015)

[12] M. F. Spencer, I. V. Dragulin, D. S. Cargill, & M. J. Steinbock, “Digital holography wave-front sensing in the presence of strong atmospheric turbulence & thermal blooming,” Proc. SPIE 9617, 961705 (2015)

[11] S. Basu, M. W. Hyde IV, J. E. McCrae Jr., M. F. Spencer, & S. T. Fiorino, “Examining the validity of using a Gaussian Schell model for modeling an extended beacon on a rough perfectly reflecting surface,” Proc. SPIE 9224, 92240L (2014)

[10] M. F. Spencer, M. J. Steinbock, M. W. Hyde, & M. A. Marciniak, “The Laser Propagation Demonstration: a STEM-based outreach effort,” Proc. SPIE 9188, 91880D (2014).

[9] M. F. Spencer, M. W. Hyde, S. Basu, M. A. Marciniak, “The scattering of partially coherent electromagnetic beam illumination from a statistically rough surface modeled as a perfect electrical conductor,” Proc. SPIE 9205, 92050J (2014)

[8] M. F. Spencer, D. E. Thornton, M. W. Hyde, & J. P. Bos, “Piston phase compensation of tiled apertures in the presence of turbulence & thermal blooming,” Proc. IEEE (2014)

[7] C. J. Pellizzari, M. F. Spencer, B. Calef, J. P. Bos, S. Williams, D. C. Senft, & S. E. Williams, “Performance Characterization of Phase Gradient Autofocus for Inverse Synthetic Aperture LADAR,” Proc. IEEE (2014)

[6] C. J. Pellizzari, M. F. Spencer, N. Steinhoff, J. Belsher, G. Tyler, S. Williams, S. Williams, “Inverse synthetic aperture ladar: a high-fidelity modeling & simulation tool,” Proc. SPIE 8877, 88770B (2013)

[5] M. F. Spencer & M. W. Hyde IV, “Phased beam projection from tiled apertures in the presence of turbulence and thermal blooming,” Proc. SPIE 8877, 887703 (2013)

[4] M. W. Hyde IV, S. Basu, S. J. Cusumano, & M. F. Spencer, “Scalar wave solution for the scattering of a partially coherent beam from a statistically rough metallic surface,” Proc. SPIE 8550, 85503A (2012)

[3] M. F. Spencer & M. W. Hyde IV, “An investigation of stair mode in optical phased arrays using tiled apertures,” Proc. SPIE 8520, 852006 (2012)

[2] M. F. Spencer & S. J. Cusumano, “Impact of branch points in adaptive optics compensation of thermal blooming & turbulence,” Proc. SPIE 8165, 816503 (2011).

[1] M. F. Spencer, S. J. Cusumano, J. D. Schmidt, & S. T. Fiorino, “Impact of spatial resolution on thermal blooming phase compensation instability,” Proc. SPIE 7816, 781609 (2010)

 

Invited First-Author Conference Presentations:

[4] M. F. Spencer, C. J. Pellizzari, & C. A. Bouman, “Imaging through deep turbulence and emerging solutions, Invited,” Proc. IS&T (2020)

[3] M. F. Spencer, “Integrating digital-holographic detection into a laser weapon system, Invited,” Proc. MSS (2019) [Dist.D]

[2] M. F. Spencer, C. J. Pellizzari, & D. E. Thornton, “Collaborative research in deep turbulence, Invited,” Proc. OSA (2019)

[1] M. F. Spencer & T. J. Brennan, “Phase Compensation in the Presence of BIL-HEL Wavelength Differences, Invited,” Proc. DEPS (2018) [Dist. D]

 

First-Author Conference Presentations:

[21] M. F. Spencer, “Overview of the Deep Turbulence Problem & Emerging Testbeds,” Proc. DEPS (2021) [Dist. D]

[20] M. F. Spencer & C. J. Pellizzari, “Emerging solutions to the deep-turbulence problem using digital holography and deep learning,” Proc. DEPS (2021)

[19] M. F. Spencer & C. J. Pellizzari, “Imaging through deep turbulence using digital holography experiments,” Proc. IS&T (2021)

[18] M. F. Spencer, “Wave-optics investigation of turbulence thermal blooming interaction,” Proc. DEPS (2020) [Dist. C]

[17] M. F. Spencer, “Overview of the deep-turbulence problem for beam-control system design,” Proc. DEPS (2020) [Dist. D]

[16] M. F. Spencer, “Integrating digital-holographic detection into a laser weapon system: an update,” Proc. DEPS (2019) [Dist.D]

[15] M. F. Spencer, “Impacts of turbulence thermal blooming interaction,” Proc. SPIE 1113507 (2019)

[14] M. F. Spencer & D. K. Marker, “An In-Depth Overview of Phased Array Research at AFRL,” Proc. DEPS (2018) [Dist. D]

[13] M. F. Spencer, T. J. Brennan, & D. K. Marker, “Tiled Vs. Filled Phase Compensation: A System-Level, Deep-Turbulence Study,” Proc. DEPS (2017) [Dist. D]

[12] M. F. Spencer, N. R. Van Zandt, T. J. Brennan, D. C. Dayton, & D. K. Marker, “Comprehensive overview of a HEL-JTO sponsored wavefront sensor study,” Proc. DEPS (2017) [Dist. D]

[11] M. F. Spencer, T. J. Brennan, R. A. Raynor, & D. K. Marker, “Compensation in the Presence of Deep Turbulence Using Tiled-Aperture Architectures,” Proc. DEPS (2016) [Dist. D]

[10] M. F. Spencer, D. K. Marker, I. J. Atencio, & R. A. Hamil, “Linear Systems in Optics: A DE-inspired short course at AFRL,” Proc. DEPS (2016) [Dist. D]

[9] M. F. Spencer, T. A. Rhoadarmer, A. L. Tuffli, D. K. Marker, “Deep-Turbulence Simulation in a Scaled-Laboratory Environment Using Five Phase-Only Spatial Light Modulators,” Proc. DEPS (2016) [Dist. D]

[8] M. F. Spencer, I. V. Dragulin, D. S. Cargill, & M. J. Steinbock, “Digital holography wave-front sensing in the presence of strong atmospheric turbulence and thermal blooming,” Proc. DEPS (2015) [Dist. D]

[7] M. F. Spencer & M. W. Hyde, “The Scattering of Partially Coherent Electromagnetic Beam Illumination from a Statistically Rough Perfectly Reflecting Surface,” Proc. DEPS (2014)

[6] M. F. Spencer, “Bachelors to PhD: An Education Stimulated by Research in Directed Energy,” Proc. DEPS (2014)

[5] M. F. Spencer, M. W. Hyde, & S. J Cusumano, “Rough Surface Scattering as Applied to Laser Target Interaction of a Multi-Fiber Laser Source,” Proc. DEPS (2011) [Dist. C]

[4] M. F. Spencer & S. J. Cusumano, “Branch Point Mitigation of Thermal Blooming Phase Compensation Instability,” Proc. DEPS (2011) [Dist. C]

[3] M. F. Spencer, S. J. Cusumano, J. D. Schmidt, & S. T. Fiorino, “Impact of Temporal Resolution on Thermal Blooming Phase Compensation Instability,” Proc. DEPS (2010) [Dist. C]

[2] M. F. Spencer, S. J. Cusumano, J. D. Schmidt, & S. T. Fiorino, “Adaptive Optics Mitigation of Thermal Blooming Effects,” Proc. DEPS (2009) [Dist. C]

[1] M. F. Spencer, S. M. Massey, & T. H. Russell, “Stimulated Brillouin Scattering Phase Conjugation in Optical Fibers,” Proc. DEPS (2007)

 

State-of-the-Art Assessment Report:

[1] M. F. Spencer, “Section 3.2.4.1: Wavefront Sensing & Control,” in Beam Control Technology Assessment (BCTA) Report, Robert J. Pawlak, Amanda B. Clark, & Arthur G. Hassall, Eds., DE-JTO, Albuquerque, NM (2019) [Dist. D]

 

PhD Dissertation, MS Thesis, & Undergraduate Honors Thesis:

[3] M. F. Spencer, “The Scattering of Partially Coherent Electromagnetic Beam Illumination from Statistically Rough Surfaces,” PhD Dissertation, Air Force Institute of Technology, ADA603227 (2014)

[2] M. F. Spencer, “Branch Point Mitigation of Thermal Blooming Phase Compensation Instability,” MS Thesis, Air Force Institute of Technology, ADA538538 (2011)

[1] M. F. Spencer, “Stimulated Brillouin Scattering (SBS) Threshold in Optical Fibers,” Undergraduate Honors Thesis, University of Redlands (2008)

Return to the top of the page

Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson Air Force Base, OH 45433-7765
Commercial: 937-255-6565 | DSN: 785-6565