Dr. Benjamin Akers

Associate Professor of Mathematics

Associate Professor of Mathematics

PhD in Mathematics, University of Wisconsin-Madison, 2008

MA in Mathematics, University of Wisconsin-Madison, 2005

BS in Mathematics, Pennsylvania State University, 2003

ENC Instructor of the Quarter (2011, 2012, 2013, 2015, 2016)

SOCHE Excellence in Teaching (2012)

Ohio Magazine Excellence in Education (2013)

**Submitted:**

B.F. Akers and J.A. Reeger, "Thermal Blooming with Laser-Induced Convection"

B. F. Akers, J. Gustafsson, J. A. Reeger and S. S.** **Sritharan. "Atmospheric Propagation of High Energy Lasers."

*Accepted:*

B.F. Akers, D.M. Ambrose, and D.W. Sulon, "Periodic traveling interfacial hydroelastic waves with or without mass II: Multiple Bifurcations and Ripples." to appear in *European Journal of Applied Mathematics*.

*Appeared:*

25) B.F. Akers, D.M. Ambrose, and D.W. Sulon, "Periodic traveling interfacial hydroelastic waves with or without mass." *Zeitschrift für angewandte Mathematik und Physik (ZAMP), *68:141, (2017).

24) D. Morrill and B. Akers, "High Energy Laser Propagation: Environmental Effects", *Imaging and Applied Optics,* PW1D.4,* *(2017).

23) B. Akers and J. Reeger, "Three dimensional overturned traveling water waves*", Wave Motion, *68, 210-217 (2017).

22) J.R Fee, JC Petrosky and B. Akers, "Re-establishing an Air Burst EMP Simulation Capability", *Journal of Radiation Research and Engineering*, **34:12**, 53-60 (2016)

21) B. Akers, D.M. Ambrose, K. Pond, and J.D. Wright, Overturned internal capillary-gravity waves. *Eur. J. Mech.-B/Fluids*. 46, 181-189 (2016).

20) B. Akers, HOPS Short Course: Traveling water waves.* London Mathematical Society Lecture Notes Series*. 426, 19-29 (2016).

19) B. Akers, HOPS Short Course: Stability of traveling water waves. *London Mathematical Society Lecture Notes Series*. 426, 51-61 (2016).

18) B. F. Akers, Modulational instabilities of periodic traveling waves in deep water. *Physica D: Nonlinear Phenomena,* 300, 26-33, (2015).

17) B. Akers and D. P. Nicholls. The spectrum of finite depth water waves. *European Journal of Mechanics-B/Fluids* 46, 181-189, (2014).

16) B. Akers, D.M. Ambrose and J.D. Wright, Gravity Perturbed Crapper Waves, *Proc. of the Roy. Soc. A., *470, 2161, (2014)

15) B. Akers, D.M. Ambrose and J.D. Wright, Traveling waves from the arclength parameterization: Vortex sheets with surface tension, *Interfaces and Free Boundaries*, 5(3), 359-380, (2013)

14) B. Akers and D.P. Nicholls, Spectral Stability of Deep Two-dimensional Gravity-Capillary Water Waves, *Stud. Appl. Math*. 130(2), 81-107, (2013)

13) B. Akers and D.P. Nicholls, Spectral Stability of Deep Two-dimensional Gravity Water Waves : Repeated Eigenvalues, *SIAM J. Appl. Math*., 72(2), 689-711, (2012)

12) B. Akers, Surfactant influence on water wave packets, *Stud. Appl. Mat*h. 129(1), 91-102, (2012)

11) B. Akers and Wenxuan Gao, Wilton ripples in weakly nonlinear model equations, *Commun. Math. Sci*., 10(3), 1015-1024, (2012)

10) B. Akers, The generation of capillary-gravity solitary waves by a surface pressure forcing, *Math. Comp. Sim.*, 82 958-967, (2012)

9) B. Akers and P.A. Milewski, Dynamics of three-dimensional gravity-capillary solitary waves in deep water, *SIAM J. Appl. Math*. 70(7), 2390-2408, (2010)

8) B. Akers and D.P. Nicholls, Traveling waves with gravity and surface tension, *SIAM J. Appl. Math.* 70(7), 2373-2389 (2010)

7) B. Akers and P.A. Milewski, A model equation for wavepacket solitary waves arising from capillary-gravity flows, *Stud. Appl. Math*., 122, 249-274, (2009)

6) B. Akers and P.A. Milewksi, A stability result for solitary waves in nonlinear dispersive equations, *Comm. Math. Sci., *6, 791-797, (2008)

5) B. Akers and P.A. Milewski, Model Equations for gravity-capillary waves in deep water, *Stud. Appl. Math.,* 121, 49-69, (2008)

4) B. Akers and O. Bokhove, Hydraulic flow through a channel contraction: multiple steady states, *Phys. Fluids., *20, 056601, (2008)

3) B. Akers and A. Belmonte, Impact dynamics of a solid sphere falling into a viscoelastic micellar fluid, *J. Non-Newt. Fluid Mech*., 135, 97-108, (2006)

2) B. Akers, Shallow water flow through a channel contraction: multiple steady states, *Proceedings of the GFD Program, Woods Hole Oceanographic Institution*, 97-117, (2005)

1) B. Akers, S. Bohun, P. Gibson, A. Hofinger, M. Lamoureux, J. Lobb, B. Mawby and M. Roberts. General statistical design of an experimental problem for harmonics. *Can. Appl. Math. Q.*, 12(4), 415--437 (2004)

- Gravity perturbed Crapper Waves
- Traveling waves from the arclength parameterization: Vortex sheets with surface tension
- Modulational instabilities of periodic traveling waves in deep water
- Overturned internal capillary-gravity waves
- HOPS Short Course: Stability of traveling water waves
- HOPS Short Course: Traveling water waves
- Three-dimensional overturned traveling water waves
- Periodic traveling interfacial hydroelastic waves with or without mass