Dr. Michael Febbraro, PhD

Dr. Michael Febbraro is a Research Assistant Professor of Nuclear Engineering in the Department of Engineering Physics at the Air Force Institute of Technology (AFIT).  His primary research interests relate to experimental nuclear physics, radiation detection and scintillating materials, and scientific instrumentation.  He has over 10 years of experience in experimental nuclear physics measurements at particle accelerator facilities across the United States.

Dr. Febbraro graduated from University of Michigan - Ann Arbor in 2011 with a B.S.E in Nuclear Engineering.  He then went on to earned a M.S. (2013) and PhD (2014) in Applied Physics (nuclear physics focus) with Prof. Frederick Becchetti at University of Michigan - Ann Arbor.  He did his Postdoctoral research at Oak Ridge National Laboratory (ORNL) where he became a staff scientist in 2017.  At ORNL, Dr. Febbraro led a wide research program spanning experimental nuclear physics, neutrino physics, high-energy physics, dark matter, quantum sensing, advanced radiation detection and materials, and applications of nuclear science for national security.  Dr. Febbraro then went on to join the faculty at AFIT in 2023.  

Education

PhD, Applied Physics (Focus: Nuclear), University of Michigan, 2014

M.S., Applied Physics (Focus: Nuclear), University of Michigan, 2013

B.S., Nuclear Engineering and Radiological Sciences (BSE), University of Michigan, 2011

Awards

Patents and Awards

  • US Patent 10234575, 2019, M.T. Febbraro, K.A. Chipps, S.D. Pain, W.A. Peters, “Apparatus for use in a directional-neutron detector, directional-neutron detectors and methods of use thereof”
  • US Patent 10422042, 2019, B.H. Goodreau, L. Jingping, E. Kapic, M.T. Febbraro, “Metal treatment coating compositions, methods of treating metals therewith and coated metals prepared using the same
  • US Patent 9573162, 2017, E. Kapic, B.H. Goodreau, A. Bobadilla, M.T. Febbraro, “Processes and compositions for improving corrosion performance of zirconium oxide pretreated zinc surfaces”
  • Three Invention Disclosures filed with Oak Ridge National Laboratory
  • 2017 Joule Award - U.S. Department of Energy, National Nuclear Security Agency

Publications

[74]  T.C. Borgwardt, et al., “Quantification of the light output anisotropy in deuterated stilbene”, Nucl. Instrum. Meth. A 1059 (2024) 

[73]  (COHERENT Collaboration), “Measurement of Electron-Neutrino Charged-Current Cross Sections on 127I with the COHERENT NaIvE Detector”, Phys. Rev. Lett. 131, 221801 (2023) 

[72]  T.D. Dolezal, et al., “Manufacturing and characterization of a boron-loaded fast-cured plastic organic scintillator”, Nucl. Instrum. Meth. A 1056 (2023) 

[71]  Y. Kim, et al., “3D printable polyvinyltoluene-based plastic scintillator with pulse shape discrimination”, Nucl. Instrum. Meth. A 1055 (2023)  

[70]  J. Browne, et al., “First direct measurement constraining the 34Ar(a,p)37K reaction cross section for mixed hydrogen and helium burning in accreting neutron stars”, Phys. Rev. Lett. 130, 212701 (2023) 

[69]  T.C. Borgwardt, et al., “Advancements of the nSpec system”, Nucl. Instrum. Meth. A 1049 (2023) 

[68}  B.V. Egner, et al., “Boron-loaded deuterated liquid scintillator response characterization for neutron spectroscopy”, Nucl. Instrum. Meth. A 1047 (2023) 

[67]  (COHERENT Collaboration), “First probe of sub-GeV dark matter beyond the cosmological expectation with the COHERENT CsI detector at the SNS”, Phys. Rev. Lett 130, 05803 (2023) 

[66]  M. Rooks, et al., “Development of a novel, windowless, amorphous selenium-based photodetector for use in liquid noble detectors”, J. Instrum. 18 P01029 (2023)

[65]  B.G. Frandsen, et al., “Fast-, light-cured scintillating plastics for 3D-printing applications”, J. Nucl. Eng. 4, 241-257 (2023) 

[64]  R.J deBoer, et al., “First near-threshold measurements of the 13C(a,n1)16O reaction for low-background-environmental characterization”, Phys. Rev C 106 (2022) 

[63]  T.J. Gray, et al., “E2 rotational invariants of 01+ 21+ states for 106Cd: The emergence of collective rotation”, Phys. Lett. B 834 (2022) 

[62]  (COHERENT Collaboration), “Measurement of scintillation response of CsI[Na] to low-energy nuclear recoils by COHERENT”, JINST 17 (2022) 

[61]  T.J. Gray, et al., “CLARION2-TRINITY: A Compton-suppressed HPGe and GAGG: Ce-Si-Si array for absolute cross-section measurements with heavy ions”, Nucl. Instrum. Meth. A 1041 (2022) 

[60]  (COHERENT Collaboration), “Measurement of the coherent elastic scattering neutrino-nucleus scattering cross section on CsI by COHERENT”, Phys. Rev. Lett. 129 (2022) 

[59]  S. Kubota, et al., “Enhanced low-energy supernova burst detection in large liquid argon time projection chambers enabled by Q-Pix”, Phys. Rev. D 106 (2022) 

[58]  (COHERENT Collaboration), “Simulating the neutrino flux from the Spallation Neutron Source for the COHERENT experiment”, Phys. Rev. D 106 (2022) 

[57]  A.D. McDonald, et al., “Development of a pulsed vacuum ultraviolet light source with adjustable intensity”, Rev. Sci. Instrum. 93 (2022) 

[56]  (COHERENT Collaboration), “Monitoring the SNS basement neutron background with the MARS detector”, JINST 17 (2022) 

[55]  L. Manzanilias, et al., “Usage of PEN as self-vetoing structural material in the LEGEND experiment”, JINST 17 (2022) 

[54]  J. Zhou, et al., “Light output quenching in response to deuterium-ions and alpha particles and pulse shape discrimination in deuterated trans-stilbene”, Nucl. Instrum. Meth. A 1027 (2022) 

[53]  Y. Efremenko, et al., “Production and validation of scintillating structural components from low-background poly(ethylene naphthalate)”, JINST 17 2022 

[52]  N. Gaughan, et al., “Characterization of stilbene-d12 for neutron spectroscopy without time-of-flight”, Nucl. Instrum. Meth. A 1018 (2021) 

[51]  R. DeBoer, et al., “Investigation of secondary gamma-ray angular distributions using the 15N(p,ag)12C reaction”, Phys. Rev. C 103, 065801 (2021) 

[50]  B.V. Egner, et al., “Characterization of a boron-loaded deuterated liquid scintillator for fast and thermal neutron detection”, Nucl. Instrum. Meth. A 996 (2021) 

[49]  (COHERENT Collaboration), “Development of a 83mKr source for the calibration of the CENNS-10 liquid argon detector”, J. Instrum. 16 (2021) 

[48]  M. Febbraro, et al., “Performance of neutron spectrum unfolding using deuterated liquid scintillator”, Nucl. Instrum. Meth. A 989 (2021) 

[47]  (COHERENT Collaboration), “First measurement of the coherent elastic neutrino-nucleus scattering on argon”, Phys. Rev. Lett. 126 (2021) 

[46]  M.R. Hall, et al., “19Ne level structure for explosive nucleosynthesis” Phys. Rev. C 102 (2020) 

[45]  (COHERENT Collaboration), “Sensitivity of the COHERENT experiment to accelerator-produced dark matter”, Phys. Rev. D 102 (2020) 

[44]  M. Febbraro, et al., “New. 13C(a,n)16O cross section measurement with implications for Neutrino mixing and geoneutrino measurements”, Phys. Rev. Lett. 125 (2020) 

[43]  M. Munch, et al., “Measurement of the 7Li(g,t)4He ground-state cross section between Eg = 4.4 and 10 MeV”, Phys. Rev. C 101 (2020) 

[42]  Q. Liu, et al., “Low-energy cross section measurement of the 10B(a,n)13N reaction and its impact on neutron production in first-generation stars”, Phys. Rev. C 101 (2020) 

[41]  M.R. Hall, et al., “gamma-ray spectroscopy of astrophysical important states in 39Ca”, Phys. Rev. C 101 (2020) 

[40]  (COHERENT Collaboration), “First constraint on coherent elastic neutrino-nucleus scattering in argon”, Phys. Rev. D 100, 115020 (2019) 

[39]  M. Febbraro, et al., “The ORNL Deuterated Spectroscopic Array - ODeSA”, Nucl. Instrum. Meth. A 946, 162668 (2019) 

[38]  (PROSPECT Collaboration), “The radioactive source calibration system of the PROSPECT reactor antineutrino detector”, Nucl. Instrum. Meth. A 944 (2019) 

[37]  Q. Liu, et al., “Measurement of the 10B(??,n)13N cross section for 2.2 < E ?? < 4.9 MeV and its application as a diagnostic at the National Ignition Facility”, Phys. Rev. C 100, 034601 (2019) 

[36]  V. Guimaraes, et al., “Strong coupling effect in the elastic scattering of the 10C + 58Ni system near barrier”, Phys. Rev. C 100 (2019) 

[35]  Y. Efremenko, et al., “Use of poly(ethylene naphthalene) as a self-vetoing structural material”, J. Instrum. 14 (2019) 

[34]  (PROSPECT Collaboration), “Measurement of the Antineutrino Spectrum from 235U Fission at HFIR with PROSPECT”, Phys. Rev. Lett. 122 (2019) 

[33]  B.E. Glassman, et al., “Doppler broadening in 20Mg(bpg)19Ne decay”, Phys. Rev. C 99 (2019) 

[32]  (PROSPECT Collaboration), “A low mass optical grid for the PROSPECT reactor antineutrino detector”, J. Instrum. 14 (2019) 

[31]  (PROSPECT Collaboration), “The PROSPECT reactor antineutrino experiment”, Nucl. Instrum. Meth. A 922 (2019) 

[30]  M.R. Hall, et al., “New gamma-ray transitions observed in 19Ne with implications for the 15O(a,g)19Ne reaction rate”, Phys. Rev. C 99 (2019) 

[29]  (PROSPECT Collaboration), “Lithium-loaded liquid scintillator production for the PROSPECT experiment”, J. Instrum. 14 (2019) 

[28]  G.V. Turturica, et al., “Investigation of Compton scattering for gamma beam intensity measurements and perspectives at ELI-NP”, Nucl. Instrum. Meth. A 921 (2019) 

[27]  M.R. Hall, et al., “Key 19Ne states identified affecting gamma-ray emission from 18F novae”, Phys. Rev. Lett. 122 (2019) 

[26]  (PROSPECT Collaboration), “First search short-baseline neutrino oscillations at HFIR with PROSPECT”, Phys. Rev. Lett. 121 (2018) 

[25]  F.D. Becchetti, et al., “Deuterated stilbene (stilbene-d12): An improved detector for fast neutrons”, Nucl. Instru. and Meth. A 908, 376-382 (2018) 

[24]  M. Febbraro, et al., “Development of an array of liquid-scintillator based bar detectors: SABRE”, Nucl. Instrum. Meth. A 908 (2018) 

[23]  B.E. Glassman, “b-delayed gamma decay of 20Mg and the Ne19(p,g)20Na breakout reaction in Type I x-ray bursts”, Phys. Rev. Lett. B 778 (2018) 

[22]  K. Smith, et al., “First data with the hybrid array of gamma ray detectors (hagrid)”, Nucl. Instrum Meth. B 414 (2018) 

[21]  F.D. Becchetti, et al., “Recent developments in deuterated scintillators for neutron measurements at low-energy accelerators”, Nucl. Instrum. Meth. A 874 (2017) 

[20]  M. Febbraro, et al., “Improved technique for preparation of deuterated-polyethylene targets”, Nucl. Instrum. Meth. B 410 (2017) 

[19]  C. Wrede, et al., “New portal to the 15O (alpha, g) 19Ne resonance triggering CNO-cyclo breakout”, Phys. Rev. C 96 (2017) 

[18]  (COHERENT Collaboration), “Observation of coherent elastic neutrino-nucleus scattering”, Science 357, 1123-1126 (2017) 

[17]  E.F. Aguilera, et al., “Sub-barrier fusion of weakly bound 6Li with 58Ni”, Phys. Rev. C 96 (2017) 

[16]  M. Febbraro, et al., “(d,n) proton-transfer reactions on Be9, B11, C13, N14, N15, and F19 and spectroscopic factors at Ed = 16 MeV,” Phys. Rev. C 96, (2017) 

[15]  C.C. Lawrence, et al., “Stabilization of Particle Discrimination Efficiencies for Neutron Spectrum unfolding with organic scintillators”, IEEE Trans. Nucl. Sci. 64 (2016) 

[14]  F.D. Becchetti, et al., “A multi-functional apparatus for alpha and beta spectroscopy utilizing a permanent ring-magnet beta spectrometer”, Am. J. Phys. 84 (2016) 

[13]  (PROSPECT Collaboration), “The PROSPECT physics program”, J. Phys. G 43 (2016) 

[12]  C.C. Lawrence, et al., “Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements”, J. App. Phys. 120 (2016) 

[11]  F.D. Becchetti, et al., “Deuterated-xylene (xylene-d10; EJ301D): A new, improved deuterated liquid scintillator for neutron energy measurements without time-of-flight”, Nucl. Instrum. Meth. A 820 (2016) 

[10]  A. Fritsch, et al., “One-dimensionality in atomic nuclei: A candidate for linear-chain alpha clustering in 14C”, Phys. Rev. C 93 (2016) 

[9]  B.E. Glassman, et al., “Revalidation of the isobaric multiplet mass equation for the A-20 quintet”, Phys. Rev. C 92 (2015) 

[8]  M. Febbraro, et al., “Deuterated scintillators and their application to neutron spectroscopy,” Nucl. Instr. and Meth. A 784, 184-188 (2015) 

[7]  C.C. Lawrence, et al., “Neutron response characterization for an EJ299-33 plastic scintillator detector”, Nucl. Instrum. Meth. A 759 (2014) 

[6]  E. Martinez-Quiroz, et al., “Near- and sub-barrier fusion of the 7Be + 58Ni system”, Phys. Rev. C 90 (2014) 

[5]  A. Roberts, et al., “Proton pair correlations and the neutrinoless double-b decay of 76Ge”, Phys. Rev. C 87 (2013) 

[4]  D. Suzuki, et al., “Resonant alpha scattering of 6He: limits of clustering in 10Be”, Phys. Rev. C 87 (2013) 

[3]  M. Febbraro, et al., “Neutron spectroscopy without time-of-flight measurement: A DSP-based deuterated scintillator array”, IEEE Trans. Nucl. Sci. 60 (2013) 

[2]  F.D. Becchetti, et al., “A252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment”, Am. J. Phys. 81 (2013) 

[1]  E.F. Aguilera, et al., “Near-barrier fusion of the 8B + 58Ni proton-halo system”, Phys. Rev. Lett. 107 (2011) 

Return to the top of the page

Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson Air Force Base, OH 45433-7765
Commercial: 937-255-6565 | DSN: 785-6565