PhD in Mathematics, University of Wisconsin-Madison, 2008

MA in Mathematics, University of Wisconsin-Madison, 2005

BS in Mathematics, Pennsylvania State University, 2003

AFIT Dean's Distinguished Teaching Professorship (Schoolwide): 2020

AFOSR Visiting Scientist Program: 2019

AFIT-ENC Instructor of the Year (Departmental): 2018, 2022

AFIT-ENC Instructor of the Quarter (Departmental): 2011, 2012, 2013, 2015, 2016, 2019

SOCHE Excellence in Teaching (Regional): 2012, 2019

Ohio Magazine Excellence in Education (Regional): 2013

**JOURNAL ARTICLES:**

37) S.H. Garland, V.B. Yurchyshyn, R.D. Loper, B.F. Akers, D.J. Emmons, "Analysis of Modeled 3D Solar Magnetic Field During 30 X/M-Class Solar Flares" accepted to *Frontiers in Astronomy and Space Sciences.*

36) K.O.F. Williams and B.F.Akers, "Numerical Simulation of the Korteweg-de Vries Equation with Machine Learning", *Mathematics*, 11, 2791, (2023).

35) B. F. Akers, S. Fiorino, and J. Reeger, "Thermal Blooming with Laser-Induced Convection: Radial Basis Function Simulation" * Applied Optics, *62:23 (2023)

34) S.H. Garland, V.B. Yurchyshyn, R.D. Loper, B.F. Akers, D.J. Emmons, "Evolution of Coronal Magnetic Field Parameters during X5.4 Solar Flare", *Frontiers in Astronomy and Space Sciences, *10:1148293, (2023).

33) J.S. Lane, J. Cook, M. Richardson and B.F. Akers, "Numerical simulation of steady-state thermal blooming with natural convection" *Applied Optics, *62:8, 2092-2099, (2023).

32) B.F. Akers and T. Liu, "Thermal Effects in Short Laser Pulses: Suppression of Wave Collapse" *Wave Motion, ***115, **103079, (2022).

31) J.S. Lane and B.F.Akers, "Two-dimensional Steady Boussinesq Convection: Existence, Computation and Scaling"* Fluids*, **6, **425, (2021)

30) B.F. Akers and D.P.Nicholls, "Wilton Ripples in Weakly Nonlinear Models of Water Waves: Existence and Computation", *Water Waves*, **3**, 491-511 (2021).

29) B.F. Akers, T. Liu, and J.A. Reeger "A Radial Basis Finite Difference Scheme for the Benjamin-Ono Equation", *Mathematics, ***9(1), 65,*** *(2021)

28) B.F. Akers and D.M. Ambrose, "Efficient Computation of Coordinate-Free Models of Flame Fronts", *The** ANZIAM Journal,* 1-12, (2021)

27)* *A. Lawrence and B.F. Akers, "Propagation of High Energy Lasers through Clouds: Modeling and Simulation" *Appl. Opt.* **59**(33), 10207-10216 (2020)*.*

26) B.F. Akers and D.P. Nicholls, "Wilton Ripples in Weakly Nonlinear Dispersive Models of Water Waves: Existence and Analyticity of Solution Branches", *Water Waves, *3, 25-47 (2020).

25) B.F. Akers, D.M. Ambrose, and D.W. Sulon, "Periodic traveling interfacial hydroelastic waves with or without mass II: Multiple Bifurcations and Ripples." *European Journal of Applied Mathematics, *30(4), pp 756-790, (2019).

24) B. F. Akers, J. Gustafsson, J. A. Reeger and S. S.** **Sritharan. "Atmospheric Propagation of High Energy Lasers: Thermal Blooming Simulation", *Engineering Mathematics Letters, *Article ID 7, (2019).

23) B.F. Akers and J.A. Reeger, "Numerical Simulation of Thermal Blooming with Laser-Induced Convection", *J. Electromagnetic Waves and Applications. *33(1), 96-106, (2019).

22) M. Paulec, M. Marciniak, K. Gross, B. Akers and D Azevedo, "Tomographic Reconstruction of a Jet Engine Exhaust Plume Using an Infrared Hyperspectral Imager", *Optical Engineering, *57, 103103, (2018).

21) B.F. Akers, D.M. Ambrose, and D.W. Sulon, "Periodic traveling interfacial hydroelastic waves with or without mass." *Zeitschrift für angewandte Mathematik und Physik (ZAMP), *68:141, (2017).

20) B. Akers and J. Reeger, "Three dimensional overturned traveling water waves*", Wave Motion, *68, 210-217 (2017).

19) J.R Fee, JC Petrosky and B. Akers, "Re-establishing an Air Burst EMP Simulation Capability", *Journal of Radiation Research and Engineering*, **34:12**, 53-60 (2016)

18) B. Akers, D.M. Ambrose, K. Pond, and J.D. Wright, Overturned internal capillary-gravity waves. *Eur. J. Mech.-B/Fluids*. 46, 181-189 (2016).

17) B. F. Akers, Modulational instabilities of periodic traveling waves in deep water. *Physica D: Nonlinear Phenomena,* 300, 26-33, (2015).

16) B. Akers and D. P. Nicholls. The spectrum of finite depth water waves. *European Journal of Mechanics-B/Fluids* 46, 181-189, (2014).

15) B. Akers, D.M. Ambrose and J.D. Wright, Gravity Perturbed Crapper Waves, *Proc. of the Roy. Soc. A., *470, 2161, (2014)

14) B. Akers, D.M. Ambrose and J.D. Wright, Traveling waves from the arclength parameterization: Vortex sheets with surface tension, *Interfaces and Free Boundaries*, 5(3), 359-380, (2013)

13) B. Akers and D.P. Nicholls, Spectral Stability of Deep Two-dimensional Gravity-Capillary Water Waves, *Stud. Appl. Math*. 130(2), 81-107, (2013)

12) B. Akers and D.P. Nicholls, Spectral Stability of Deep Two-dimensional Gravity Water Waves : Repeated Eigenvalues, *SIAM J. Appl. Math*., 72(2), 689-711, (2012)

11) B. Akers, Surfactant influence on water wave packets, *Stud. Appl. Mat*h. 129(1), 91-102, (2012)

10) B. Akers and Wenxuan Gao, Wilton ripples in weakly nonlinear model equations, *Commun. Math. Sci*., 10(3), 1015-1024, (2012)

9) B. Akers, The generation of capillary-gravity solitary waves by a surface pressure forcing, *Math. Comp. Sim.*, 82 958-967, (2012)

8) B. Akers and P.A. Milewski, Dynamics of three-dimensional gravity-capillary solitary waves in deep water, *SIAM J. Appl. Math*. 70(7), 2390-2408, (2010)

7) B. Akers and D.P. Nicholls, Traveling waves with gravity and surface tension, *SIAM J. Appl. Math.* 70(7), 2373-2389 (2010)

6) B. Akers and P.A. Milewski, A model equation for wavepacket solitary waves arising from capillary-gravity flows, *Stud. Appl. Math*., 122, 249-274, (2009)

5) B. Akers and P.A. Milewksi, A stability result for solitary waves in nonlinear dispersive equations, *Comm. Math. Sci., *6, 791-797, (2008)

4) B. Akers and P.A. Milewski, Model Equations for gravity-capillary waves in deep water, *Stud. Appl. Math.,* 121, 49-69, (2008)

3) B. Akers and O. Bokhove, Hydraulic flow through a channel contraction: multiple steady states, *Phys. Fluids., *20, 056601, (2008)

2) B. Akers and A. Belmonte, Impact dynamics of a solid sphere falling into a viscoelastic micellar fluid, *J. Non-Newt. Fluid Mech*., 135, 97-108, (2006)

1) B. Akers, S. Bohun, P. Gibson, A. Hofinger, M. Lamoureux, J. Lobb, B. Mawby and M. Roberts. General statistical design of an experimental problem for harmonics. *Can. Appl. Math. Q.*, 12(4), 415--437 (2004)

**BOOK CHAPTERS AND CONFERENCE PROCEEDINGS:**

7) B. Akers and T. Liu, "Thermal effects in Short Laser Pulses: Suppression of Wave Collapse", *Imaging and Applied Optics Congress 2022, *PW4F.3 (2022)

6) D. Morrill and B. Akers "High Energy Lasers Propagation: Modelling Scintillation Effects", *Imaging and Applied Optics Congress 2019, *PTh2D.3, (2019).

5) B. Akers and M. Seiders, "Numerical Simulation of Overturned Traveling Waves" (Book Chapter), in* Nonlinear Water Waves - An Interdisciplinary Interface, *109-122, (2019)

4) D. Morrill and B. Akers, "High Energy Laser Propagation: Environmental Effects", *Imaging and Applied Optics,* PW1D.4,* *(2017).

3) B. Akers, HOPS Short Course: Traveling water waves.* London Mathematical Society Lecture Notes Series*. 426, 19-29 (2016).

2) B. Akers, HOPS Short Course: Stability of traveling water waves. *London Mathematical Society Lecture Notes Series*. 426, 51-61 (2016).

1) B. Akers, Shallow water flow through a channel contraction: multiple steady states, *Proceedings of the GFD Program, Woods Hole Oceanographic Institution*, 97-117, (2005)

- Gravity perturbed Crapper Waves
- Traveling waves from the arclength parameterization: Vortex sheets with surface tension
- Modulational instabilities of periodic traveling waves in deep water
- Overturned internal capillary-gravity waves
- HOPS Short Course: Stability of traveling water waves
- HOPS Short Course: Traveling water waves
- Three-dimensional overturned traveling water waves
- Periodic traveling interfacial hydroelastic waves with or without mass
- Numerical simulation of thermal blooming with laser-induced convection
- Periodic traveling interfacial hydroelastic waves with or without mass II: Multiple bifurcations and ripples
- Two-dimensional Steady Boussinesq Convection: Existence, Computation and Scaling
- Efficient Computation of Coordinate-Free Models of Flame Fronts
- A Radial Basis Function Finite Difference Scheme for the Benjamin-Ono Equation
- Wilton Ripples in Weakly Nonlinear Models: Existence and Computation
- Wilton Ripples in Weakly Nonlinear Dispersive Models for Water Waves: Existence and Analyticity of Solutions
- Propagation of High Energy Lasers Through Clouds: Modeling and Simulation
- Thermal Effects in Short Laser Pulses: Suppression of Wave Collapse
- Thermal Blooming with Laser-Induced Convection: Radial Basis Function Simulation
- Numerical Simulation of the KdV equation with Machine Learning
- Numerical simulation of steady-state thermal blooming with natural convection