Dr. Michael Febbraro, PhD

Publications

[74]  T.C. Borgwardt, et al., “Quantification of the light output anisotropy in deuterated stilbene”, Nucl. Instrum. Meth. A 1059 (2024) 

[73]  (COHERENT Collaboration), “Measurement of Electron-Neutrino Charged-Current Cross Sections on 127I with the COHERENT NaIvE Detector”, Phys. Rev. Lett. 131, 221801 (2023) 

[72]  T.D. Dolezal, et al., “Manufacturing and characterization of a boron-loaded fast-cured plastic organic scintillator”, Nucl. Instrum. Meth. A 1056 (2023) 

[71]  Y. Kim, et al., “3D printable polyvinyltoluene-based plastic scintillator with pulse shape discrimination”, Nucl. Instrum. Meth. A 1055 (2023)  

[70]  J. Browne, et al., “First direct measurement constraining the 34Ar(a,p)37K reaction cross section for mixed hydrogen and helium burning in accreting neutron stars”, Phys. Rev. Lett. 130, 212701 (2023) 

[69]  T.C. Borgwardt, et al., “Advancements of the nSpec system”, Nucl. Instrum. Meth. A 1049 (2023) 

[68}  B.V. Egner, et al., “Boron-loaded deuterated liquid scintillator response characterization for neutron spectroscopy”, Nucl. Instrum. Meth. A 1047 (2023) 

[67]  (COHERENT Collaboration), “First probe of sub-GeV dark matter beyond the cosmological expectation with the COHERENT CsI detector at the SNS”, Phys. Rev. Lett 130, 05803 (2023) 

[66]  M. Rooks, et al., “Development of a novel, windowless, amorphous selenium-based photodetector for use in liquid noble detectors”, J. Instrum. 18 P01029 (2023)

[65]  B.G. Frandsen, et al., “Fast-, light-cured scintillating plastics for 3D-printing applications”, J. Nucl. Eng. 4, 241-257 (2023) 

[64]  R.J deBoer, et al., “First near-threshold measurements of the 13C(a,n1)16O reaction for low-background-environmental characterization”, Phys. Rev C 106 (2022) 

[63]  T.J. Gray, et al., “E2 rotational invariants of 01+ 21+ states for 106Cd: The emergence of collective rotation”, Phys. Lett. B 834 (2022) 

[62]  (COHERENT Collaboration), “Measurement of scintillation response of CsI[Na] to low-energy nuclear recoils by COHERENT”, JINST 17 (2022) 

[61]  T.J. Gray, et al., “CLARION2-TRINITY: A Compton-suppressed HPGe and GAGG: Ce-Si-Si array for absolute cross-section measurements with heavy ions”, Nucl. Instrum. Meth. A 1041 (2022) 

[60]  (COHERENT Collaboration), “Measurement of the coherent elastic scattering neutrino-nucleus scattering cross section on CsI by COHERENT”, Phys. Rev. Lett. 129 (2022) 

[59]  S. Kubota, et al., “Enhanced low-energy supernova burst detection in large liquid argon time projection chambers enabled by Q-Pix”, Phys. Rev. D 106 (2022) 

[58]  (COHERENT Collaboration), “Simulating the neutrino flux from the Spallation Neutron Source for the COHERENT experiment”, Phys. Rev. D 106 (2022) 

[57]  A.D. McDonald, et al., “Development of a pulsed vacuum ultraviolet light source with adjustable intensity”, Rev. Sci. Instrum. 93 (2022) 

[56]  (COHERENT Collaboration), “Monitoring the SNS basement neutron background with the MARS detector”, JINST 17 (2022) 

[55]  L. Manzanilias, et al., “Usage of PEN as self-vetoing structural material in the LEGEND experiment”, JINST 17 (2022) 

[54]  J. Zhou, et al., “Light output quenching in response to deuterium-ions and alpha particles and pulse shape discrimination in deuterated trans-stilbene”, Nucl. Instrum. Meth. A 1027 (2022) 

[53]  Y. Efremenko, et al., “Production and validation of scintillating structural components from low-background poly(ethylene naphthalate)”, JINST 17 2022 

[52]  N. Gaughan, et al., “Characterization of stilbene-d12 for neutron spectroscopy without time-of-flight”, Nucl. Instrum. Meth. A 1018 (2021) 

[51]  R. DeBoer, et al., “Investigation of secondary gamma-ray angular distributions using the 15N(p,ag)12C reaction”, Phys. Rev. C 103, 065801 (2021) 

[50]  B.V. Egner, et al., “Characterization of a boron-loaded deuterated liquid scintillator for fast and thermal neutron detection”, Nucl. Instrum. Meth. A 996 (2021) 

[49]  (COHERENT Collaboration), “Development of a 83mKr source for the calibration of the CENNS-10 liquid argon detector”, J. Instrum. 16 (2021) 

[48]  M. Febbraro, et al., “Performance of neutron spectrum unfolding using deuterated liquid scintillator”, Nucl. Instrum. Meth. A 989 (2021) 

[47]  (COHERENT Collaboration), “First measurement of the coherent elastic neutrino-nucleus scattering on argon”, Phys. Rev. Lett. 126 (2021) 

[46]  M.R. Hall, et al., “19Ne level structure for explosive nucleosynthesis” Phys. Rev. C 102 (2020) 

[45]  (COHERENT Collaboration), “Sensitivity of the COHERENT experiment to accelerator-produced dark matter”, Phys. Rev. D 102 (2020) 

[44]  M. Febbraro, et al., “New. 13C(a,n)16O cross section measurement with implications for Neutrino mixing and geoneutrino measurements”, Phys. Rev. Lett. 125 (2020) 

[43]  M. Munch, et al., “Measurement of the 7Li(g,t)4He ground-state cross section between Eg = 4.4 and 10 MeV”, Phys. Rev. C 101 (2020) 

[42]  Q. Liu, et al., “Low-energy cross section measurement of the 10B(a,n)13N reaction and its impact on neutron production in first-generation stars”, Phys. Rev. C 101 (2020) 

[41]  M.R. Hall, et al., “gamma-ray spectroscopy of astrophysical important states in 39Ca”, Phys. Rev. C 101 (2020) 

[40]  (COHERENT Collaboration), “First constraint on coherent elastic neutrino-nucleus scattering in argon”, Phys. Rev. D 100, 115020 (2019) 

[39]  M. Febbraro, et al., “The ORNL Deuterated Spectroscopic Array - ODeSA”, Nucl. Instrum. Meth. A 946, 162668 (2019) 

[38]  (PROSPECT Collaboration), “The radioactive source calibration system of the PROSPECT reactor antineutrino detector”, Nucl. Instrum. Meth. A 944 (2019) 

[37]  Q. Liu, et al., “Measurement of the 10B(??,n)13N cross section for 2.2 < E ?? < 4.9 MeV and its application as a diagnostic at the National Ignition Facility”, Phys. Rev. C 100, 034601 (2019) 

[36]  V. Guimaraes, et al., “Strong coupling effect in the elastic scattering of the 10C + 58Ni system near barrier”, Phys. Rev. C 100 (2019) 

[35]  Y. Efremenko, et al., “Use of poly(ethylene naphthalene) as a self-vetoing structural material”, J. Instrum. 14 (2019) 

[34]  (PROSPECT Collaboration), “Measurement of the Antineutrino Spectrum from 235U Fission at HFIR with PROSPECT”, Phys. Rev. Lett. 122 (2019) 

[33]  B.E. Glassman, et al., “Doppler broadening in 20Mg(bpg)19Ne decay”, Phys. Rev. C 99 (2019) 

[32]  (PROSPECT Collaboration), “A low mass optical grid for the PROSPECT reactor antineutrino detector”, J. Instrum. 14 (2019) 

[31]  (PROSPECT Collaboration), “The PROSPECT reactor antineutrino experiment”, Nucl. Instrum. Meth. A 922 (2019) 

[30]  M.R. Hall, et al., “New gamma-ray transitions observed in 19Ne with implications for the 15O(a,g)19Ne reaction rate”, Phys. Rev. C 99 (2019) 

[29]  (PROSPECT Collaboration), “Lithium-loaded liquid scintillator production for the PROSPECT experiment”, J. Instrum. 14 (2019) 

[28]  G.V. Turturica, et al., “Investigation of Compton scattering for gamma beam intensity measurements and perspectives at ELI-NP”, Nucl. Instrum. Meth. A 921 (2019) 

[27]  M.R. Hall, et al., “Key 19Ne states identified affecting gamma-ray emission from 18F novae”, Phys. Rev. Lett. 122 (2019) 

[26]  (PROSPECT Collaboration), “First search short-baseline neutrino oscillations at HFIR with PROSPECT”, Phys. Rev. Lett. 121 (2018) 

[25]  F.D. Becchetti, et al., “Deuterated stilbene (stilbene-d12): An improved detector for fast neutrons”, Nucl. Instru. and Meth. A 908, 376-382 (2018) 

[24]  M. Febbraro, et al., “Development of an array of liquid-scintillator based bar detectors: SABRE”, Nucl. Instrum. Meth. A 908 (2018) 

[23]  B.E. Glassman, “b-delayed gamma decay of 20Mg and the Ne19(p,g)20Na breakout reaction in Type I x-ray bursts”, Phys. Rev. Lett. B 778 (2018) 

[22]  K. Smith, et al., “First data with the hybrid array of gamma ray detectors (hagrid)”, Nucl. Instrum Meth. B 414 (2018) 

[21]  F.D. Becchetti, et al., “Recent developments in deuterated scintillators for neutron measurements at low-energy accelerators”, Nucl. Instrum. Meth. A 874 (2017) 

[20]  M. Febbraro, et al., “Improved technique for preparation of deuterated-polyethylene targets”, Nucl. Instrum. Meth. B 410 (2017) 

[19]  C. Wrede, et al., “New portal to the 15O (alpha, g) 19Ne resonance triggering CNO-cyclo breakout”, Phys. Rev. C 96 (2017) 

[18]  (COHERENT Collaboration), “Observation of coherent elastic neutrino-nucleus scattering”, Science 357, 1123-1126 (2017) 

[17]  E.F. Aguilera, et al., “Sub-barrier fusion of weakly bound 6Li with 58Ni”, Phys. Rev. C 96 (2017) 

[16]  M. Febbraro, et al., “(d,n) proton-transfer reactions on Be9, B11, C13, N14, N15, and F19 and spectroscopic factors at Ed = 16 MeV,” Phys. Rev. C 96, (2017) 

[15]  C.C. Lawrence, et al., “Stabilization of Particle Discrimination Efficiencies for Neutron Spectrum unfolding with organic scintillators”, IEEE Trans. Nucl. Sci. 64 (2016) 

[14]  F.D. Becchetti, et al., “A multi-functional apparatus for alpha and beta spectroscopy utilizing a permanent ring-magnet beta spectrometer”, Am. J. Phys. 84 (2016) 

[13]  (PROSPECT Collaboration), “The PROSPECT physics program”, J. Phys. G 43 (2016) 

[12]  C.C. Lawrence, et al., “Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements”, J. App. Phys. 120 (2016) 

[11]  F.D. Becchetti, et al., “Deuterated-xylene (xylene-d10; EJ301D): A new, improved deuterated liquid scintillator for neutron energy measurements without time-of-flight”, Nucl. Instrum. Meth. A 820 (2016) 

[10]  A. Fritsch, et al., “One-dimensionality in atomic nuclei: A candidate for linear-chain alpha clustering in 14C”, Phys. Rev. C 93 (2016) 

[9]  B.E. Glassman, et al., “Revalidation of the isobaric multiplet mass equation for the A-20 quintet”, Phys. Rev. C 92 (2015) 

[8]  M. Febbraro, et al., “Deuterated scintillators and their application to neutron spectroscopy,” Nucl. Instr. and Meth. A 784, 184-188 (2015) 

[7]  C.C. Lawrence, et al., “Neutron response characterization for an EJ299-33 plastic scintillator detector”, Nucl. Instrum. Meth. A 759 (2014) 

[6]  E. Martinez-Quiroz, et al., “Near- and sub-barrier fusion of the 7Be + 58Ni system”, Phys. Rev. C 90 (2014) 

[5]  A. Roberts, et al., “Proton pair correlations and the neutrinoless double-b decay of 76Ge”, Phys. Rev. C 87 (2013) 

[4]  D. Suzuki, et al., “Resonant alpha scattering of 6He: limits of clustering in 10Be”, Phys. Rev. C 87 (2013) 

[3]  M. Febbraro, et al., “Neutron spectroscopy without time-of-flight measurement: A DSP-based deuterated scintillator array”, IEEE Trans. Nucl. Sci. 60 (2013) 

[2]  F.D. Becchetti, et al., “A252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment”, Am. J. Phys. 81 (2013) 

[1]  E.F. Aguilera, et al., “Near-barrier fusion of the 8B + 58Ni proton-halo system”, Phys. Rev. Lett. 107 (2011) 

Return to the top of the page

Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson Air Force Base, OH 45433-7765
Commercial: 937-255-6565 | DSN: 785-6565