JOURNAL ARTICLES:
43) B. Akers,"On Ripples: Bifurcations of bimodal resonant traveling waves", Nonlinearity 38:6, 065005 (2025)
42) J. Lane, B. Akers, J. Reeger, J. Cook, M. Richardson, "Asymmetric Steady Thermal Blooming" Applied Optics, (2025).
41) B.F. Akers and D.M. Ambrose, ''Internal Gravity-Capillary Wilton Ripples", Water Waves, (2025).
40) J.S. Lane and B.F. Akers, "Steady Boussinesq convection: Parametric analyticity and computation", Studies in Applied Math, 153 (3), e12740 (2024)
39) B. Akers and K.O.F. Williams, "Coarse-Gridded Simulation of the Nonlinear Schrödinger Equation with Machine Learning", Mathematics 12 (17), 2784 (2024)
38) R. Langer, O. Trichtchenko and B. Akers, "Wilton Ripples with High-Order Resonances in Weakly Nonlinear Models", Water Waves, 6(1) 97-126 (2024)
37) S.H. Garland, V.B. Yurchyshyn, R.D. Loper, B.F. Akers, D.J. Emmons, "Analysis of Modeled 3D Solar Magnetic Field During 30 X/M-Class Solar Flares" Frontiers in Astronomy and Space Sciences 11, 1369749, (2024)
36) K.O.F. Williams and B.F.Akers, "Numerical Simulation of the Korteweg-de Vries Equation with Machine Learning", Mathematics, 11, 2791, (2023).
35) B. F. Akers, S. Fiorino, and J. Reeger, "Thermal Blooming with Laser-Induced Convection: Radial Basis Function Simulation" Applied Optics, 62:23 (2023)
34) S.H. Garland, V.B. Yurchyshyn, R.D. Loper, B.F. Akers, D.J. Emmons, "Evolution of Coronal Magnetic Field Parameters during X5.4 Solar Flare", Frontiers in Astronomy and Space Sciences, 10:1148293, (2023).
33) J.S. Lane, J. Cook, M. Richardson and B.F. Akers, "Numerical simulation of steady-state thermal blooming with natural convection" Applied Optics, 62:8, 2092-2099, (2023).
32) B.F. Akers and T. Liu, "Thermal Effects in Short Laser Pulses: Suppression of Wave Collapse" Wave Motion, 115, 103079, (2022).
31) J.S. Lane and B.F.Akers, "Two-dimensional Steady Boussinesq Convection: Existence, Computation and Scaling" Fluids, 6, 425, (2021)
30) B.F. Akers and D.P.Nicholls, "Wilton Ripples in Weakly Nonlinear Models of Water Waves: Existence and Computation", Water Waves, 3, 491-511 (2021).
29) B.F. Akers, T. Liu, and J.A. Reeger "A Radial Basis Finite Difference Scheme for the Benjamin-Ono Equation", Mathematics, 9(1), 65, (2021)
28) B.F. Akers and D.M. Ambrose, "Efficient Computation of Coordinate-Free Models of Flame Fronts", The ANZIAM Journal, 1-12, (2021)
27) A. Lawrence and B.F. Akers, "Propagation of High Energy Lasers through Clouds: Modeling and Simulation" Appl. Opt. 59(33), 10207-10216 (2020).
26) B.F. Akers and D.P. Nicholls, "Wilton Ripples in Weakly Nonlinear Dispersive Models of Water Waves: Existence and Analyticity of Solution Branches", Water Waves, 3, 25-47 (2020).
25) B.F. Akers, D.M. Ambrose, and D.W. Sulon, "Periodic traveling interfacial hydroelastic waves with or without mass II: Multiple Bifurcations and Ripples." European Journal of Applied Mathematics, 30(4), pp 756-790, (2019).
24) B. F. Akers, J. Gustafsson, J. A. Reeger and S. S. Sritharan. "Atmospheric Propagation of High Energy Lasers: Thermal Blooming Simulation", Engineering Mathematics Letters, Article ID 7, (2019).
23) B.F. Akers and J.A. Reeger, "Numerical Simulation of Thermal Blooming with Laser-Induced Convection", J. Electromagnetic Waves and Applications. 33(1), 96-106, (2019).
22) M. Paulec, M. Marciniak, K. Gross, B. Akers and D Azevedo, "Tomographic Reconstruction of a Jet Engine Exhaust Plume Using an Infrared Hyperspectral Imager", Optical Engineering, 57, 103103, (2018).
21) B.F. Akers, D.M. Ambrose, and D.W. Sulon, "Periodic traveling interfacial hydroelastic waves with or without mass." Zeitschrift für angewandte Mathematik und Physik (ZAMP), 68:141, (2017).
20) B. Akers and J. Reeger, "Three dimensional overturned traveling water waves", Wave Motion, 68, 210-217 (2017).
19) J.R Fee, JC Petrosky and B. Akers, "Re-establishing an Air Burst EMP Simulation Capability", Journal of Radiation Research and Engineering, 34:12, 53-60 (2016)
18) B. Akers, D.M. Ambrose, K. Pond, and J.D. Wright, Overturned internal capillary-gravity waves. Eur. J. Mech.-B/Fluids. 46, 181-189 (2016).
17) B. F. Akers, Modulational instabilities of periodic traveling waves in deep water. Physica D: Nonlinear Phenomena, 300, 26-33, (2015).
16) B. Akers and D. P. Nicholls. The spectrum of finite depth water waves. European Journal of Mechanics-B/Fluids 46, 181-189, (2014).
15) B. Akers, D.M. Ambrose and J.D. Wright, Gravity Perturbed Crapper Waves, Proc. of the Roy. Soc. A., 470, 2161, (2014)
14) B. Akers, D.M. Ambrose and J.D. Wright, Traveling waves from the arclength parameterization: Vortex sheets with surface tension, Interfaces and Free Boundaries, 5(3), 359-380, (2013)
13) B. Akers and D.P. Nicholls, Spectral Stability of Deep Two-dimensional Gravity-Capillary Water Waves, Stud. Appl. Math. 130(2), 81-107, (2013)
12) B. Akers and D.P. Nicholls, Spectral Stability of Deep Two-dimensional Gravity Water Waves : Repeated Eigenvalues, SIAM J. Appl. Math., 72(2), 689-711, (2012)
11) B. Akers, Surfactant influence on water wave packets, Stud. Appl. Math. 129(1), 91-102, (2012)
10) B. Akers and Wenxuan Gao, Wilton ripples in weakly nonlinear model equations, Commun. Math. Sci., 10(3), 1015-1024, (2012)
9) B. Akers, The generation of capillary-gravity solitary waves by a surface pressure forcing, Math. Comp. Sim., 82 958-967, (2012)
8) B. Akers and P.A. Milewski, Dynamics of three-dimensional gravity-capillary solitary waves in deep water, SIAM J. Appl. Math. 70(7), 2390-2408, (2010)
7) B. Akers and D.P. Nicholls, Traveling waves with gravity and surface tension, SIAM J. Appl. Math. 70(7), 2373-2389 (2010)
6) B. Akers and P.A. Milewski, A model equation for wavepacket solitary waves arising from capillary-gravity flows, Stud. Appl. Math., 122, 249-274, (2009)
5) B. Akers and P.A. Milewksi, A stability result for solitary waves in nonlinear dispersive equations, Comm. Math. Sci., 6, 791-797, (2008)
4) B. Akers and P.A. Milewski, Model Equations for gravity-capillary waves in deep water, Stud. Appl. Math., 121, 49-69, (2008)
3) B. Akers and O. Bokhove, Hydraulic flow through a channel contraction: multiple steady states, Phys. Fluids., 20, 056601, (2008)
2) B. Akers and A. Belmonte, Impact dynamics of a solid sphere falling into a viscoelastic micellar fluid, J. Non-Newt. Fluid Mech., 135, 97-108, (2006)
1) B. Akers, S. Bohun, P. Gibson, A. Hofinger, M. Lamoureux, J. Lobb, B. Mawby and M. Roberts. General statistical design of an experimental problem for harmonics. Can. Appl. Math. Q., 12(4), 415--437 (2004)
BOOK CHAPTERS AND CONFERENCE PROCEEDINGS:
8) J. Lane and B. Akers "High Absorption Thermal Blooming: Numerical Steady State Simulation" Nonlinear Optics Topical Meeting 2023, M4A.5
7) B. Akers and T. Liu, "Thermal effects in Short Laser Pulses: Suppression of Wave Collapse", Imaging and Applied Optics Congress 2022, PW4F.3 (2022)
6) D. Morrill and B. Akers "High Energy Lasers Propagation: Modelling Scintillation Effects", Imaging and Applied Optics Congress 2019, PTh2D.3, (2019).
5) B. Akers and M. Seiders, "Numerical Simulation of Overturned Traveling Waves" (Book Chapter), in Nonlinear Water Waves - An Interdisciplinary Interface, 109-122, (2019)
4) D. Morrill and B. Akers, "High Energy Laser Propagation: Environmental Effects", Imaging and Applied Optics, PW1D.4, (2017).
3) B. Akers, HOPS Short Course: Traveling water waves. London Mathematical Society Lecture Notes Series. 426, 19-29 (2016).
2) B. Akers, HOPS Short Course: Stability of traveling water waves. London Mathematical Society Lecture Notes Series. 426, 51-61 (2016).
1) B. Akers, Shallow water flow through a channel contraction: multiple steady states, Proceedings of the GFD Program, Woods Hole Oceanographic Institution, 97-117, (2005)