Dr. Michael V. Pak

Assistant Professor of Physics

Bio Photo

 

Contact:
Comm: 937-656-5873
Click to E-mail
View Department

Dr. Pak is an Assistant Professor for the Graduate School of Engineering, Department of Engineering Physics (ENP), Center for Directed Energy (CDE). He received a PhD in Theoretical Physics from St. Petersburg State University (Russia) in 1996 and a PhD in Quantum Chemistry from Iowa State University in 2002. His research interests include the theory of quantization, topological quantum computing and quantum theory of multi-component systems. Of particular interest is the development of new methods to accurately describe matter-antimatter interactions, specifically positron annihilation in complex multi-electron environment. Dr. Pak’s new research interests include modelling of Majorana states for topological quantum computation and development of theoretical methods to accurately predict temperature dependent short lifetime beta decay and electron capture decay at temperatures attained during nuclear explosions.  

Education

PhD, Quantum Chemistry, Iowa State University, 2002

PhD, Theoretical Physics, St. Petersburg State University, Russia, 1996

MS, Theoretical Chemistry, St. Petersburg State University, Russia, 1992

 

Awards

  • Department of Energy Research Fellowship, 2002
  • Nobel Foundation Scholarship for Baltic Countries, Sweden, 1992 & 1995
  • Fellowship of the Department of Education of Finland, 1993-1996
  • V.A. Steklov Mathematical Institute Award for Graduates, St. Petersburg, 1992

Publications

[48] R. Horton, I. Bray, D. Fursa, M.V.Pak  "Electron Scattering from H+3 and its Isotopologues – Convergent Close-Coupling Approach", Physical Review A, submitted.

[47] R. Horton, M.V.Pak, I. Bray, D. Fursa "Vibrational Dynamics in Electron Impact Excitation and Ionisation of H+", PRL submitted.

[46]  A. Scheppe, M.V.Pak, "Tight Binding Energy Phase Relation for Topological Josephson Junction Nanowire Architecture", J. Physics Condens. Matter, submitted.

[45] P.Adamson, D.Watkins, M.V.Pak, A.S.Richardson, S.Swanekamp, “A semi-classical approach to computing vibrationally-resolved ionization cross sections for molecular nitrogen”, Journal of Chemical Physics, submitted

[44] A. Scheppe, M.V.Pak "Perturbing finite temperature multicomponent DFT 1D Kohn-Sham systems: Peierls Gap and Kohn Anomaly", J. Physics: Condens. Matter, 36, 075401, 2023

[43] A.K.Patnaik, B.V.DeLuca, N.J.Guerrero, A.D.Scheppe, M.V.Pak, D.E.Weeks, “Multiphoton Approximation Error of Parametric Down Conversion Source Detection”, Proc. SPIE PC12016, Optical and Quantum Sensing and Precision Metrology II, PC1201639, 2022

[42] A. Scheppe, M.V.Pak “ Complete description of fault-tolerant quantum gate operations for topological Majorana qubit systems”, Phys. Rev. A 105, 012415, 2022

[41] D.Watkins, P.Adamson, A.S.Richardson, S.Swanekamp, I.Rittersdorf, J.Schumer, M.V.Pak, “A Semi- Classical Model for Computing Vibrationally-Resolved Electron-Impact Ionization Cross Sections”, Bulletin of the American Physical Society, 66, 2021

[40] E.Ilin, I.Burkova, E.Colla, M.V.Pak, A.Bezryadin “Giant energy storage effect in nanolayer capacitors charged by the field emission tunneling”, Nanotechnology, 32, 155401, 2021

[39] E.Ilin, I.Burkova, X.Song, M.V.Pak, S.Golubev, A.Bezryadin “Superconducting phase transition in inhomogeneous chains of superconducting islands”, Phys. Rev. B 102, 134502, 2020

[38] E.Ilin, M.Marchevsky, I.Burkova, M.V.Pak, A.Bezryadin “Nanometer-Scale Deformations of Berea Sandstone Under Moisture-Content Variations”, Phys. Rev. Applied, 13, 024043, 2020

[37] Yang Yang, K.R.Brorsen, T.Culpitt, M.V.Pak, S.Hammes-Schiffer “Development of a Practical Multicomponent Density Functional for Electron-Proton Correlation to Produce Accurate Proton Densities”, J.Chem.Phys., 147, 114113, 2017

[36] A.Bezryadin, A.Belkin, E.Ilin, M.V.Pak, E.V.Colla, A.Hubler ,”Large energy storage efficiency of the dielectric layer of graphene nanocapacitors”, Nanotechnology, 28 (49), 495401, 2017

[35] K.R.Brorsen, Yang Yang, M.V.Pak, S.Hammes-Schiffer “Is the Accuracy of Density Functional Theory for Atomization Energies and Densities in Bonding Regions Correlated?”, J. Phys. Chem. Lett., 8 (9), pp 2076–2081, 2017

[34] K.R.Brorsen, M.V.Pak, S.Hammes-Schiffer “Calculation of positron binding energies and electron- positron annihilation rates for atomic systems with the reduced explicitly correlated Hartree–Fock method in the Nuclear–Electronic Orbital framework”, J. Phys. Chem. A, 121 (2), pp 515–522, 2017

[33] T.Culpitt, K.R.Brorsen, M.V.Pak, S.Hammes-Schiffer “Multicomponent density functional theory embedding formalism”, J.Chem.Phys., 145, 044106, 2016

[32] K.R.Brorsen, A.Sirjoosingh, M.V.Pak, S.Hammes-Schiffer “Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems”, J.Chem.Phys., 142, 214108, 2015

[31] A.Sirjoosingh, M.V.Pak, K.R.Brorsen, S.Hammes-Schiffer “Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach”, J.Chem.Phys., 142, 214107, 2015

[30] A.Sirjoosingh, M.V.Pak, C.Swalina, S.Hammes-Schiffer “Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Applications to positronic molecular systems”, J.Chem.Phys., 139, 034103, 2013

[29] A.Sirjoosingh, M.V.Pak, C.Swalina, S.Hammes-Schiffer “Reduced explicitly correlated Hartree-Fock approach within the nuclear-electronic orbital framework: Theoretical formulation”, J.Chem.Phys., 139, 034102, 2013

[28] A.Sirjoosingh, M.V.Pak, S.Hammes-Schiffer “Multicomponent density functional theory study of the interplay between electron-electron and electron-proton correlation”, J.Chem.Phys., 136, 174114, 2012

[27] C.Swalina, M.V.Pak, S.Hammes-Schiffer “Analysis of electron-positron wavefunctions in the nuclear- electronic orbital framework”, J.Chem.Phys., 136, 164105, 2012

[26] A.Sirjoosingh, M.V.Pak, S.Hammes-Schiffer “Derivation of an electron-proton correlation functional for multicomponent density functional theory within the nuclear-electronic orbital approach”, J.Chem.Theory and Comput., 7, 2689-2693, 2011

[25] C.Ko, M.V.Pak, C.Swalina, S.Hammes-Schiffer “Alternative wavefunction ansatz for including explicit electron-proton correlation in the nuclear-electronic orbital approach”, J.Chem.Phys., 135, 054106, 2011

[24] B.Auer, M.V.Pak, S.Hammes-Schiffer “Nuclear-electronic orbital method within the fragment molecular orbital approach”, J.Phys.Chem., C, 114, 5582, 2010

[23] A.Chakraborty, M.V.Pak, S.Hammes-Schiffer “Properties of the exact universal functional in multicomponent density functional theory”, J.Chem.Phys., 131, 124115, 2009

[22] M.V.Pak, A.Chakraborty, S.Hammes-Schiffer “Calculation of the positron annihilation rate in PsH with the positronic extension of the explicitly correlated nuclear-electronic orbital method”, J.Phys.Chem., A113, 4004, 2009

[21] A.Chakraborty, M.V.Pak, S.Hammes-Schiffer “Development of electron-proton density functionals for multicomponent density functional theory”, Phys.Rev.Lett., 101, 153001, 2008

[20] A.Chakraborty, M.V.Pak, S.Hammes-Schiffer “Inclusion of explicit electron-proton correlation in the nuclear-electronic orbital approach using Gaussian-type geminal functions”, J.Chem.Phys., 129, 014101, 2008

[19] P.Adamson, X.Duan, L.Burggraf, M.V.Pak, C.Swalina, S.Hammes-Schi?er “Modeling positrons in molecular electronic structure calculations with the nuclear-electronic orbital method”, J.Phys.Chem., A112, 2008, pp.1346-1351

[18] M.V.Pak, A.Chakraborty, S.Hammes-Schiffer “Density functional theory treatment of electron correlation in the nuclear-electronic orbital approach”, J.Phys.Chem., A111, 2007, pp.4522-4526

[17] C.Swalina, M.V.Pak, A.Chakraborty, S.Hammes-Schiffer “Explicit dynamical electron-proton correlation in the nuclear-electronic orbital framework”, J.Phys.Chem., 110A, 2006, pp.9983-9987

[16] J.Skone, M.V.Pak, S.Hammes-Schiffer “Nuclear-electronic orbital non-orthogonal configuration interaction approach “, J.Chem.Phys., 123, 134108, 2005

[15] C.Swalina, M.V.Pak, S.Hammes-Schiffer “Analysis of the nuclear-electronic orbital method for model hydrogen transfer systems”, J.Chem.Phys., 123, 0143303, 2005

[14] A.Reyes, M.V.Pak, S.Hammes-Schiffer “Investigation of isotope effects with the nuclear-electronic orbital approach”, J.Chem.Phys., 123, 064104, 2005

[13] C.Swalina, M.V.Pak, S.Hammes-Schiffer “Alternative formulation of many-body perturbation theory for electron-proton correlation”, Chem.Phys.Lett., 404, 2005, pp.394-399

[12] M.V. Pak, C.Swalina, S.P.Webb, S.Hammes-Schiffer, “Application of the nuclear-electronic orbital method to hydrogen transfer systems: Multiple centers and multiconfigurational wavefunctions”, Chemical Physics, 304, 2004, pp. 227-236

[11] Michael V. Pak, S.Hammes-Schiffer, “Electron-proton correlation for hydrogen tunneling systems”, Phys.Rev.Lett., 92, Art. #103002, 2003

[10] Michael V. Pak, M.S.Gordon, “Hyperfine coupling tensors for multi-configurational quasi-degenerate perturbation theory (MCQDPT)”, J.Chem.Phys., 118 (1), 2003

[9] Michael V. Pak, M.S.Gordon, “Potential energy surfaces for the Al + O2 reaction”, J.Chem.Phys., 118 (10), 2003

[8] Michael V. Pak, M.S.Gordon, “The potential energy surfaces for AlO2 using multi-reference wave functions”, Chem.Phys.Lett., 344, 2001, pp.236-240

[7] S.Gyusung, Michael V. Pak, D.R.Reed, S.R.Kass, M.S.Gordon, “Theoretical study of oxicyclohexadienylidene isomers: electronic strucuture and molecular properties”, J.Phys.Chem., 104A, 2000, pp.11822-11828

[6] Michael V.Pak, M.S.Gordon, “Full configuration interaction and multiconfigurational spin density in boron and carbon atoms”, J.Chem.Phys., 113 (10), 2000, pp.4238-4241

[5] A.V.Tulub, V.F.Brattsev, M.V.Pak, “Electron density in the interior of nuclei with allowance for QED effects in the many-electron theory of atoms”, Phys.Atom.Nuc., 61 (4), 1998, pp.520-524

[4] A.V.Tulub, M.V.Pak, V.F.Brattsev, “Spectrum of hyperfine interaction with allowance for relativistic effects and quantum electrodynamics corrections”, Opt.Spectrosc., 82 (4) 1997, pp.491-493

[3] M.V.Pak, A.V.Tulub, V.F.Brattsev, “Spectral D-line of Na-like multicharged ions and phenomenological inclusion of the Lamb shift in many-electron systems”, Opt.Spectrosc., 80 (4), 1996, pp.507-513

[2] V.F.Brattsev, D.V.Korolkov, M.V.Pak, A.V.Tulub, “Nonrelativistic description of valence electrons in heavy atoms with account taken of relativistic effects in the electron core”, Russ. J. Gen. Chem., 65 (3), 1995, pp.305-310

[1] A.V.Tulub, V.F.Brattsev, M.V.Pak, “Correlation between the refractive index and orbital energies of xenon near the insulator-metal transition: compressed-atom model”, Opt.Spectrosc., 74 (3), 1993, pp.279- 281

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Return to the top of the page

Air Force Institute of Technology
2950 Hobson Way
Wright-Patterson Air Force Base, OH 45433-7765
Commercial: 937-255-6565 | DSN: 785-6565